
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Evolutionary Software Testing

Lecture 14

Im
ag

e
fro

m
: h

ttp
://

w
w

w.
te

lu
gu

on
e.

co
m

/te
lu

gu
on

eU
se

rF
ile

s/
it%

20
jo

ke
.p

ng

http://www.teluguone.com/teluguoneUserFiles/it%20joke.png

Announcements
• Problem class tomorrow.

• Extra surgery.

2

Coursework
• Objective: to determine the impact of the parameter values on

the fitness of the final solution.

• Part 1: perform runs.

• Part 2: perform statistical tests — these only enable you to tell
whether or not there is a significant impact.

• Part 3: analyse the results further — what is the impact?

3

Overview
• Software testing and the importance of intelligent test

automation.

• Formulation of test suite generation for the purpose of finding
crashes as an optimisation problem.

• NSGA-II design to solve this problem.

4

Software Testing
• Software testing is an essential component for software

development success.

• Software testing is one of the most expensive tasks in the
software development process.

5

6

method under test

unit test

public void testDetermineUnnormSumDedicationEmployee() {
PSPPhenotype phen = new PSPPhenotype(4, 5);
for (int e=0; e<4; ++e)

for (int t=0; t<5; ++t)
phen.setEmployeeTaskDedication(e, t, e+t);

Vector<Integer> curIndpTasks = new Vector<Integer>(3);
curIndpTasks.add(0);
curIndpTasks.add(3);
curIndpTasks.add(1);

assertEquals(7d, eval.determineUnnormSumCurrDedicationEmployee(1, curIndpTasks, phen));

for (int e=0; e<4; ++e)
for (int t=0; t<5; ++t)

phen.setEmployeeTaskDedication(e, t, (e+t)/100d);

assertEquals(0.07d, eval.determineUnnormSumCurrDedicationEmployee(1, curIndpTasks, phen));

PSPPhenotype phen2 = new PSPPhenotype(1,2);
for (int e=0; e<1; ++e)

for (int t=0; t<2; ++t)
phen2.setEmployeeTaskDedication(e, t, 1);

curIndpTasks = eval.determineCurIndependentTasks(inst.tpg.inDegreeClone());
assertEquals(1d, eval.determineUnnormSumCurrDedicationEmployee(0, curIndpTasks, phen2));

}

protected double determineUnnormSumCurrDedicationEmployee(int e, Vector<Integer> curIndependentTasks, PSPPhenotype phen) {
double sum = 0d;
for (int i=0; i<curIndependentTasks.size(); ++i) {

int t = curIndependentTasks.get(i);
sum += phen.getEmployeeTaskDedication(e, t);

}
return sum;

}

Software Test Suite
Generation

• Test suite: set of test cases, each consisting of a sequence of
inputs and expected outputs from the program.

• Challenging for large and complex software.

• A good test suite should exercise the code well and be fast to
run.

7

Evolutionary Software Test
Suite Generation

• Evolutionary algorithms have been used to aid the generation
of test suites with the objectives of:
• Maximising coverage and minimising the length of test

cases (fast to run).
• They can generate input sequences for test cases.
• Identification of buggy behaviour requires expected outputs

to be defined by humans.
• Helpful specially for life-critical applications.

8

Image from: https://img.purch.com/h/1000/aHR0cDovL3d3dy5zcGFjZS5jb20vaW1hZ2VzL2kvMDAwLzAxOC8zNjQvb3JpZ2luYWwvc2xzLXJvY2tldC1hcnQuanBn

Image from: http://ichef.bbci.co.uk/wwfeatures/wm/live/1280_720/images/live/p0/1z/6y/p01z6ywk.jpg

9

Image from: https://cnet2.cbsistatic.com/img/vNg3GpX08rMV8J1ZxWIQ-2ligg8=/fit-in/970x0/2013/08/27/6d22dd41-6de7-11e3-913e-14feb5ca9861/Nissan-leaf-autonomous_1.jpg

Evolutionary Software Testing for the
Purpose of Searching for Crashes

• Software crashes can greatly affect users’ satisfaction and trust:
• Serious software failure.
• Software stops working properly and aborts unexpectedly.
• Frequently caused by bugs.

• Evolutionary algorithms can be particularly helpful to automate
test suit generation to search for crashes.
• Input sequences that reveal crashes could be considered as

bug-revealing.
• Humans don’t need to specify the desired output for a given

input sequence — expect to see “no crash”.
• This makes evolutionary software testing useful for a very

wide range of applications.

10

Why Not Generating Test Suites
Randomly or Systematically?

• Completely at random:
• Takes a long time to find crashes.

• >15,000 test inputs between crashes.
• Very large test cases.

• Time consuming to run.
• Difficult to debug.

• Systematically generate all possible combinations of inputs:
• Similar problems as above.
• Too many different combinations of inputs.

