CO3091 - Computational Intelligence and Software Engineering

Lecture 19

Naïve Bayes — Part II

Leandro L. Minku

Overview

- Recap on Naïve Bayes for categorical attributes
- Naïve Bayes for numerical (continuous) input attributes
- Advantages and disadvantages
- Applications

Naïve Bayes Predictive Model

Model

Training Set

Person	x ₁ (Flowers)	x ₂ (Hair)	y (Gender)
P1	Likes	Long	Female
P2	Likes	Long	Female
Р3	!Like	Long	Female
P4	!Like	Short	Male
P5	!Like	Short	Male

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2	0	2
!Like	1	2	3
Total:	3	2	5

Frequency Table for Hair	Gender = Female	Gender = Male	Total:
Long	3	0	3
Short	0	2	2
Total:	3	2	5

Zero Frequency

Training Set

Person	x ₁ (Flowers)	x ₂ (Hair)	y (Gender)
P1	Likes	Long	Female
P2	Likes	Long	Female
P3	!Like	Long	Female
P4	!Like	Short	Male
P5	!Like	Short	Male

P(Male | !Like,Long) = 0%

P(Long | Male) = 0%

Laplace Smoothing

Training Set

Model

Person	x ₁ (Flowers)	x ₂ (Hair)	y (Gender)
P1	Likes	Long	Female
P2	Likes	Long	Female
P3	!Like	Long	Female
P4	!Like	Short	Male
P5	!Like	Short	Male

Use smoothing when computing P(F_i|C). Still use the original frequency tables for computing P(C).

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	0+1	4
!Like	1+1	2+1	5
Total:	5	4	9

Frequency Table for Hair	Gender = Female	Gender = Male	Total:
Long	3+1	0+1	5
Short	0+1	2+1	4
Total:	5	4	9

Laplace Smoothing

Training Set

Model

Person	x ₁ (Flowers)	x ₂ (Hair)	y (Gender)
P1	Likes	Long	Female
P2	Likes	Long	Female
P3	!Like	Long	Female
P4	!Like	Short	Male
P5	!Like	Short	Male

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	0+1	4
!Like	1+1	2+1	5
Total:	5	4	9

Frequency Table for Hair	Gender = Female	Gender = Male	Total:
Long	3+1	0+1	5
Short	0+1	2+1	4
Total:	5	4	9

Gender = Gender = Female Male		Total:
3	2	5

Naïve Bayes

Assuming that each input attribute is conditionally independent of all other input attributes given the output and making some simplifications:

 $P(C|F_{1},...,F_{n}) = P(C) P(F_{1}|C) P(F_{2}|C) ... P(F_{n}|C)$ $P(C|F_{1},...,F_{n}) = P(C) \prod_{i=1}^{n} P(F_{i}|C)$

Naïve bayes predicts the class with the maximum $P(C|F_1,...,F_n)$.

Making Predictions

Model

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	0+1	4
!Like	1+1	2+1	5
Total:	5	4	9

Gender =

Male

0+1

2+1

4

Total:

5

4

9

<pre>[!Like, Long, Gender = ?</pre>

P(Female | !Like,Long) =

= P(Female) P(!Like|Female) P(Long|Female)

Predicted class: Gender = Female

n

i=1

P(Male | !Like,Long) =

= P(Male) P(!Like|Male) P(Long|Male)

 $P(C|F_1,...,F_n) = P(C) \prod P(F_i|C)$

Gender = Female	Gender = Male	Total:
3	2	5

Gender =

Female

3+1

0+1

5

Frequency

Table for Hair

Long

Short

Total:

8

Categorical vs Numeric Attributes

Categorical attributes: the frequency tables are created by counting occurrences of each possible input and output attribute value among the examples in the training set (and summing one).

