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Overview
• The need for feature selection 

• How to select input features to use with machine learning 
approaches 

• Revision: 
• Lorry problem 
• Requirements optimisation problem 
• Software project scheduling 
• Software energy optimisation 
• Evolutionary software testing 

• Feature selection as an optimisation problem
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Module Questionnaire

Please complete the module questionnaire for CO3091.
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Selecting Input Features for 
Machine Learning Approaches
• Previous lectures: 

• Practitioners may have some idea about what input 
features are likely to be related to the output being 
predicted. 

• Software defect prediction: 
• McCabe cyclomatic complexity 
• Halstead complexity measures 
• Lines of code 
• Lines of comments 
• etc.
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Selecting Input Features for 
Machine Learning Approaches

• If we miss including some important input feature, our 
predictive models may perform poorly. 

• Result: to avoid missing some important feature, practitioners 
may suggest many input features, which are not all useful. 
• Is lines of comment really related to defects? 
• Is Halstead Volume needed if we already use LOC?
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The Curse of Dimensionality
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The Curse of Dimensionality
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Predictive 
performance

Number of input features  
(dimensions)Optimum number  

of input features

… not only the number of features matter, 
but also which features are being used.



Why Does This Happen?
• As we increase the number of input features (dimensions), we 

have less and less training data representing certain 
combinations of input feature values. 
• Certain areas of the input space will be uncovered. 

• To cover those input feature values, we would need more 
training data, which is frequently unavailable. 
• The amount of training data needed often grows 

exponentially with the number of input features.
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Therefore, having too many input features has a similar effect to having too 
few data, hindering the predictive performance of machine learning 

approaches.



Why Does This Happen? 
(cont.)

• Instances that are similar to each other on some input 
features may be very different on others.
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1 1 0 0
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0 0 0 0

1 1 1 1

• In the example, if the last 4 input features are irrelevant to the 
problem, they will deceive the algorithm into thinking that the two 
instances above are dissimilar when they are actually very similar. 

• This can affect some machine learning approaches.
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“Make things as simple as possible,  
but no simpler”

— Albert Einstein

Select only the best features

Don’t miss any important feature



How to Select Features Among 
a Set of Potential Features?

• Filter feature selection methods: 
• Light, can be applied before building a predictive model. 
• E.g.: correlation-based feature selection method (CFS). 

• Wrapper feature selection methods. 
• Formulate feature selection as an optimisation problem. 
• We want to select the features that lead to better predictive 

performance. 
• Heavier, but possibly leads to better predictive 

performance than filter methods.
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We can use optimisation algorithms!



12

Breakpoint!



Formulation of Optimisation 
Problems

• Design variables represent a solution. 

• Design variables define the search space of candidate 
solutions. 

• [Optional] Solutions must satisfy certain constraints. 

• Objective function defines our goal. 
• Can be used to evaluate the quality of solutions. 
• Function to be optimised (maximised or minimised).
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Lorry Problem
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Problem: decide which 
products to load so as 
to maximise the total 

profit of loaded 
products.

• Consider the following problem: 
• You need to load a lorry with products. The maximum total 

weight of products that the lorry can stand is W. 
• You have N products that can be loaded, and each product i 

has a weight wi, and a profit pi.
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Lorry Problem Formulation

15

• Design variable: 
• v ∈ {0,1}N, where vi = 0 represents that product i is not loaded, vi = 1 

represents that product i is loaded, and N is the number of products. 

• Objective function:  

• Constraint:

(to be maximised).

NX

i=1

v(i)w(i)  Wvi wi     

Total weight of loaded 
products

f(v) =
NX

i=1

v(i)p(i)vi  pi    v

0 if product i is not loaded 
1 otherwiseTotal profit of loaded 

products

Image from: https://s.yimg.com/pw/images/spaceout.gif



Requirements Selection
• As requirements have a cost, we may need to select a subset 

of all possible requirements to implement, so that the project 
will: 
• be within budget or 
• have lower cost. 

• We need to decide which possible requirements to 
implement, considering (potentially among others): 
• their cost, 
• their value from different stakeholders perspectives, 
• the importance of the stakeholder who wants the 

requirement.
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Requirements Selection 
Problem Formulation
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Objective: Maximise          score(rj) xj

nX

j=1

xj = 0 if requirement rj is not included

xj = 1 if requirement rj is included
x = {0,1}n

Constraint: cost(rj) xj ≤ C
nX

j=1

total cost of selected requirements

Score reflects value of 
requirement from each 

stakeholder point of view 
and the importance of the 

stakeholder.

Decision variable:

n is the number of requirements



Software Project Scheduling
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Setting: assume we are given 
• n employees e1, . . . , en with salaries sali and sets of skills skilli; 
• m tasks t1, . . . , tm with required efforts  reqEffj and sets of required 

skills reqSkj;  
• a task precedence graph (TPG).

Problem: allocate employees to tasks so as to:  
• minimise cost (total salaries paid) and  
• minimise duration (completion time).

