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Overview
• What is software defect prediction? 

• What is class imbalance? 

• How to deal with class imbalance? 

• How to evaluate predictive models when there is class 
imbalance?
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Software Defect Prediction
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Software is composed of several components.

Testing all these components can be very expensive.



Software Defect Prediction
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If we know which components are more likely to be defective (buggy), 
we can increase testing cost-effectiveness.
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How to know which components are more likely 
to be defective (buggy)?

What about “hiring” existing bugs to work for us, to help us finding more 
bugs!?!?
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[YouTube video posted by Atlassian: https://youtu.be/4Mz1estA4MA]

https://youtu.be/4Mz1estA4MA


Software Defect Prediction as 
a Machine Learning Problem
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Machine Learning  
Algorithm

Module 
id

x1 = 
branch 
count

x2 = 
LOC

x3 = 
halstea

d 
difficul

…
y = 

defective 
?

1 18 1000 1 … No
2 30 900 10 … Yes
3 20 5000 3 … Yes

… … … … … …

New module x
for new version of  

the software
Yes/No

Modules of previous versions of the software



What Input Attributes Can 
Be Used?

• Input attributes: several different metrics could be used to 
describe software modules. E.g.: 
• McCabe cyclomatic complexity 
• Halstead complexity measures 
• Number of lines of code (LOC) 
• Number of lines with comments 
• …
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McCabe Cyclomatic 
Complexity

• We will have more possible paths if we have more condition 
statements in our code. 
• McCabe cyclomatic complexity =  

number of simple conditions + 1.
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Measures the complexity of the code based on the number of linearly 
independent paths in the code flow graph.



McCabe Cyclomatic 
Complexity

• Simple conditions are conditional statements without OR or 
AND. E.g.: 
• If (a > b) —> this counts as one simple condition 
• While (a > b) —> this counts as one simple condition 
• For (a=b; a > b; b++) —> this counts as one simple 

condition 
• Do…while (a > b) —> this counts as one simple 

condition
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McCabe Cyclomatic 
Complexity

• For compound conditions, count each simple condition 
inside it. E.g.: 
• If (a > b) OR (a > 2) —> this counts as two simple 

conditions
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if (a > b) OR (a > 2) 
statement

if (a > b) 
statement 

else if (a > 2) 
statement



McCabe Cyclomatic 
Complexity

• For compound conditions, count each simple condition 
inside it. E.g.: 
• If (a > b) OR (a > 2) —> this counts as two simple 

conditions 
• If (a > b) AND (a > 2) —> this counts as two simple 

conditions
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if (a > b) AND (a > 2) 
statement

if (a > b) 
if (a > 2) 

statement



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
int c = a + b;

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
if (a > b) 

a = b; 
int c = a + b;

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
if (a > b) 

a = b; 
else 

b = a; 
int c = a + b;

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
if (a > b || a > 1) 

a = b; 
int c = a + b;

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
if (a > b && a > 1) 

a = b; 
int c = a + b;

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
if (a > b) 

a = b; 
if (2 * a > b) 

a = b; 
int c = a + b;

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
while (a > b) 

a--; 
int c = a + b;

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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switch (a) { 
case 1:  

a += 10; 
break; 

case 2:  
a += 30; 
break; 

case 3:  
a += 60; 
break; 

default: 
a += 1; 
break; 

} 
int c = a + b;

Count number of cases.

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity — Example
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int a = 1; 
int b = 2; 
int c = 3; 
try { 

a= 10; 
} catch (ExceptionType1 name) { 

b = 10; 
} catch (ExceptionType2 name) { 

c = 10; 
} 

int c = a + b;

Count number of catches.

McCabe cyclomatic complexity =  
number of simple conditions + 1.

McCabe cyclomatic complexity = ? 



McCabe Cyclomatic 
Complexity
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One could expect a more complex piece of code (with higher number of 
possible paths) to be more likely to contain defects.

However, we don’t know how much more likely and whether / how it interacts 
with other metrics.



Halstead Complexity 
Measures

• n1 = number of distinct operators. 
• E.g., !=, !, %, /, *, +, &&, ||, etc.  

• n2 = number of distinct operands. 
• E.g., identifiers that are not reserved words, constants 

(character, number, or string constants), type (bool, char, 
double, etc), etc. 

• N1 = total number of the operators. 

