
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Software Defect Prediction and
Class Imbalance Learning

Lecture 20

Image from: http://blog.qatestlab.com/wp-content/uploads/2012/04/Preventing-of-Software-Bugs-and-Bug-Sources-550x158.gif?width=550

http://blog.qatestlab.com/wp-content/uploads/2012/04/Preventing-of-Software-Bugs-and-Bug-Sources-550x158.gif?width=550

Overview
• What is software defect prediction?

• What is class imbalance?

• How to deal with class imbalance?

• How to evaluate predictive models when there is class
imbalance?

2

Software Defect Prediction

3

Software is composed of several components.

Testing all these components can be very expensive.

Software Defect Prediction

4

If we know which components are more likely to be defective (buggy),
we can increase testing cost-effectiveness.

5

How to know which components are more likely
to be defective (buggy)?

What about “hiring” existing bugs to work for us, to help us finding more
bugs!?!?

6
[YouTube video posted by Atlassian: https://youtu.be/4Mz1estA4MA]

https://youtu.be/4Mz1estA4MA

Software Defect Prediction as
a Machine Learning Problem

7

Machine Learning
Algorithm

Module
id

x1 =
branch
count

x2 =
LOC

x3 =
halstea

d
difficul

…
y =

defective
?

1 18 1000 1 … No
2 30 900 10 … Yes
3 20 5000 3 … Yes

… … … … … …

New module x
for new version of

the software
Yes/No

Modules of previous versions of the software

What Input Attributes Can
Be Used?

• Input attributes: several different metrics could be used to
describe software modules. E.g.:
• McCabe cyclomatic complexity
• Halstead complexity measures
• Number of lines of code (LOC)
• Number of lines with comments
• …

8

McCabe Cyclomatic
Complexity

• We will have more possible paths if we have more condition
statements in our code.
• McCabe cyclomatic complexity =

number of simple conditions + 1.

9

Measures the complexity of the code based on the number of linearly
independent paths in the code flow graph.

McCabe Cyclomatic
Complexity

• Simple conditions are conditional statements without OR or
AND. E.g.:
• If (a > b) —> this counts as one simple condition
• While (a > b) —> this counts as one simple condition
• For (a=b; a > b; b++) —> this counts as one simple

condition
• Do…while (a > b) —> this counts as one simple

condition

10

McCabe Cyclomatic
Complexity

• For compound conditions, count each simple condition
inside it. E.g.:
• If (a > b) OR (a > 2) —> this counts as two simple

conditions

11

if (a > b) OR (a > 2)
statement

if (a > b)
statement

else if (a > 2)
statement

McCabe Cyclomatic
Complexity

• For compound conditions, count each simple condition
inside it. E.g.:
• If (a > b) OR (a > 2) —> this counts as two simple

conditions
• If (a > b) AND (a > 2) —> this counts as two simple

conditions

12

if (a > b) AND (a > 2)
statement

if (a > b)
if (a > 2)

statement

McCabe Cyclomatic
Complexity — Example

13

int a = 1;
int b = 2;
int c = a + b;

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

14

int a = 1;
int b = 2;
if (a > b)

a = b;
int c = a + b;

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

15

int a = 1;
int b = 2;
if (a > b)

a = b;
else

b = a;
int c = a + b;

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

16

int a = 1;
int b = 2;
if (a > b || a > 1)

a = b;
int c = a + b;

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

17

int a = 1;
int b = 2;
if (a > b && a > 1)

a = b;
int c = a + b;

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

18

int a = 1;
int b = 2;
if (a > b)

a = b;
if (2 * a > b)

a = b;
int c = a + b;

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

19

int a = 1;
int b = 2;
while (a > b)

a--;
int c = a + b;

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

20

switch (a) {
case 1:

a += 10;
break;

case 2:
a += 30;
break;

case 3:
a += 60;
break;

default:
a += 1;
break;

}
int c = a + b;

Count number of cases.

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity — Example

21

int a = 1;
int b = 2;
int c = 3;
try {

a= 10;
} catch (ExceptionType1 name) {

b = 10;
} catch (ExceptionType2 name) {

c = 10;
}

int c = a + b;

Count number of catches.

McCabe cyclomatic complexity =
number of simple conditions + 1.

McCabe cyclomatic complexity = ?

McCabe Cyclomatic
Complexity

22

One could expect a more complex piece of code (with higher number of
possible paths) to be more likely to contain defects.

