CO3091 - Computational Intelligence and Software Engineering

Lecture 16

Introduction to Machine Learning and k-NN Leandro L. Minku

Announcements

• Coursework 2 out!

Overview

- Introduction to machine learning
- Software effort estimation
- k-NN (k-Nearest Neighbours)

Machine Learning

Focus: to study and develop computational models capable of improving their performance with experience and acquiring knowledge on their own.

- How?
 - Through data examples (a.k.a. data points, instances).
 - Types of learning:
 - supervised learning,
 - unsupervised learning,
 - semi-supervised learning and
 - reinforcement learning.

Image from: http://bioap.wikispaces.com/file/view/social_learngin.jpg/101074725/social_learngin.jpg

Example of Problem That Can be Solved Using Supervised Learning

Software effort estimation:

- Estimation of the effort required to develop a software project.
 - Effort is measured in person-hours, person-months, etc.
- Based on features such as programming language, team expertise, estimated size, development type, required reliability, etc.
- Main factor influencing project cost.
- Overestimation vs underestimation.

Example of Underestimation

Nasa cancelled its incomplete Check-out Launch Control Software project after the initial \$200M estimate was exceeded by another \$200M.

Machine Learning for Software Effort Estimation

- Software effort estimation is difficult to perform by humans.
 - Affected by irrelevant features.
 - Lack of improvement in the predictions over time.
- Supervised learning can help.
 - Predictive models can be created based on data describing past projects and their required efforts.
 - These predictive models can be used as decision-support tools to predict the effort for new projects.

Supervised Learning

- Predictive tasks: based on existing [training] data, learn models able to make predictions for new data.
- A data example has the format (**x**,y), where
 - x are the input attributes (a.k.a. input features, independent variables).
 - We have n input attributes: $\mathbf{x} = (x_1, x_2, ..., x_n)$.
 - y is the output attribute (a.k.a. output feature, target values, label, class, dependent variable).
 - PS: some problems have more than one output attribute, but we will be considering problems with a single output attribute here.

Supervised Learning Problem

• E.g.: software effort estimation

	X ₁ (programming language)	x ₂ (team expertise)	x ₃ (estimated size)	 y (required effort)
(X 1,y1)	x ₁₁ A	X12	1 x ₁₃)	 10 p-y ₁ onth
(X ₂ ,y ₂)	(X21 F	me ^{X22} JM	2 ×23)	 20 p-y2 onth
(X3 ,Y3)	, X31 A	ן X ₃₂	2 x ₃₃)	 8 p- y ₃ , nth

Supervised Learning Problem

• E.g.: credit card approval

	x ₁ (age)	x ₂ (salary)	x ₃ (gender)	 y (good/bad payer)
(X1 ,y1)	18	1000	female	 Good
(X ₂ ,y ₂)	30	900	male	 Bad
(x ₃ ,y ₃)	20	5000	female	 Good

Types of Input Attributes

Numerical:

• E.g., age, salary.

Ordinal:

• E.g., expertise in {low, medium, high}.

Categorical:

• E.g., car in {fiat, volkswagen, toyota}.

Classification vs Regression

• Classification problem:

- The output attributes are categories / classes.
- E.g.: good or bad payer.
- A predictive model for a classification problem is frequently referred to as a classifier.
- Regression problem:
 - The output attributes are numerical values.
 - E.g.: how much effort we would require to develop a software project.

Supervised Learning

[Pre-processed] Training Data / Examples

x ₁ (age)	x ₂ (salary)	x₃ (gender)	 y (good/bad payer)	
18	1000	female	 Good	
30	900	male	 Bad	-
20	5000	female	 Good	

Machine Learning _____ Algorithm

Predictive Model

New instance **x** for which we want to predict the output

Prediction

Machine Learning Problem

Predictive Model

Components of a Machine Learning Approach

How do Machine Learning Approaches Look Like?

- There are many different types of machine learning approaches.
- k-NN (k-Nearest Neighbour) is an example of machine learning approach.

Targets: y=blue or y=orange

X2

Usually, for classification problems: predict the majority among the output attributes of the nearest neighbours (majority vote).

X2

Usually, for classification problems: predict the majority among the output attributes of the nearest neighbours (majority vote).

X2

K = 4

Usually, for regression problems: predict the average among the outputs of the nearest neighbours.

X2

Assumption: data points that are close to each other in the input space are also close to each other in the output space.

FJECTED

 X_2

Given an instance to be predicted, we need to find its k nearest neighbours.

