CO3091 - Computational Intelligence and Software Engineering

Lecture 21

Decision Trees — Part I

Leandro L. Minku

Overview

- What are decision trees in the context of machine learning?
- How to build decision trees?
 - General idea of recursive algorithm to split nodes.
 - Classification and regression problems.
 - Categorical and ordinal input attributes.
- Decision trees topic to be continued in the next two lectures.
 - How to split nodes?
 - Classification and regression problems.
 - Categorical, ordinal and numerical input attributes.
 - How to avoid overfitting?
 - Applications of decision trees.

Decision Trees

- Decision-support tools that use a tree-like structure.
- In the context of machine learning, decision trees are approaches that use predictive models with tree-like structures.
 - Internal nodes: specify tests to be carried out on a single input attribute, with one branch for each possible outcome of the test.
 - Leaf nodes: indicate the value of the output attribute.

Example of Decision Tree

Previous Invitations for Playing Tennis

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

WEKA Example

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

trees -> J48

Decision Tree Learnt

Internal nodes make splits on input attributes.

Leaves indicate output values. 7

J48 pruned tree

```
Outlook = Sunny
| Humidity = High: No (3.0)
| Humidity = Normal: Yes (2.0)
Outlook = Overcast: Yes (4.0)
Outlook = Rain
| Wind = Weak: Yes (3.0)
| Wind = Strong: No (2.0)
```

Predictions Based on Decision Trees

In order to make a prediction, walk through the tree.

Example of Decision Tree for Playing Tennis

Irrelevant or redundant attributes don't appear on the tree.

The smallest the tree, the easier to understand it.

What would be the prediction for an instance [outlook=sunny, temperature=hot, humidity=normal,wind=strong]?

Types of Decision Trees

- According to output attributes:
 - Classification trees.
 - Regression trees.
- Input attributes can be either numerical, categorical or ordinal.

Most common use of decision trees.

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

Stopping criteria (incomplete):

 If all training examples associated to a node have the same output value, make this node a leaf node of that output value and stop splitting it.

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

Stopping criteria (incomplete):

 If all training examples associated to a node have the same output value, make this node a leaf node of that output value and stop splitting it.

Choosing an Attribute to Split On — Basic Idea

_				
	Day	Wind	Humidity	Play
	D1	Strong	High	No
	D2	Strong	High	No
	D3	Weak	High	No
	D4	Strong	Normal	Yes
	D5	Strong	Normal	Yes

Create one branch for each possible value of humidity.

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

Stopping criteria (incomplete):

 If all training examples associated to a node have the same output value, make this node a leaf node of that output value and stop splitting it.

Training Data Associated To Each New Node

Day	Wind	Humidity	Play
D1	Strong	High	No
D2	Strong	High	No
D3	Weak	High	No

Day	Wind	Humidity	Play
D4	Strong	Normal	Yes
D5	Strong	Normal	Yes

Creating Leaf Node for Classification Problems

Day	Wind	Play
D1	Strong	No
D2	Strong	No
D3	Weak	No

Day	Wind	Play
D4	Strong	Yes
D5	Strong	Yes

Another Example

Day	Wind	Play
D1	Strong	No
D2	Strong	No
D3	Weak	Yes

Day	Wind	Play
D4	Strong	Yes
D5	Strong	Yes

Further Split New Node

Day	Wind	Play
D4	Strong	Yes
D5	Strong	Yes

Training Data Associated To Each New Node

Day	Wind	Play
D1	Strong	No
D2	Strong	No

Day	Wind	Play
D3	Weak	Yes

Day	Wind	Play
D4	Strong	Yes
D5	Strong	Yes

Creating Leaf Nodes for Classification Problems

Day	Play
D1	No
D2	No

Day	Play
D3	Yes

Day	Wind	Play
D4	Strong	Yes
D5	Strong	Yes

Creating Leaf Nodes for Regression Problems

Project	Effort
P1	100
P2	100

Project	Effort
P3	200

Project	Size	Effort
P4	Medium	300
P5	Large	300

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

Stopping criteria (incomplete):

 If all training examples associated to a node have the same output value, make this node a leaf node of that output value and stop splitting it.

Heterogeneous Examples With Same Input Attributes

There may be no attributes available for further splitting and the examples associated to a node are not of the same class, e.g., as a result of noise.

Creating Leaf Nodes for Classification Problems

Create the leaf node using the **majority** of the outputs of the examples associated to that node.

Creating Leaf Nodes for Regression Problems

Leaf nodes predict the **average** of the outputs of the training examples associated to it.

Project	Size	Effort
D5	Large	1000

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

Stopping criteria (incomplete):

- If all training examples associated to a node have the same output value, make this node a leaf node of that output value and stop splitting it.
- If there are no further attributes to split the node on but there are still examples associated to the node, make this node a leaf node of the majority class (or average of numerical output values) and stop splitting it.

Split When There is No Training Data With a Given Attribute Value

Day	Temperature	Play
D1	Hot	No
D2	Hot	No
D3	Cool	Yes

Creating Leaf Node for Classification Problems

Day	Temperature	Play
D1	Hot	No
D2	Hot	No
D3	Cool	Yes

Temperature \in {hot, mild, cool}

The leaf node for mild predicts the **majority** among the outputs of the examples of its parent node.

Creating Leaf Node for Regression Problems

Project	Size	Effort
P1	Small	100
P2	Small	200
P3	Large	600

Size \in {small, medium, large}

Leaf nodes predict the **average** of the outputs of the training examples associated to its parent.

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

Stopping criteria:

- If all training examples associated to a node have the same output value, make this node a leaf node of that output value and stop splitting it.
- If there are no further attributes to split the node on but there are still examples associated to the node, make this node a leaf node of the majority class (or average of numerical output values) and stop splitting it.
- If there are no examples associated to a node, make this node a leaf node of the majority class (or average of numerical output values) of its parent and stop splitting it.

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

Stopping criteria:

- If all training examples associated to a node have the same output value, make this node a leaf node of that output value and stop splitting it.
- If there are no further attributes to split the node on but there are still examples associated to the node, make this node a leaf node of the majority class (or average of numerical output values) and stop splitting it.
- If there are no examples associated to a node, make this node a leaf node of the majority class (or average of numerical output values) of its parent and stop splitting it.

Next Lectures

General idea:

- Create a node and split it based on the input attribute that best separates the training examples associated to that node into different classes or numerical values.
- Once a split is made, create a node for each branch and split it based on the procedure above.

How to build decision trees for numerical input attributes.

How to avoid overfitting.

Applications of decision trees.

Further Reading

Tom Mitchell

Machine Learning

London : McGraw-Hill, 1997

Chapter 3, sections 3.1 to 3.5.

http://www.cs.princeton.edu/courses/archive/spr07/cos424/ papers/mitchell-dectrees.pdf

http://content.talisaspire.com/leicester/bundles/ 571f72e6e7ebb60e4600000a