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Overview
• So far in the machine learning part of the module… 

• k-Nearest Neighbours. 
• Naive Bayes. 
• Decision Trees. 

• Today: 
• Combining learners into ensembles in order to improve 

predictive performance. 
• When do ensembles work? 
• Bagging ensembles. 
• Software effort estimation.
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Base modelsBM1 BM2 BMN ...

What are Ensembles?
Ensembles are sets of learning machines grouped together with 

the aim of reducing error / increasing accuracy.
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prediction1 prediction2 predictionN

E.g.: ensemble prediction = Σ wi predictioni

E.g.: ensemble prediction = weighted majority vote among predictioni

instance

 Σ wi = 1



Example of Predictions
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10 20 30

BM1 BM2 BM3

w1 = 1/3 w2 = 1/3 w3 = 1/3

ensemble prediction = Σ wi predictioni

ensemble prediction = ?

ensemble prediction = simple average of predictioni



Example of Predictions
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10 20 30

BM1 BM2 BM3

w1 = 1/3 w2 = 1/3 w3 = 1/3

ensemble prediction = Σ wi predictioni

ensemble prediction = 20

ensemble prediction = simple average of predictioni



Example of Predictions
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10 20 30

BM1 BM2 BM3

w1 = 0.1 w2 = 0.2 w3 = 0.7

ensemble prediction = Σ wi predictioni

ensemble prediction = ?



Example of Predictions
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10 20 30

BM1 BM2 BM3

w1 = 0.1 w2 = 0.2 w3 = 0.7

ensemble prediction = Σ wi predictioni

ensemble prediction = 0.1 * 10 + 0.2 * 20 + 0.7 * 30 = 1 + 4 + 21 = 26



Example of Predictions
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No No Yes

BM1 BM2 BM3

ensemble prediction = majority vote among predictioni

ensemble prediction = ?

w1 = 1/3 w2 = 1/3 w3 = 1/3

ensemble prediction = weighted majority vote among predictioni



Example of Predictions
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No No Yes

BM1 BM2 BM3

ensemble prediction = majority vote among predictioni

ensemble prediction = No

w1 = 1/3 w2 = 1/3 w3 = 1/3

ensemble prediction = weighted majority vote among predictioni



Example of Predictions
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ensemble prediction = ?

No No Yes

BM1 BM2 BM3

w1 = 0.1 w2 = 0.2 w3 = 0.7

ensemble prediction = weighted majority vote among predictioni



Example of Predictions
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No No Yes

BM1 BM2 BM3

ensemble prediction = weighted majority vote among predictioni

w1 = 0.1 w2 = 0.2 w3 = 0.7

Votes for No:

ensemble prediction = Yes

Votes for Yes:

0.1 + 0.2 = 0.3

0.7



When Do Ensembles Work 
Well?

• Base models should be both accurate and diverse. 

• Accuracy:  
• If base models make too many mistakes, the whole 

ensemble prediction will also make too many mistakes. 

• Diversity: models are diverse if they make different 
mistakes.  
• If all base models make the same mistakes, the whole 

ensemble prediction will make the same mistakes as the 
base models.
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Intuition for Classification 
Problems
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Intuition: correct predictions given by some models 
compensate for the incorrect predictions given by the other 

models.

Accuracy:



[YouTube Video posted by timb6: https://youtu.be/iOucwX7Z1HU] 14

Intuition for Regression Problems

https://youtu.be/iOucwX7Z1HU
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Intuition for Regression 
Problems

Intuition: overestimations are compensated by 
underestimations if the base models are diverse enough.
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Diversity is necessary both for classification and for 
regression problems!



Ensemble Approaches

Different ensemble learning algorithms can be seen as different 
approaches to generate accurate and diverse base models.
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Bagging (Bootstrap 
Aggregating)

• Bootstrap sampling: 
• Sample |D| examples from a training set of size |D| uniformly with 

replacement. 
• Uniformly = all examples have the same chance to be selected. 
• With replacement = allow an example to be selected more than once 

to be part of the sample.
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Project Size Team 
Expertise

Programming 
Language

Effort

P1 100 High Java 80

P2 200 Normal C++ 220

P3 150 High Python 100

P4 500 Normal Java 600

P5 550 Normal C++ 700

Project Size Team 
Expertise

Programming 
Language

Effort

P2 200 Normal C++ 220

P5 550 Normal C++ 700

P1 100 High Java 80

P5 550 Normal C++ 700

P4 500 Normal Java 600

Training Set With Size |D| = 5 Sample from Training Set With Size |D| = 5



Bagging (Bootstrap 
Aggregating)

• Bootstrap sampling: 
• If you use bootstrap sampling to a sample data set D’ with 

size |D| based on an original data set D of size |D|, it is 
expected that D’ will contain 63.2% of the unique examples 
from D. 