• Evolutionary algorithms:
• Around 100 to 150 test inputs tested between crashes.
• Find much more crashes than the approaches above within a

limited amount of time.
11

Sapienz — Tool based on
NSGA-II to Search for Crashes

12Video from: https://youtu.be/j3eV8NiWLg4

https://youtu.be/j3eV8NiWLg4

Sapienz — Historical Facts
• Sapienz was developed by researchers from UCL in 2016.

• Tested top 1000 most popular Google Play apps and found
558 unique previously unknown crashes.

• They created a spinout company called MaJiCkE.

• Facebook bought MaJiCkE.

13

http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-facebook/

https://arstechnica.co.uk/information-technology/2017/08/facebook-dynamic-analysis-
software-sapienz/

http://www.engineering.ucl.ac.uk/news/bug-finding-majicke-finds-home-facebook/
https://arstechnica.co.uk/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.co.uk/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/

Problem Formulation
• Design variable: list with a given number of input sequences.

• Design variable can be seen as a test suite.
• Each input sequence is a test case with an expected “output”

of “no crash”.
• Examples of inputs for Android: Touch, Motion, Rotation, Track-

ball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter
text, or clicks on widgets.

• Objectives:
• Maximise coverage.
• Minimise length of test cases.
• Maximise number of crashes found.

• Constraints:
• N/A

14

NSGA-II Design Behind
Sapienz

15

Problem Formulation
• Design variable: list with a given number of input sequences.

• Design variable can be seen as a test suite.
• Each input sequence is a test case with an expected “output”

of “no crash”.
• Examples of inputs for Android: Touch, Motion, Rotation, Track-

ball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter
text clicks on widgets.

• Objectives:
• Maximise coverage.
• Minimise length of test cases.
• Maximise number of crashes found.

• Constraints:
• N/A

16

Representation

17

Input x11

Input x12

…

Input x1m1

Input x21

Input x22

…

Input x2m2

Input xn1

Input xn2

…

Input xnmn

…

The value of n is fixed, but mi (1 ≤ i ≤ n) is variable.

x1 = Test Case 1 x2 = Test Case 2 … xn = Test Case n

Individual x (test suite):

Representation — Inputs

18

Each input can be an atomic event or a motif event:

Atomic Event Motif Event

An atomic event can be one
of:

• Touch,
• Motion,
• Rotation,
• Track-ball,
• PinchZoom,
• Flip,
• Nav,
• MajorNav,
• AppSwitch, or
• SysOp

A motif event is a compound of
several inputs as follows:

• inputs for entering
strings into each text
field under the
corresponding view; and

• an attempt to exercise
each clickable widget to
transfer to the next view.

Initialisation
• Create individuals containing n test cases each, where n is a

pre-defined value.

• Each test case contains a number of inputs between [1,Max],
where Max is a pre-defined maximum number of inputs for
initialisation purposes.

• Each input is randomly picked as an atomic event or a motif
event.

• Parameters of the input (e.g., coordinates of touch) can be
generated randomly.

19

Entering Strings
• Apps such as Facebook use lots of human-generated

content.

• In order to generate realistic strings, enter strings statically
defined strings from within the code.

• Alternatively, enter dummy strings, e.g., “0”.

20

x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5

Higher Level Crossover Operator

21

x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5

x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5

Heads = parent 1

pare
nt

1

pare
nt

2

Tails = parent 2Tails = parent 2Heads = parent 1

ch
ild

 1

With probability Pc, perform uniform crossover between test cases.

30%

70%Pc

1-Pc

x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5

Higher Level Crossover Operator

22

x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5

pare
nt

1

pare
nt

2

With probability Pc, perform uniform crossover between Test Cases.

30%

70%Pc

1-Pc

clo
ne x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5

x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5x1 = Test Case 1 x2 = Test Case 2 x3 = Test Case 4 x5 = Test Case 5

Higher Level Mutation Operator

With probability Pm, shuffle the order of the test cases.

23

ind
ivid

ua
l

muta
ted

ind
ivid

ua
l

Only applied if Crossover is not applied.

30%

70%1 - Pm

Pm

Lower Level Mutation Operator 1

24

xi = Test Case i xi+1 = Test Case i+1

Input xi1

Input xi2

…

Input ximi

Input x(i+1)1

Input x(i+1)2

…

Input x(i+1)m(i+1)

For each neighbouring test case within an individual,
with probability Pm, perform 1-point crossover

between them.

xi = Test Case i xi+1 = Test Case i+1

Input xi1

Input xi2

Input x(i+1)1

Input x(i+1)2

…

Input x(i+1)m(i+1)

…

Input ximi

Only applied if Higher Level Mutation Operator is applied.