However, we don’t know how much more likely and whether / how it interacts
with other metrics.

Halstead Complexity
Measures

• n1 = number of distinct operators.
• E.g., !=, !, %, /, *, +, &&, ||, etc.

• n2 = number of distinct operands.
• E.g., identifiers that are not reserved words, constants

(character, number, or string constants), type (bool, char,
double, etc), etc.

• N1 = total number of the operators.

• N2 = total number of operands.
23

Measures the complexity of the code based on the number of operators and
operands used in the code.

Halstead Complexity
Measures

• n1 = number of distinct operators
• n2 = number of distinct operands
• N1 = total number of the operators
• N2 = total number of operands

• Code vocabulary: n = n1 + n2
• Code length: N = N1 + N2

• Volume: V = N log2 n
• Difficulty: D = n1 / 2 * N2 / n2
• …

24

Once could expect that a
larger piece of code is likely to

contain more bugs.

Once could expect that a
piece of code deemed
more difficult is likely to

contain more bugs.

But we don’t know how much
more likely and whether / how
each of these metrics interacts

with other metrics.

Lines of Code and Comment
• Lines of Code (LOC): number of lines containing code.

• Lines of Comment: number of lines containing comments.

25

Once could expect that a
larger piece of code is likely to

contain more bugs.

Once could expect that a
more commented piece of

code is likely to contain less
bugs.But we don’t know how much

more likely, and whether / how
these metrics interact with

other metrics.

Which Classifier to Use?
• Naive bayes has been showing to perform well in comparison

with other approaches.

• However, it still struggles because software defect prediction
is a class imbalanced problem.

26

What is Class Imbalance?

27

A machine learning problem is class imbalanced when there are much
less examples of one or more classes than examples of at least one

of the other class / classes.

In software defect prediction, there are typically much more examples
of non-defective modules than defective ones.

In this module, we will consider the scenario where there
is only 2 classes: one majority and one minority.

Effect of Class Imbalance
• Class imbalance makes it difficult for machine learning

approaches to recognise examples of the minority class.

• In the worst case scenario, the classifier would classify all
new instances as belonging to the majority class.

• In software defect prediction, this would mean that all new
modules would be classified as non-defective!

28

Potential Solutions
• Undersampling:

• Instead of using the whole training
set to produce the predictive model,
use a sample of this training set.

• Training sample:
• Minority class: get all training

examples of the minority class.
• Majority class: randomly take n

examples of the majority class,
where n is the number of minority
class examples.

• Problem: loose a lot of information. This
may be ok if the data set is very large or
easy to learn.

29

Module
id

x1 =
branch
count

x2 =
LOC

x3 =
halstea

d
difficul

…
y =

defective
?

1 18 1000 1 … No
2 30 900 10 … Yes
3 20 5000 3 … Yes
4 25 100 3 … No
5 50 500 4 … No
6 4 30 3 … No
7 25 2000 2 … No
8 28 3000 5 … No
9 13 1000 10 … No
10 25 500 12 … No

Module
id

x1 =
branch
count

x2 =
LOC

x3 =
halstea

d
difficul

…
y =

defective
?

2 30 900 10 … Yes
3 20 5000 3 … Yes
6 4 30 3 … No
10 25 500 12 … No

Original training set

Training Sample

Module
id

x1 =
branch
count

x2 =
LOC

x3 =
halstea

d
difficul

…
y =

defective
?

1 18 1000 1 … No
2 30 900 10 … Yes
3 20 5000 3 … Yes
4 25 100 3 … No
5 50 500 4 … No
6 4 30 3 … No
7 25 2000 2 … No
8 28 3000 5 … No
9 13 1000 10 … No
10 25 500 12 … No

Potential Solutions
• Oversampling:

• Instead of using the whole training set to produce
the predictive model, use a sample of this training
set.

• Training sample:
• Majority class: get all training examples of the

majority class.
• Minority class: consider that n is the number of

majority class examples. Randomly select n
examples from the minority class.

• Problems:
• Increases chances of overfitting the minority

class, as it will produce several copies of this
class.

• Increase training time.
• Does not really acquire extra information about the

class boundaries.