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:	Frequency Table for Hair	Gender = Female	Gender = Male	Total:
Likes	2+1	0+1	4	Long	3+1	0+1	5
!Like	1+1	2+1	5	Short	0+1	2+1	4
Total:	5	4	9	Total:	5	4	9

Gender = Female	Gender = Male	Total:
3	2	5

Categorical vs Numeric Attributes

Numerical attributes: e.g.: input attribute height.

• There are potentially infinite possible attribute values.

Frequency Table for Height	Gender = Female	Gender = Male	Total:
1.00m			
1.01m			
1.02m			
1.03m			
Total:			

Dealing with Numeric Input Attributes — Discretising Values

- Transform numerical input attributes into categories (i.e., discrete values).
- E.g.: height —> short, medium, tall.
- However, one person may consider tall as >1.70m. Another may consider it as >1.90m.
- Moreover, if a tall person is a person with > 1.90m, should a person with 1.89m be considered medium height? Not tall?
- This level of subjectiveness and crispiness may lead to loss of information.

Dealing with Numeric Input Attributes — Probability Density Functions

We assume that examples are drawn from probability distributions.

To determine P(F|C) for numerical input attributes, we could learn parameters for a probability density function instead of counting frequencies.

Dealing with Numeric Input Attributes — Probability Density Functions

x axis represents values of the input attribute.

y axis represents the [relative] likelihood of observing such values given a certain class.

Parameters of Probability Density Functions

Parameters of Probability Density Functions

Probability density functions have parameters that control their shape.

In order to learn P(F|C), we can learn such parameters.

- 1. Decide on a type of probability density function for each numeric input attribute.
- 2. For each different output attribute value (class) and numeric input attribute, choose parameters for these functions.
- Use these functions whenever we need to get a probability P(F|C) for the corresponding numeric input attributes.

- 1. Decide on a type of probability density function for each numeric input attribute.
- 2. For each different output attribute value (class) and numeric input attribute, choose parameters for these functions.
- Use these functions whenever we need to get a probability P(F|C) for the corresponding numeric input attributes.

1.Decide on a type of probability density function for each input attribute

- 1. Decide on a type of probability density function for each numeric input attribute.
- 2. For each different output attribute value (class) and numeric input attribute, choose parameters for these functions.
- Use these functions whenever we need to get a probability P(F|C) for the corresponding numeric input attributes.

Parameters of Probability Density Functions

Example

Person	x ₁ (Flowers)	x ₂ (Height)	y (Gender)
P1	Likes	1.65	Female
P2	Likes	1.85	Female
P3	!Like	1.70	Female
P4	!Like	1.70	Male
P5	!Like	1.90	Male
P6	Like	1.95	Male

Consider that we have chosen to use a normal probability density function for Height.

Example

Example — Probability Density Function for Height when Gender = Female

Person	x ₁ (Flowers)	x ₂ (Height)	y (Gender)
P1	Likes	1.65	Female
P2	Likes	1.85	Female
P3	!Like	1.70	Female
P4	!Like	1.70	Male
Р5	!Like	1.90	Male
P6	Like	1.95	Male

 μ = mean of female heights, σ^2 = variance of female heights

$$\mu = \frac{1.65 + 1.85 + 1.70}{3} = 1.73$$

Example — Probability Density Function for Height when Gender = Female

	Person	x ₁ (Flowers)	x ₂ (Height)	y (Gender)			
	P1	Likes	1.65	Female	u = mean of female heights.		
	P2	Likes	1.85	Female	$\sigma^2 = variance of female heights$		
	Р3	!Like	1.70	Female			
	P4	!Like	1.70	Male			
	Р5	!Like	1.90	Male			
	P6	Like	1.95	Male			
•	Varianc	e(values)	= 1 values	$-\sum$	[<mark>value</mark> i - mean(values)] ²		
			١	value _i in v	alues		
($5^2 = -$	<u>1</u> 3 [(1.0	65 - 1.73) ² -	+ (1.85	- 1.73) ² + (1.70 - 1.73) ²]		
	$\approx \frac{1}{.3} [0.0064 + 0.0144 + 0.0009] \approx 0.00723$						

