
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Feature Selection and Revision
of Optimisation Problems

Lecture 26

Image from: http://vignette1.wikia.nocookie.net/pirates/images/3/38/Fight_on_Isla_de_Muerta_16.png/revision/latest?cb=20110702154006

http://vignette1.wikia.nocookie.net/pirates/images/3/38/Fight_on_Isla_de_Muerta_16.png/revision/latest?cb=20110702154006

Overview
• The need for feature selection

• How to select input features to use with machine learning
approaches

• Revision:
• Lorry problem
• Requirements optimisation problem
• Software project scheduling
• Software energy optimisation
• Evolutionary software testing

• Feature selection as an optimisation problem

2

Module Questionnaire

Please complete the module questionnaire for CO3091.

3

h"ps://leicester.surveys.qmihub.co.uk/	

https://leicester.surveys.qmihub.co.uk/

Selecting Input Features for
Machine Learning Approaches
• Previous lectures:

• Practitioners may have some idea about what input
features are likely to be related to the output being
predicted.

• Software defect prediction:
• McCabe cyclomatic complexity
• Halstead complexity measures
• Lines of code
• Lines of comments
• etc.

4

Selecting Input Features for
Machine Learning Approaches

• If we miss including some important input feature, our
predictive models may perform poorly.

• Result: to avoid missing some important feature, practitioners
may suggest many input features, which are not all useful.
• Is lines of comment really related to defects?
• Is Halstead Volume needed if we already use LOC?

5

The Curse of Dimensionality

6Image from: http://vignette1.wikia.nocookie.net/pirates/images/3/38/Fight_on_Isla_de_Muerta_16.png/revision/latest?cb=20110702154006

http://vignette1.wikia.nocookie.net/pirates/images/3/38/Fight_on_Isla_de_Muerta_16.png/revision/latest?cb=20110702154006

The Curse of Dimensionality

7

Predictive
performance

Number of input features
(dimensions)Optimum number

of input features

… not only the number of features matter,
but also which features are being used.

Why Does This Happen?
• As we increase the number of input features (dimensions), we

have less and less training data representing certain
combinations of input feature values.
• Certain areas of the input space will be uncovered.

• To cover those input feature values, we would need more
training data, which is frequently unavailable.
• The amount of training data needed often grows

exponentially with the number of input features.

8

Therefore, having too many input features has a similar effect to having too
few data, hindering the predictive performance of machine learning

approaches.

Why Does This Happen?
(cont.)

• Instances that are similar to each other on some input
features may be very different on others.

9

1 1 0 0

1 1 0 0

0 0 0 0

1 1 1 1

• In the example, if the last 4 input features are irrelevant to the
problem, they will deceive the algorithm into thinking that the two
instances above are dissimilar when they are actually very similar.

• This can affect some machine learning approaches.

10

“Make things as simple as possible,
but no simpler”

— Albert Einstein

Select only the best features

Don’t miss any important feature

How to Select Features Among
a Set of Potential Features?

• Filter feature selection methods:
• Light, can be applied before building a predictive model.
• E.g.: correlation-based feature selection method (CFS).

• Wrapper feature selection methods.
• Formulate feature selection as an optimisation problem.
• We want to select the features that lead to better predictive

performance.
• Heavier, but possibly leads to better predictive

performance than filter methods.

11

We can use optimisation algorithms!

12

Breakpoint!

Formulation of Optimisation
Problems

• Design variables represent a solution.

• Design variables define the search space of candidate
solutions.

• [Optional] Solutions must satisfy certain constraints.

• Objective function defines our goal.
• Can be used to evaluate the quality of solutions.
• Function to be optimised (maximised or minimised).

13

Lorry Problem

14

Problem: decide which
products to load so as
to maximise the total

profit of loaded
products.

• Consider the following problem:
• You need to load a lorry with products. The maximum total

weight of products that the lorry can stand is W.
• You have N products that can be loaded, and each product i

has a weight wi, and a profit pi.