30%

70%1 - Pm

Pm

xi = Test Case i xi+1 = Test Case i+1

Input xi1

Input xi2

Input xi3

Input x(i+1)1

Input x(i+1)2

Input x(i+1)3

Input x(i+1)4

Po
ss

ib
le

 c
ro

ss
ov

er
 p

oi
nt

s

Lower Level Mutation Operator 1 —
Test Cases of Different Sizes

Crossover point is limited by the length of the shortest individual.

25

Lower Level Mutation Operator 2

26Only applied if Higher Level Mutation Operator is applied.

For each test case within an individual,
with probability Pm, shuffle the order of the inputs within this test case.

Input xi1

Input xi2

Input xi3

Input xi4

xi = Test Case i xi = Test Case i

Input xi1

Input xi2

Input xi3

Input xi4
30%

70%1 - Pm

Pm

Parents Selection
• Select 2 parents completely at random rather than

tournament selection.
• This is ok because survival selection still puts pressure

towards better individuals in NSGA-II.

27

Problem Formulation
• Design variable: list with a given number of input sequences.

• Design variable can be seen as a test suite.
• Each input sequence is a test case with an expected “output”

of “no crash”.
• Examples of inputs for Android: Touch, Motion, Rotation, Track-

ball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter
text, or clicks on widgets.

• Objectives:
• Maximise coverage.
• Minimise length of test cases.
• Maximise number of crashes found.

• Constraints:
• N/A

28

Coverage Metrics
Different types of coverage are available:

• Statement coverage: number of statements exercised.
(most fine grained)

• Method coverage: number of methods exercised.
• Android Activity coverage: number of Android Activities

exercised. (coarser)

29

Activity Coverage
• Android Activities are the logical constructs of the screens

that we want a user to navigate through.

• E.g., for a dialler app, you may have the following activities:

30

Dialer Contacts View Contact New Contact

Coverage Metrics

In general, you can opt for more fine grained coverages if you
have access to the code under test.

Otherwise, you must use a coarser coverage metric, such as
Android Activity coverage.

31

Problem Formulation
• Design variable: list with a given number of input sequences.

• Design variable can be seen as a test suite.
• Each input sequence is a test case with an expected “output”

of “no crash”.
• Examples of inputs for Android: Touch, Motion, Rotation, Track-

ball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter
text, or clicks on widgets.

• Objectives:
• Maximise coverage.
• Minimise length of test cases.
• Maximise number of crashes found.

• Constraints:
• N/A

32

Length of Test Cases

LengthIndividual(x) = LengthTestCase(xi)

33

x1 = Test Case 1 x2 = Test Case 2 … xn = Test Case n

Individual x (test suite):

nX

i=1

Length of a Single Test Case

34

Input xi1

Input xi2

…

Input ximi

xi = Test Case i LengthTestCase(xi) = LengthInput(xij)

LengthInput(xij) =

{1, if xij is an atomic event

number of strings + number of clicks, if xij is a motif event

miX

j=1

Example of Calculation of
Length

35

x1 = Test Case 1 x2 = Test Case 2

Touch

Rotate

Enter string “a”;
Enter string “b”;
Click on button “next”

Touch

AppSwitch

Nav

AppSwitch

Rotate

Input x11

Input x12

Input x13

Input x21

Input x22

Input x23

Input x24

Input x25

Problem Formulation
• Design variable: list with a given number of input sequences.

• Design variable can be seen as a test suite.
• Each input sequence is a test case with an expected “output”

of “no crash”.
• Examples of inputs for Android: Touch, Motion, Rotation, Track-

ball, PinchZoom, Flip, Nav, MajorNav, AppSwitch, SysOp, enter
text, or clicks on widgets.

• Objectives:
• Maximise coverage.
• Minimise length of test cases.
• Maximise number of crashes found.

• Constraints:
• N/A

36

Number of Crashes Found
• Number of test cases that lead to a crash.

37

Non-Dominated Solutions

38

Coverage

Crashes

Length

Software tester could choose 1+ individuals (test suites) to adopt as the
final test suite.

An archive with all crash-inducing individuals can be kept.

Summary
• Software testing is time consuming.

• Evolutionary software testing can help to generate test suites.

• Formulation of test suite generation for finding crashes as an
optimisation problem.

• NSGA-II design to solve this problem.

39

Further Reading
Sebastian Anthony
Facebook’s evolutionary search for crashing software bugs
https://arstechnica.co.uk/information-technology/2017/08/facebook-
dynamic-analysis-software-sapienz/
Ars Technika UK, 2017

Ke Mao, Mark Harman, Due Jia
Sapienz: Multi-objective Automated Testing for Android Applications
Proceedings of the 25th International Symposium on Software
Testing and Analysis
Pages 94-105, 2016
https://dl.acm.org/citation.cfm?id=2931054

40

https://arstechnica.co.uk/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://arstechnica.co.uk/information-technology/2017/08/facebook-dynamic-analysis-software-sapienz/
https://dl.acm.org/citation.cfm?id=2931054