• If you repeat bootstrap sampling several times, you are 
likely to get several different sample data sets. 

• Different samples of the training set will normally lead to 
different base models.
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Bagging (Bootstrap 
Aggregating)
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Training data BMN ...

Bootstrap 
sample 

BM1 BM2



Pseudocode
Bagging (ensemble size N, training set D, base learning algorithm) 

ensemble = {} 

For i=1 to N, 
D’ <— sample |D| examples from D uniformly with 

 replacement (bootstrap sample) 

Build base model BMi using base learning algorithm with D’ 

ensemble = ensemble U {BMi} 

Return ensemble
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Bagging Ensemble 
Predictions

• The ensemble predictions are: 
• Regression problems: simple average of the predictions 

given by the base models. 
• Classification problems: majority vote of the predictions 

given by the base models.
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When and Why Bagging 
Works?

• Success of bagging depends on base learning algorithm 
being good but unstable. 
• Good: creates accurate base models. 
• Unstable: small change in the training sample can result in 

a large change in the predictions given by the resulting 
base model. 
• This means that enough diversity would be generated. 

• If a stable base learning algorithm is used, bagging can even 
worsen the predictive accuracy.
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Stable / Unstable Based 
Learning Algorithms

• Example of unstable base learning algorithm: decision trees. 

• Example of stable base learning algorithm: k-NN.
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What Ensemble Size 
Should We Use?

• Early work suggested that ensembles with as few as 10 base 
models were adequate to sufficiently reduce the test error. 

• However, later on it was found that test error can be further 
reduced even after 10 base models have been added. 

• Ensemble size is a parameter of ensemble approaches. 
• The best ensemble size will depend on the data. 
• Too few base models will not be enough to reduce the test 

error. 
• Too many will waste resources.

25



Typical Test Error Curve
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Test Error

Number of base models

In Bagging, this point may be ~10–15 base models  
for classification problems



Software Effort Estimation
• Estimation of the effort required to develop a software project. 

• Effort is measured in person-hours, person-months, etc. 

• Based on features such as programming language, team 
expertise, estimated size, development type, required 
reliability, etc. 

• Main factor influencing project cost. 

• Overestimation vs underestimation.
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Machine Learning for 
Software Effort Estimation

• Software effort estimation is difficult to perform by humans. 
• Affected by irrelevant features. 
• Lack of improvement in the predictions over time. 

• Machine learning can help.
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x1 = 
programming 

language
x2 = team 
expertise

x3 = estimated 
size … y = required 

effort

Java low 1000 … 10 p-month
C++ medium 2000 … 20 p-month
Java high 2000 … 8 p-month

… … … … …



Machine Learning for 
Software Effort Estimation

• k-NN: 
• Can be intuitive for practitioners, helping them to find completed projects that 

are most similar to the new project to be developed. 
• Offer competitive accuracy in comparison to other approaches, but performs 

poorly for some companies. 

• Decision trees: 
• Can be visualised. 
• Frequently among the best machine learning approaches for software effort 

estimation. 

• Bagging ensembles of decision trees. 
• Can improve accuracy further with respect to decision trees. 
• Difficult to visualise. 

• Naive Bayes: 
• Usually doesn’t work well for regression problems.
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Further Reading
Menzies et al. 
Sharing Data and Models in Software Engineering 
Elsevier, 2014 
Chapter 20 (Ensembles of Learning Machines) until section 20.3 
http://readinglists.le.ac.uk/lists/D888DC7C-0042-
C4A3-5673-2DF8E4DFE225.html  

David Opitz  
Ensemble Size 
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume11/
opitz99a-html/node10.html 
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