Image from: http://www.wingstransport.com/cms-files/hpSlide-1357902701.png

http://www.wingstransport.com/cms-files/hpSlide-1357902701.png

Lorry Problem Formulation

15

• Design variable:
• v ∈ {0,1}N, where vi = 0 represents that product i is not loaded, vi = 1

represents that product i is loaded, and N is the number of products.

• Objective function:

• Constraint:

(to be maximised).

NX

i=1

v(i)w(i) Wvi wi

Total weight of loaded
products

f(v) =
NX

i=1

v(i)p(i)vi pi v

0 if product i is not loaded
1 otherwiseTotal profit of loaded

products

Image from: https://s.yimg.com/pw/images/spaceout.gif

Requirements Selection
• As requirements have a cost, we may need to select a subset

of all possible requirements to implement, so that the project
will:
• be within budget or
• have lower cost.

• We need to decide which possible requirements to
implement, considering (potentially among others):
• their cost,
• their value from different stakeholders perspectives,
• the importance of the stakeholder who wants the

requirement.

16

Requirements Selection
Problem Formulation

17

Objective: Maximise score(rj) xj

nX

j=1

xj = 0 if requirement rj is not included

xj = 1 if requirement rj is included
x = {0,1}n

Constraint: cost(rj) xj ≤ C
nX

j=1

total cost of selected requirements

Score reflects value of
requirement from each

stakeholder point of view
and the importance of the

stakeholder.

Decision variable:

n is the number of requirements

Software Project Scheduling

18

Setting: assume we are given
• n employees e1, . . . , en with salaries sali and sets of skills skilli;
• m tasks t1, . . . , tm with required efforts reqEffj and sets of required

skills reqSkj;
• a task precedence graph (TPG).

Problem: allocate employees to tasks so as to:
• minimise cost (total salaries paid) and
• minimise duration (completion time).

Constraints:
• team must have required skills and
• no overwork.

x’i,j

Formulation — Design
Variable

• Design variable:
• x’ = Matrix of employees by tasks.
• Entries x’i,j represent the dedication of employee i to task j.
• Dedication = percentage of the employee’s time dedicated to

the task.
• Values that each entry x’i,j could assume depend on the

granularity k of the problem.

19

x’ t1 t2 ... tm
e1 x’1,1 x’1,2 ... x’1,m

e2 x’2,1 x’2,2 ... x’2,m

...
en x’n,1 x’n,2 ... x’n,m

Calculating Cost and
Duration

20

+ TPG, tasks required efforts

Cost and duration
+ salaries

x’ t1 t2 t3 t4
e1 x’1,1 x’1,2 x’1,3 x’1,4

e2 x’2,1 x’2,2 x’2,3 x’2,4

e3 x’3,1 x’3,2 x’3,3 x’3,4

Software Energy
Optimisation

21

• Mobile apps have widespread use.

• Mobile apps consume energy (battery).

• Studies show that battery consumption is one of the key
factors considered by users when choosing a mobile app.

• In order to reduce energy consumption of OLED screens, one
can optimise the colours used by the GUI.

Image from: http://cdn.slashgear.com/wp-content/uploads/2013/04/flexible_oled-820x420.jpg

http://cdn.slashgear.com/wp-content/uploads/2013/04/flexible_oled-820x420.jpg

Software Energy
Optimisation — Formulation

22

• Consider an initial GUI design with its colours.

• Design variables: RGB colour of each pixel.

• Objectives:
• Minimise power consumption on OLED displays.

• Power consumption of a GUI depends on the power consumption of its
screens and the amount of time users spend on different screens.

• Power consumption of a screen depends on the power consumption of its
pixels.

• Power consumption of a pixel is the sum of the power consumptions of its
RGB colour components.

• Maximise contrasts between adjacent GUI elements.
• Minimise difference with respect to the original GUI design.