30

Original training set

Training Sample
Module

id
x1 =

branch
count

x2 =
LOC

x3 =
halstea

d
…

y =
defective

?
1 18 1000 1 … No
4 25 100 3 … No
5 50 500 4 … No
6 4 30 3 … No
7 25 2000 2 … No
8 28 3000 5 … No
9 13 1000 10 … No
10 25 500 12 … No
2 30 900 10 … Yes

3 20 5000 3 … Yes
2 30 900 10 … Yes
2 30 900 10 … Yes
3 20 5000 3 … Yes
3 20 5000 3 … Yes
3 20 5000 3 … Yes2 30 900 10 … Yes
2 30 900 10 … Yes

Evaluating Predictive
Performance

• Classification error (or accuracy) is inadequate when there is class
imbalance.

• Consider the following scenario:
• 10 examples of the minority class.
• 990 examples of the majority class.
• Predictive model predicts all examples as being of the majority

class.

31

Classification error = (yi ≠ yi’)
1

n

nX

i=1

Classification error =
Classification accuracy = 100% -1% = 99%

10 / 1000 = 1%

Evaluating Predictive
Performance — Confusion Matrix

32

Positive Negative

Positive

Negative

Predicted class

Ac
tu

al
 c

la
ss

True positive rate = Number of true positives
Number of examples whose actual class is positive

True
positive

True
negative

False
negative

False
positive

Percentage of positive examples that have been correctly classified.

Evaluating Predictive
Performance — Confusion Matrix

33

Positive Negative

Positive True
positive

False
negative

Negative False
positive

True
negative

Predicted class

Ac
tu

al
 c

la
ss

True negative rate = Number of true negatives
Number of examples whose actual class is negative

Percentage of negative examples that have been correctly classified.

Evaluating Predictive
Performance — Confusion Matrix

34

Positive Negative

Positive True
positive

False
negative

Negative False
positive

True
negative

Predicted class

Ac
tu

al
 c

la
ss

False positive rate = Number of false positives
Number of examples whose actual class is negative

Percentage of negative examples that have been incorrectly classified.

Evaluating Predictive
Performance — Confusion Matrix

35

Positive Negative

Positive True
positive

False
negative

Negative False
positive

True
negative

Predicted class

Ac
tu

al
 c

la
ss

False negative rate = Number of false negatives
Number of examples whose actual class is positive

Percentage of positive examples that have been incorrectly classified.

Example
• Consider the following scenario:

• 10 examples of the class positive.
• 990 examples of the class negative.
• Predictive model predicts all examples as being of the

negative class.

36

True negative rate = Number of true negatives
Number of examples whose actual class is negative

True negative rate =
990

990
= 1 = 100%

Example
• Consider the following scenario:

• 10 examples of the class positive.
• 990 examples of the class negative.
• Predictive model predicts all examples as being of the

negative class.

37

False positive rate = Number of false positives
Number of examples whose actual class is negative

False positive rate =
0

990
= 0 = 0%

Example
• Consider the following scenario:

• 10 examples of the class positive.
• 990 examples of the class negative.
• Predictive model predicts all examples as being of the

negative class.

38

True positive rate = Number of true positives
Number of examples whose actual class is positive

True positive rate =
0

10
= 0 = 0%

Example
• Consider the following scenario:

• 10 examples of the class positive.
• 990 examples of the class negative.
• Predictive model predicts all examples as being of the

negative class.

39

False negative rate = Number of false negatives
Number of examples whose actual class is positive

False negative rate =
10

10
= 1 = 100%

Example
• Consider the following scenario:

• 10 examples of the class positive.
• 990 examples of the class negative.
• Predictive model predicts all examples as being of the

negative class.

40

True negative rate = 100%

False positive rate = 0%

True positive rate = 0%

False negative rate = 100%

Summary Of Last Three
Lectures

• Naive Bayes has a probabilistic view of Machine Learning.

• Naive Bayes for classification problems:
• Naive Bayes for categorical input attributes.
• Naive Bayes for numerical input attributes.

• Naive Bayes is typically poor for regression problems.

• Naive Bayes has been used for software defect prediction.

• However, strategies to deal with class imbalance are
recommended to be used in conjunction with Naive Bayes for
this problem.

41

Further Reading

42

Zaheed Mahmood, David Bowes, Peter Lane and Tracy Hall.
What is the impact of imbalance on software defect prediction
performance?
International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE 2015)
http://dl.acm.org/citation.cfm?id=2810150

Lab session today at 3pm!

http://dl.acm.org/citation.cfm?id=2810150

