CO3091 - Computational Intelligence and Software Engineering

Lecture 26

Image from: http://vignette1.wikia.nocookie.net/pirates/images/3/38/Fight on Isla de Muerta 16.png/revision/latest?cb=20110702154006

Feature Selection and Revision of Optimisation Problems Leandro L. Minku

Overview

- The need for feature selection
- How to select input features to use with machine learning approaches
- Revision:
 - Lorry problem
 - Requirements optimisation problem
 - Software project scheduling
 - Software energy optimisation
 - Evolutionary software testing
- Feature selection as an optimisation problem

Module Questionnaire

https://leicester.surveys.qmihub.co.uk/

Please complete the module questionnaire for CO3091.

Selecting Input Features for Machine Learning Approaches

• Previous lectures:

- Practitioners may have some idea about what input features are likely to be related to the output being predicted.
- Software defect prediction:
 - McCabe cyclomatic complexity
 - Halstead complexity measures
 - Lines of code
 - Lines of comments
 - etc.

Selecting Input Features for Machine Learning Approaches

- If we miss including some important input feature, our predictive models may perform poorly.
- Result: to avoid missing some important feature, practitioners may suggest many input features, which are not all useful.
 - Is lines of comment really related to defects?
 - Is Halstead Volume needed if we already use LOC?

The Curse of Dimensionality

The Curse of Dimensionality

Why Does This Happen?

- As we increase the number of input features (dimensions), we have less and less training data representing certain combinations of input feature values.
 - Certain areas of the input space will be uncovered.
- To cover those input feature values, we would need more training data, which is frequently unavailable.
 - The amount of training data needed often grows exponentially with the number of input features.

Therefore, having too many input features has a similar effect to having too few data, hindering the predictive performance of machine learning approaches.

Why Does This Happen? (cont.)

• Instances that are similar to each other on some input features may be very different on others.

1	1	0	0	0	0	0	0
1	1	0	0	1	1	1	1

- In the example, if the last 4 input features are irrelevant to the problem, they will deceive the algorithm into thinking that the two instances above are dissimilar when they are actually very similar.
- This can affect some machine learning approaches.

Select only the best features

"Make things as simple as possible, but no simpler"

— Albert Einstein

Don't miss any important feature

How to Select Features Among a Set of Potential Features?

- Filter feature selection methods:
 - Light, can be applied before building a predictive model.
 - E.g.: correlation-based feature selection method (CFS).
- Wrapper feature selection methods.
 - Formulate feature selection as an optimisation problem.
 - We want to select the features that lead to better predictive performance.
 - Heavier, but possibly leads to better predictive performance than filter methods.

We can use optimisation algorithms!

Breakpoint!

Formulation of Optimisation Problems

- Design variables represent a solution.
- Design variables define the search space of candidate solutions.
- [Optional] Solutions must satisfy certain constraints.
- Objective function defines our goal.
 - Can be used to evaluate the quality of solutions.
 - Function to be optimised (maximised or minimised).

Lorry Problem

- Consider the following problem:
 - You need to load a lorry with products. The maximum total weight of products that the lorry can stand is W.
 - You have N products that can be loaded, and each product i has a weight w_i, and a profit p_i.

Problem: decide which products to load so as to maximise the total profit of loaded products.

Image from: http://www.wingstransport.com/cms-files/hpSlide-1357902701.png

Lorry Problem Formulation

- Design variable:
 - $v \in \{0,1\}^N$, where $v_i = 0$ represents that product i is not loaded, $v_i = 1$ represents that product i is loaded, and N is the number of products.
- Objective function:

15

Requirements Selection

- As requirements have a cost, we may need to select a subset of all possible requirements to implement, so that the project will:
 - be within budget or
 - have lower cost.
- We need to decide which possible requirements to implement, considering (potentially among others):
 - their cost,
 - their value from different stakeholders perspectives,
 - the importance of the stakeholder who wants the requirement.

total cost of selected requirements

Software Project Scheduling

Setting: assume we are given

- *n* employees *e*₁, . . . , *e*_n with salaries *sal*_i and sets of skills *skill*_i;
- *m* tasks *t*₁, . . . , *t_m* with required efforts *reqEff_j* and sets of required skills *reqSk_j*;
- a task precedence graph (TPG).

Problem: allocate employees to tasks so as to:

- minimise cost (total salaries paid) and
- minimise duration (completion time).

Constraints:

- team must have required skills and
- no overwork.

Formulation — Design Variable

- Design variable:
 - **x'** = Matrix of employees by tasks.
 - Entries x'_{i,j} represent the dedication of employee i to task j.
 - Dedication = percentage of the employee's time dedicated to the task.
 - Values that each entry x'_{i,j} could assume depend on the granularity k of the problem.

Χ'	t ₁	t ₂	 t _m
e ₁	X'1,1	X'1,2	 X'1 ,m
e ₂	X'2,1	X'2,2	 X' 2,m
e n	X'n,1	X'n,2	 X'n,m

Calculating Cost and Duration

Software Energy Optimisation

- Mobile apps have widespread use.
- Mobile apps consume energy (battery).
- Studies show that battery consumption is one of the key factors considered by users when choosing a mobile app.
- In order to reduce energy consumption of OLED screens, one can optimise the colours used by the GUI.