24

Example — Probability Density Function for Height when Gender = Female

Example — Probability Density Function for Height when Gender = Male

Person	x ₁ (Flowers)	x ₂ (Height)	y (Gender)	
P1	Likes	1.65	Female	
P2	Likes	1.85	Female	
P3	!Like	1.70	Female	
P4	!Like	1.70	Male	
Р5	!Like	1.90	Male	
P6	Like	1.95	Male	

 μ = mean of male heights, σ^2 = variance of male heights

$$\mu = ?, \sigma^2 = ?$$

Example — Probability Density Function for Height when Gender = Male

Person	x ₁ (Flowers)	x ₂ (Height)	y (Gender)	
P1	Likes	1.65	Female	
P2	Likes	1.85	Female	
P3	!Like	1.70	Female	
P4	!Like	1.70	Male	
P5	!Like	1.90	Male	
P6	Like	1.95	Male	

 μ = mean of male heights, σ^2 = variance of male heights

$$\mu = \frac{1.70 + 1.90 + 1.95}{3} = 1.85$$

Example — Probability Density Function for Height when Gender = Male

Probability Density Function for Height When Gender = Male

Probability Density Function for Height When Gender = Male

Naïve Bayes Model — Categorical + Numerical Input Attributes

Model

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	1+1	5
!Like	1+1	2+1	5
Total:	5	5	10

Parameters Table for Height	Gender = Female	Gender = Male
μ	1.73	1.85
σ ²	0.00723	0.01167

Gender = Female	Gender = Male	Total:
3	3	6

Training Set

Person	x ₁ (Flowers)	x ₂ (Height)	y (Gender)
P1	Likes	1.65	Female
P2	Likes	1.85	Female
P3	!Like	1.70	Female
P4	!Like	1.70	Male
P5	!Like	1.90	Male
P6	Like	1.95	Male

- 1. Decide on a type of probability density function for each numeric input attribute.
- 2. For each different output attribute value (class) and numeric input attribute, choose parameters for these functions.
- Use these functions whenever we need to get a probability P(FIC) for the corresponding numeric input attributes.

Making Predictions

Naïve bayes predicts the class with the maximum $P(C|F_1,...,F_n)$.

$$\mathsf{P}(\mathsf{C}|\mathsf{F}_1,\ldots,\mathsf{F}_n) = \mathsf{P}(\mathsf{C}) \prod_{i=1}^n \mathsf{P}(\mathsf{F}_i|\mathsf{C})$$

Take $P(F_i|C)$ for the categorical input attributes from a frequency table.

Take P(F_i|C) for the numerical input attributes from a probability density function.

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	1+1	5
!Like	1+1	2+1	5
Total:	5	5	10

Parameters Table for Height	Gender = Female	Gender = Male
μ	1.73	1.85
σ2	0.00723	0.01167

Gender = Female	Gender = Male	Total:
3	3	6

Making Predictions — Numerical Input Attributes

Example (Likes, 1.87, Gender = ?)
$$n$$

$$\mathsf{P}(\mathsf{C}|\mathsf{F}_1,\ldots,\mathsf{F}_n) = \mathsf{P}(\mathsf{C}) \prod_{i=1}^{\mathsf{P}} \mathsf{P}(\mathsf{F}_i|\mathsf{C})$$

P(Female|Likes, 1.87) =

P(Female) P(Likes|Female) P(1.87|Female)

= 3/6 * 3/5 * P(1.87|Female)

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	1+1	5
!Like	1+1	2+1	5
Total:	5	5	10

Parameters Table for Height	Gender = Female	Gender = Male
μ	1.73	1.85
σ2	0.00723	0.01167

Gender = Female	Gender = Male	Total:
3	3	6

Getting P(1.87|Female)

Probability Density Function for Height when Gender = Female

Making Predictions — Numerical Input Attributes

Example (Likes, 1.87, Gender = ?)