• N2 = total number of operands.
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Measures the complexity of the code based on the number of operators and 
operands used in the code.



Halstead Complexity 
Measures

• n1 = number of distinct operators  
• n2 = number of distinct operands 
• N1 = total number of the operators 
• N2 = total number of operands 

• Code vocabulary: n = n1 + n2 
• Code length: N = N1 + N2 

• Volume: V = N log2 n 
• Difficulty: D = n1 / 2 * N2 / n2 
• …
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Once could expect that a 
larger piece of code is likely to 

contain more bugs.

Once could expect that a 
piece of code deemed  
more difficult is likely to 

contain more bugs.

But we don’t know how much 
more likely and whether / how 
each of these metrics interacts 

with other metrics.



Lines of Code and Comment
• Lines of Code (LOC): number of lines containing code. 

• Lines of Comment: number of lines containing comments.
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Once could expect that a 
larger piece of code is likely to 

contain more bugs.

Once could expect that a 
more commented piece of 

code is likely to contain less 
bugs.But we don’t know how much 

more likely, and whether / how 
these metrics interact with 

other metrics.



Which Classifier to Use?
• Naive bayes has been showing to perform well in comparison 

with other approaches. 

• However, it still struggles because software defect prediction 
is a class imbalanced problem.
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What is Class Imbalance?
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A machine learning problem is class imbalanced when there are much 
less examples of one or more classes than examples of at least one 

of the other class / classes.

In software defect prediction, there are typically much more examples 
of non-defective modules than defective ones.

In this module, we will consider the scenario where there 
is only 2 classes: one majority and one minority.



Effect of Class Imbalance
• Class imbalance makes it difficult for machine learning 

approaches to recognise examples of the minority class. 

• In the worst case scenario, the classifier would classify all 
new instances as belonging to the majority class. 

• In software defect prediction, this would mean that all new 
modules would be classified as non-defective!
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Potential Solutions
• Undersampling: 

• Instead of using the whole training 
set to produce the predictive model, 
use a sample of this training set. 

• Training sample: 
• Minority class: get all training 

examples of the minority class. 
• Majority class: randomly take n 

examples of the majority class, 
where n is the number of minority 
class examples. 

• Problem: loose a lot of information. This 
may be ok if the data set is very large or 
easy to learn.
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Module 
id

x1 = 
branch 
count

x2 = 
LOC

x3 = 
halstea

d 
difficul

…
y = 

defective 
?

1 18 1000 1 … No
2 30 900 10 … Yes
3 20 5000 3 … Yes
4 25 100 3 … No
5 50 500 4 … No
6 4 30 3 … No
7 25 2000 2 … No
8 28 3000 5 … No
9 13 1000 10 … No
10 25 500 12 … No

Module 
id

x1 = 
branch 
count

x2 = 
LOC

x3 = 
halstea

d 
difficul

…
y = 

defective 
?

2 30 900 10 … Yes
3 20 5000 3 … Yes
6 4 30 3 … No
10 25 500 12 … No

Original training set

Training Sample



Module 
id

x1 = 
branch 
count

x2 = 
LOC

x3 = 
halstea

d 
difficul

…
y = 

defective 
?

1 18 1000 1 … No
2 30 900 10 … Yes
3 20 5000 3 … Yes
4 25 100 3 … No
5 50 500 4 … No
6 4 30 3 … No
7 25 2000 2 … No
8 28 3000 5 … No
9 13 1000 10 … No
10 25 500 12 … No

Potential Solutions
• Oversampling: 

• Instead of using the whole training set to produce 
the predictive model, use a sample of this training 
set. 

• Training sample: 
• Majority class: get all training examples of the 

majority class. 
• Minority class: consider that n is the number of 

majority class examples. Randomly select n 
examples from the minority class. 

• Problems:  
• Increases chances of overfitting the minority 

class, as it will produce several copies of this 
class. 

• Increase training time. 
• Does not really acquire extra information about the 

class boundaries.

30

Original training set

Training Sample
Module 

id
x1 = 

branch 
count

x2 = 
LOC

x3 = 
halstea

d 
…

y = 
defective 

?
1 18 1000 1 … No
4 25 100 3 … No
5 50 500 4 … No
6 4 30 3 … No
7 25 2000 2 … No
8 28 3000 5 … No
9 13 1000 10 … No
10 25 500 12 … No
2 30 900 10 … Yes

3 20 5000 3 … Yes
2 30 900 10 … Yes
2 30 900 10 … Yes
3 20 5000 3 … Yes
3 20 5000 3 … Yes
3 20 5000 3 … Yes2 30 900 10 … Yes
2 30 900 10 … Yes



Evaluating Predictive 
Performance

• Classification error (or accuracy) is inadequate when there is class 
imbalance. 