Constraints: 
• team must have required skills and 
• no overwork.



x’i,j 

Formulation — Design 
Variable

• Design variable: 
• x’ = Matrix of employees by tasks. 
• Entries x’i,j represent the dedication of employee i to task j. 
• Dedication = percentage of the employee’s time dedicated to 

the task. 
• Values that each entry x’i,j could assume depend on the 

granularity k of the problem.
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x’ t1 t2 ... tm
e1 x’1,1 x’1,2 ... x’1,m

e2 x’2,1 x’2,2 ... x’2,m

... ... ... ... ...
en x’n,1 x’n,2 ... x’n,m



Calculating Cost and 
Duration
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+ TPG, tasks required efforts

Cost and duration
+ salaries

x’ t1 t2 t3 t4
e1 x’1,1 x’1,2 x’1,3 x’1,4

e2 x’2,1 x’2,2 x’2,3 x’2,4

e3 x’3,1 x’3,2 x’3,3 x’3,4



Software Energy 
Optimisation
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• Mobile apps have widespread use. 

• Mobile apps consume energy (battery). 

• Studies show that battery consumption is one of the key 
factors considered by users when choosing a mobile app. 

• In order to reduce energy consumption of OLED screens, one 
can optimise the colours used by the GUI.
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Software Energy 
Optimisation — Formulation
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• Consider an initial GUI design with its colours. 

• Design variables: RGB colour of each pixel. 

• Objectives:  
• Minimise power consumption on OLED displays. 

• Power consumption of a GUI depends on the power consumption of its 
screens and the amount of time users spend on different screens. 

• Power consumption of a screen depends on the power consumption of its 
pixels. 

• Power consumption of a pixel is the sum of the power consumptions of its 
RGB colour components. 

• Maximise contrasts between adjacent GUI elements.  
• Minimise difference with respect to the original GUI design. 

• Constraints: 
• Adjacent elements of the GUI should not have the same colour or colours with 

too low contrast between them.



Evolutionary Software 
Testing

• Software testing is an essential component for software 
development success. 

• Software testing is one of the most expensive tasks in the 
software development process. 

• Test suite: set of test cases, each consisting of a sequence of 
inputs and expected outputs from the program. 

• Challenging for large and complex software. 

• A good test suite should exercise the code well and be fast to 
run.

23



Evolutionary Software 
Testing — Formulation

• Design variable: list with a given number of input sequences. 
• Design variable can be seen as a test suite. 
• Each input sequence is a test case with an expected “output” 

of “no crash”. 
• Examples of inputs for Android: Touch, Motion, Rotation, Track-

ball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter 
text, or clicks on widgets. 

• Objectives:  
• Maximise coverage. 
• Minimise length of test cases. 
• Maximise number of crashes found. 

• Constraints: 
• N/A
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Back to Feature Selection
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Wrapper Methods

• Formulate feature selection as an optimisation problem. 

• We want to select the features that lead to better predictive 
performance.
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• Design variable: ?  

• Objectives: ? 

• Constraints: ?

Feature Selection Problem 
Formulation
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• Design variable: 
• v ∈ {0,1}N, where vi = 0 represents that input feature i is not selected, 

vi = 1 represents that input feature i is selected, and N is the number 
of available input features. 

• Objective function:  
• Predictive performance of model created using the selected features. 

• Build a predictive model using a machine learning algorithm and the 
training set using the selected input features. 

• Evaluate the predictive performance of this predictive model.

Feature Selection Problem 
Formulation
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Examples of Evaluation Functions 
Using a Known Data Set

• Classification error: 
• Given a data set D with examples (xi,yi), 1 ≤ i ≤ m. 
• The actual output (target) for xi is yi. 
• The prediction given by a classification model to xi is yi’. 
• yi and yi’ are categorical values.
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Classification error = (yi ≠ yi’)

• Classification accuracy:

Classification accuracy = 1 - classification error 

1

m

mX

i=1



Examples of Evaluation Functions 
Using a Known Data Set

• Mean Squared Error (MSE): 
• Given a data set D with examples (xi,yi), 1 ≤ i ≤ m. 
• The actual output (target) for xi is yi. 
• The prediction given by a regression model to xi is yi’. 
• yi and yi’ are numerical values.

30

MSE = (yi - yi’)2

RMSE = MSE
p

• Root Mean Squared Error (RMSE):

1

m

mX

i=1
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Difference between optimisation and machine learning from problem perspective:

in machine learning we wish to create models with good generalisation ability.



Which Data To Use For Computing 
the Predictive Performance?
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• We had three different types of data sets: 

• Training set:  
• Used by the machine learning approach to learn a model. 

• Validation set:  
• Used to choose between different machine learning approaches (or 

parameters for the approaches). It estimates the error on data unseen 
at the time of building the model. 

• Test set:  
• Separate data set used neither for training nor for validation. It can be 

used to give an idea of how well the model will perform / is performing 
in practice, i.e., how good the generalisation to future unseen data is 
likely to be.



• Design variable: 
• v ∈ {0,1}N, where vi = 0 represents that input feature i is not 

selected, vi = 1 represents that input feature i is selected, 
and N is the number of available input features. 

• Objective function:  
• Validation error of the model built based on the training set 

using only the selected features.

Feature Selection Problem 
Formulation
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• Constraints: 
• None.

Now that the problem is formulated, it is possible to design an 
optimisation algorithm to solve it!



Overview
Optimisation problems: 

• Feature selection 
• Lorry problem 
• Requirements optimisation problem 
• Software project scheduling 
• Software energy optimisation 
• Software test case generation 

Next lecture:  
• Optimisation algorithms
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