$$P(C|F_1,...,F_n) = P(C) \prod_{i=1}^{n} P(F_i|C)$$

P(Female|Likes, 1.87) =

P(Female) P(Likes|Female) P(1.87|Female)

≈ <mark>3/6</mark> * 3/5 * 1.2097

≈ 0.36291

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	1+1	5
!Like	1+1	2+1	5
Total:	5	5	10

Parameters Table for Height	Gender = Female	Gender = Male
μ	1.73	1.85
σ2	0.00723	0.01167

Gender = Female	Gender = Male	Total:
3	3	6

37

Making Predictions — Numerical Input Attributes

Example (Likes, 1.87, Gender = ?)

$$\mathsf{P}(\mathsf{C}|\mathsf{F}_1,\ldots,\mathsf{F}_n) = \mathsf{P}(\mathsf{C}) \prod_{i=1}^n \mathsf{P}(\mathsf{F}_i|\mathsf{C})$$

P(Male|Likes, 1.87) =

= P(Male) P(Likes|Male) P(1.87|Male)

= 3/6 * 2/5 * P(1.87|Male)

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	1+1	5
!Like	1+1	2+1	5
Total:	5	5	10

Parameters Table for Height	Gender = Female	Gender = Male
μ	1.73	1.85
σ ²	0.00723	0.01167

Gender = Female	Gender = Male	Total:
3	3	6

Getting P(1.87|Male)

Probability Density Function for Height When Gender = Male

39

Making Predictions — Numerical Input Attributes

Example (Likes, 1.87, Gender = ?)

$$\mathsf{P}(\mathsf{C}|\mathsf{F}_1,\ldots,\mathsf{F}_n) = \mathsf{P}(\mathsf{C}) \prod_{i=1}^n \mathsf{P}(\mathsf{F}_i|\mathsf{C})$$

P(Male|Likes, 1.87) =

= P(Male) P(Likes|Male) P(1.87|Male)

 $\approx 3/6 * 2/5 * 3.6302$

≈ 0.72604

Frequency Table for Flowers	Gender = Female	Gender = Male	Total:
Likes	2+1	1+1	5
!Like	1+1	2+1	5
Total:	5	5	10

Parameters Table for Height	Gender = Female	Gender = Male
μ	1.73	1.85
σ2	0.00723	0.01167

Gender = Female	Gender = Male	Total:
3	3	6

Making a Prediction

Example (Likes, 1.87, Gender = ?)

P(Female|Likes, 1.87) ≈ 0.36291

P(Male|Likes, 1.87) = 0.72604

Predicted class: gender = male

Naïve Bayes Approach for Classification Problems with Categorical and Numerical Input Attributes

- Naïve Bayes Learning Algorithm:
 - Create frequency tables for categorical input attributes.
 - Apply Laplace Smoothing.
 - Determine density function parameters for numerical input attributes.
- Naïve Bayes Model:
 - Frequency tables (with and without Laplace Smoothing) and tables of density function parameters.
- Naïve Bayes prediction for an instance (**x**,?):
 - Use Bayes Theorem with conditional independence assumption.

Advantages and Disadvantages of Naive Bayes

• Advantages:

- Training is fast. It needs only one pass through the data, i.e., online learning.
- Relative probabilities are good for making predictions for many applications.
- Disadvantage:
 - Assumes conditional independence.
 - Assumes a certain probability distribution for numerical input attributes.
 - Does not work very well for regression.

Applications

- Text categorisation, e.g., spam or not spam.
- Medical diagnosis.
- Software defect prediction.
- Etc.

Further Reading

On the relative value of cross-company and within-company data for defect prediction

- Burak Turhan, Tim Menzies, Ayşe B. Bener, Justin Di Stefano
- Journal of Empirical Software Engineering
- Volume 14 Issue 5, October 2009
- Section 3.2 (Naïve Bayes Classifier)

http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html