• Consider the following scenario: 
• 10 examples of the minority class. 
• 990 examples of the majority class. 
• Predictive model predicts all examples as being of the majority 

class.
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Classification error = (yi ≠ yi’)
1

n

nX

i=1

Classification error =
Classification accuracy = 100% -1% = 99%

10 / 1000 = 1%



Evaluating Predictive 
Performance — Confusion Matrix
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Positive Negative

Positive

Negative

Predicted class

Ac
tu

al
 c

la
ss

True positive rate = Number of true positives
Number of examples whose actual class is positive

True 
positive

True 
negative

False 
negative

False 
positive

Percentage of positive examples that have been correctly classified.



Evaluating Predictive 
Performance — Confusion Matrix
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Positive Negative

Positive True 
positive

False 
negative

Negative False 
positive

True 
negative

Predicted class

Ac
tu

al
 c

la
ss

True negative rate = Number of true negatives
Number of examples whose actual class is negative

Percentage of negative examples that have been correctly classified.



Evaluating Predictive 
Performance — Confusion Matrix
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Positive Negative

Positive True 
positive

False 
negative

Negative False 
positive

True 
negative

Predicted class

Ac
tu

al
 c

la
ss

False positive rate = Number of false positives
Number of examples whose actual class is negative

Percentage of negative examples that have been incorrectly classified.



Evaluating Predictive 
Performance — Confusion Matrix
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Positive Negative

Positive True 
positive

False 
negative

Negative False 
positive

True 
negative

Predicted class

Ac
tu

al
 c

la
ss

False negative rate = Number of false negatives
Number of examples whose actual class is positive

Percentage of positive examples that have been incorrectly classified.



Example
• Consider the following scenario: 

• 10 examples of the class positive. 
• 990 examples of the class negative. 
• Predictive model predicts all examples as being of the 

negative class.
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True negative rate = Number of true negatives
Number of examples whose actual class is negative

True negative rate = 
990

990
= 1 = 100%



Example
• Consider the following scenario: 

• 10 examples of the class positive. 
• 990 examples of the class negative. 
• Predictive model predicts all examples as being of the 

negative class.
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False positive rate = Number of false positives
Number of examples whose actual class is negative

False positive rate = 
0

990
= 0 = 0%



Example
• Consider the following scenario: 

• 10 examples of the class positive. 
• 990 examples of the class negative. 
• Predictive model predicts all examples as being of the 

negative class.
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True positive rate = Number of true positives
Number of examples whose actual class is positive

True positive rate = 
0

10
= 0 = 0%



Example
• Consider the following scenario: 

• 10 examples of the class positive. 
• 990 examples of the class negative. 
• Predictive model predicts all examples as being of the 

negative class.
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False negative rate = Number of false negatives
Number of examples whose actual class is positive

False negative rate = 
10

10
= 1 = 100%



Example
• Consider the following scenario: 

• 10 examples of the class positive. 
• 990 examples of the class negative. 
• Predictive model predicts all examples as being of the 

negative class.
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True negative rate = 100% 

False positive rate = 0% 

True positive rate = 0% 

False negative rate = 100%



Summary Of Last Three 
Lectures

• Naive Bayes has a probabilistic view of Machine Learning. 

• Naive Bayes for classification problems: 
• Naive Bayes for categorical input attributes. 
• Naive Bayes for numerical input attributes. 

• Naive Bayes is typically poor for regression problems. 

• Naive Bayes has been used for software defect prediction. 

• However, strategies to deal with class imbalance are 
recommended to be used in conjunction with Naive Bayes for 
this problem.

41



Further Reading
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Zaheed Mahmood, David Bowes, Peter Lane and Tracy Hall.  
What is the impact of imbalance on software defect prediction 
performance? 
International Conference on Predictive Models and Data 
Analytics in Software Engineering (PROMISE 2015) 
http://dl.acm.org/citation.cfm?id=2810150  

Lab session today at 3pm!

http://dl.acm.org/citation.cfm?id=2810150