Finding the K Nearest Neighbours

- Usually, this is based on the Euclidean Distance in the input space.
- For n dimensions in the input space:

distance(x,x') =
$$\sqrt{(x_1 - x'_1)^2 + (x_2 - x'_2)^2 + ... + (x_n - x'_n)^2}$$

where n is the number of input attributes

distance(
$$\mathbf{X}, \mathbf{X}'$$
) = $\sqrt{\sum_{i=1}^{n} (\mathbf{X}_i - \mathbf{X}'_i)^2}$

Normalisation of Input Attributes

- Problem: different input attributes may have different scales.
 - Scale of input attributes will influence the Euclidean Distance.
 - If x₁ is in [0,10] and x₂ is in [100,10000], x₂ will influence the distance more.
- Popular solution:
 - Normalise input attributes of all data so that they will be between 0 and 1. E.g.:

normalised(x_i) =
$$\frac{x_i - \min_i}{\max_i - \min_i}$$

What is the normalised value of $x_1 = 5$?

Normalisation of Input Attributes

- How to know the minimum and maximum values?
 - If the real minimum and maximum are unknown, for each input attribute, use the minimum and maximum values present in the training set.
 - If later on you find new minimum or maximum values, you need to de-normalise and re-normalise the data.

* normalised(x_i) =
$$\frac{x_i - min_i}{(max_i - min_i)}$$

+

Ordinal or Categorical Input Attributes

- Input attributes can be numerical, ordinal or categorical.
 - Numerical: e.g., age, salary.
 - Ordinal: e.g., expertise in {low, medium, high}.
 - Categorical: e.g., car in {fiat, volkswagen, toyota}.
- Euclidean distance is defined for numerical data!

distance(
$$\mathbf{X}, \mathbf{X}'$$
) = $\sqrt{\sum_{i=1}^{n} (\mathbf{X}_i - \mathbf{X}'_i)^2}$

- For ordinal input attributes, we can convert them to numerical.
 - E.g.: low = 0, medium = 0.5, high = 1.
- For categorical input attributes, we could use the following idea:

if
$$x_i = x'_i$$
, $x_i - x'_i = 0$
if $x_i \neq x'_i$, $x_i - x'_i = 1$

Components of a Machine Learning Approach

k-NN Approach

- k-NN Learning Algorithm:
 - No real training; simply normalise and store all training data received so far, together with their maximum and minimum numerical input attribute values
- k-NN "Model":
 - All normalised training data received so far, together with their maximum and minimum numerical input attribute values.
- k-NN prediction for an instance (**x**,?):
 - Find the K nearest neighbours, i.e., the K training examples that are the closest to **x**.
 - For classification problems: majority vote.
 - For regression problems: average.

Advantages and Disadvantages

• Advantages:

 Training is simple and quick: just store the training data (possibly after some pre-processing).

• Disadvantage:

- Memory requirements are high: stores all data, which can be troublesome when training set is large.
- Making predictions is slow: we have to search for the nearest neighbours among all the training data, which can be troublesome when training set is large.

[Original] k-NN is not adequate when we have very large training sets.

Advantages and Disadvantages

• Advantages:

 Training is simple and quick: just store the training data (possibly after some pre-processing).

• Disadvantage:

- Memory requirements are high: stores all data, which can be troublesome when training set is large.
- Making predictions is slow: we have to search for the nearest neighbours among all the training data, which can be troublesome when training set is large.

k-NN can be good for applications where there is little data, e.g.: software effort estimation.

Advantages and Disadvantages

• Advantages:

 Training is simple and quick: just store the training data (possibly after some pre-processing).

• Disadvantage:

- Memory requirements are high: stores all data, which can be troublesome when training set is large.
- Making predictions is slow: we have to search for the nearest neighbours among all the training data, which can be troublesome when training set is large.

Intuitive for software engineers: k-NN helps them to find the projects that are most similar to the new project.

Learning vs Optimisation

- Predictive models can make mistakes (errors).
- We want to minimise these mistakes.
- The learning algorithm used by some machine learning approaches can be optimisation algorithms whose objective is to minimise some error function.
 - Error function describes how much error a predictive model makes when predicting a set of data.

Learning vs Optimisation

- However, from the problem point of view, the goal of machine learning is to create models able to generalise to unseen data.
 - In supervised learning: able to make good predictions for new data that were unavailable at training time.
 - We cannot calculate the error on such data during training time!

Further Reading

https://saravananthirumuruganathan.wordpress.com/ 2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knnalgorithm