Image from: http://cdn.slashgear.com/wp-content/uploads/2013/04/flexible_oled-820x420.jpg

Software Energy Optimisation — Formulation

- Consider an initial GUI design with its colours.
- Design variables: RGB colour of each pixel.
- Objectives:
 - Minimise power consumption on OLED displays.
 - Power consumption of a GUI depends on the power consumption of its screens and the amount of time users spend on different screens.
 - Power consumption of a screen depends on the power consumption of its pixels.
 - Power consumption of a pixel is the sum of the power consumptions of its RGB colour components.
 - Maximise contrasts between adjacent GUI elements.
 - Minimise difference with respect to the original GUI design.
- Constraints:
 - Adjacent elements of the GUI should not have the same colour or colours with too low contrast between them.

Evolutionary Software Testing

- Software testing is an essential component for software development success.
- Software testing is one of the most expensive tasks in the software development process.
- Test suite: set of test cases, each consisting of a sequence of inputs and expected outputs from the program.
- Challenging for large and complex software.
- A good test suite should exercise the code well and be fast to run.

Evolutionary Software Testing — Formulation

- Design variable: list with a given number of input sequences.
 - Design variable can be seen as a test suite.
 - Each input sequence is a test case with an expected "output" of "no crash".
 - Examples of inputs for Android: Touch, Motion, Rotation, Trackball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter text, or clicks on widgets.
- Objectives:
 - Maximise coverage.
 - Minimise length of test cases.
 - Maximise number of crashes found.
- Constraints:
 - N/A

Back to Feature Selection

Image from: https://images-na.ssl-images-amazon.com/images/S/sgp-catalog-images/region_US/nbcu-61101081-Full-Image_GalleryBackground-en-US-1484000598187._RI_SX940_jpg

Wrapper Methods

- Formulate feature selection as an optimisation problem.
- We want to select the features that lead to better predictive performance.

Feature Selection Problem Formulation

• Design variable: ?

• Objectives: ?

• Constraints: ?

Feature Selection Problem Formulation

- Design variable:
 - v ∈ {0,1}^N, where v_i = 0 represents that input feature i is not selected, v_i = 1 represents that input feature i is selected, and N is the number of available input features.
- Objective function:
 - Predictive performance of model created using the selected features.
 - Build a predictive model using a machine learning algorithm and the training set using the selected input features.
 - Evaluate the predictive performance of this predictive model.

Examples of Evaluation Functions Using a Known Data Set

• Classification error:

- Given a data set D with examples (\mathbf{x}_i, y_i) , $1 \le i \le m$.
- The actual output (target) for \mathbf{x}_i is \mathbf{y}_i .
- The prediction given by a classification model to \mathbf{x}_i is \mathbf{y}_i^2 .
- y_i and y_i' are categorical values.

Classification error =
$$\frac{1}{m} \sum_{i=1}^{m} (y_i \neq y_i')$$

Classification accuracy:

Examples of Evaluation Functions Using a Known Data Set

- Mean Squared Error (MSE):
 - Given a data set D with examples (\mathbf{x}_i, y_i) , $1 \le i \le m$.
 - The actual output (target) for \mathbf{x}_i is \mathbf{y}_i .
 - The prediction given by a regression model to \mathbf{x}_i is \mathbf{y}_i .
 - y_i and y_i' are numerical values.

MSE =
$$\frac{1}{m} \sum_{i=1}^{m} (y_i - y_i)^2$$

• Root Mean Squared Error (RMSE):

$$\mathsf{RMSE} = \sqrt{\mathsf{MSE}}$$

Difference between optimisation and machine learning from problem perspective:

in machine learning we wish to create models with good generalisation ability.

Which Data To Use For Computing the Predictive Performance?

- We had three different types of data sets:
 - Training set:
 - Used by the machine learning approach to learn a model.
 - Validation set:
 - Used to choose between different machine learning approaches (or parameters for the approaches). It estimates the error on data unseen at the time of building the model.
 - Test set:
 - Separate data set used neither for training nor for validation. It can be used to give an idea of how well the model will perform / is performing in practice, i.e., how good the generalisation to future unseen data is likely to be.

Feature Selection Problem Formulation

- Design variable:
 - v ∈ {0,1}^N, where v_i = 0 represents that input feature i is not selected, v_i = 1 represents that input feature i is selected, and N is the number of available input features.
- Objective function:
 - Validation error of the model built based on the training set using only the selected features.
 - Constraints:
 - None.

Now that the problem is formulated, it is possible to design an optimisation algorithm to solve it!

Overview

Optimisation problems:

- Feature selection
- Lorry problem
- Requirements optimisation problem
- Software project scheduling
- Software energy optimisation
- Software test case generation

Next lecture:

• Optimisation algorithms