• Constraints:
• Adjacent elements of the GUI should not have the same colour or colours with

too low contrast between them.

Evolutionary Software
Testing

• Software testing is an essential component for software
development success.

• Software testing is one of the most expensive tasks in the
software development process.

• Test suite: set of test cases, each consisting of a sequence of
inputs and expected outputs from the program.

• Challenging for large and complex software.

• A good test suite should exercise the code well and be fast to
run.

23

Evolutionary Software
Testing — Formulation

• Design variable: list with a given number of input sequences.
• Design variable can be seen as a test suite.
• Each input sequence is a test case with an expected “output”

of “no crash”.
• Examples of inputs for Android: Touch, Motion, Rotation, Track-

ball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter
text, or clicks on widgets.

• Objectives:
• Maximise coverage.
• Minimise length of test cases.
• Maximise number of crashes found.

• Constraints:
• N/A

24

Back to Feature Selection

25
Image from: https://images-na.ssl-images-amazon.com/images/S/sgp-catalog-images/region_US/nbcu-61101081-Full-Image_GalleryBackground-en-US-1484000598187._RI_SX940_.jpg

Wrapper Methods

• Formulate feature selection as an optimisation problem.

• We want to select the features that lead to better predictive
performance.

26

• Design variable: ?

• Objectives: ?

• Constraints: ?

Feature Selection Problem
Formulation

27

• Design variable:
• v ∈ {0,1}N, where vi = 0 represents that input feature i is not selected,

vi = 1 represents that input feature i is selected, and N is the number
of available input features.

• Objective function:
• Predictive performance of model created using the selected features.

• Build a predictive model using a machine learning algorithm and the
training set using the selected input features.

• Evaluate the predictive performance of this predictive model.

Feature Selection Problem
Formulation

28

Examples of Evaluation Functions
Using a Known Data Set

• Classification error:
• Given a data set D with examples (xi,yi), 1 ≤ i ≤ m.
• The actual output (target) for xi is yi.
• The prediction given by a classification model to xi is yi’.
• yi and yi’ are categorical values.

29

Classification error = (yi ≠ yi’)

• Classification accuracy:

Classification accuracy = 1 - classification error

1

m

mX

i=1

Examples of Evaluation Functions
Using a Known Data Set

• Mean Squared Error (MSE):
• Given a data set D with examples (xi,yi), 1 ≤ i ≤ m.
• The actual output (target) for xi is yi.
• The prediction given by a regression model to xi is yi’.
• yi and yi’ are numerical values.

30

MSE = (yi - yi’)2

RMSE = MSE
p

• Root Mean Squared Error (RMSE):

1

m

mX

i=1

31

Difference between optimisation and machine learning from problem perspective:

in machine learning we wish to create models with good generalisation ability.

Which Data To Use For Computing
the Predictive Performance?

32

• We had three different types of data sets:

• Training set:
• Used by the machine learning approach to learn a model.

• Validation set:
• Used to choose between different machine learning approaches (or

parameters for the approaches). It estimates the error on data unseen
at the time of building the model.

• Test set:
• Separate data set used neither for training nor for validation. It can be

used to give an idea of how well the model will perform / is performing
in practice, i.e., how good the generalisation to future unseen data is
likely to be.

• Design variable:
• v ∈ {0,1}N, where vi = 0 represents that input feature i is not

selected, vi = 1 represents that input feature i is selected,
and N is the number of available input features.

• Objective function:
• Validation error of the model built based on the training set

using only the selected features.

Feature Selection Problem
Formulation

33

• Constraints:
• None.

Now that the problem is formulated, it is possible to design an
optimisation algorithm to solve it!

Overview
Optimisation problems:

• Feature selection
• Lorry problem
• Requirements optimisation problem
• Software project scheduling
• Software energy optimisation
• Software test case generation

Next lecture:
• Optimisation algorithms

34

