
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Multi-Objective Evolutionary Algorithms

Lecture 12

Im
ag

e
fro

m
: h

ttp
://

ec
on

om
ic

tim
es

.in
di

at
im

es
.c

om
/p

ho
to

/4
07

69
69

2.
cm

s

http://economictimes.indiatimes.com/photo/40769692.cms

Overview
• Multi-objective optimisation problems.

• Single-objective algorithmic design for multi-objective
problems.

• Non-dominated Sorting Genetic Algorithm II (NSGA-II).

2

Multi-Objective Optimisation
Problems

• Real world problems frequently have more than one objective.

• Software project scheduling problem:
• Cost and duration (to be minimised).

• Some requirements selection formulations:
• Cost (to be minimised) and score (to be maximised).

3

Using Single-Objective Algorithms
for Multi-Objective Problems

• In order to deal with multi-objective problems by using single-
objective optimisation algorithms, the multiple objectives have
to be combined into a single fitness function.

• E.g.: software project scheduling problem

4

fitness(x) = wcost * cost(x) + wdur * duration(x)
(to be minimised)

wcost and wdur ∈ [0,1]

wcost + wdur = 1

Using Single-Objective Algorithms
for Multi-Objective Problems

• Generic fitness function for k objectives:

5

fitness(x) = wi fi(x)

wi ∈ [0,1], 1 ≤ i ≤ k

kX

i=1

kX

i=1

wi = 1

Weighted average
of objective

functions fi(x).

Advantage of Combining Objectives
into a Single Fitness Function

• Advantage of combining multiple objectives into a single
fitness function:
• Once weights are set, any single-objective optimisation

algorithm can be used.

6

Disadvantages of Combining Objectives
into a Single Fitness Function

• Disadvantage 1:
• Finding suitable weights is not easy before knowing what

different trade-offs among objectives may be available.
• Example:

7

Candidate solution 1:
cost = 15,000
duration = 12 months

Candidate solution 2:
cost = 15,500
duration = 24 months

wcost = 0.7
wdur = 0.3

fitness(x) = wcost * cost(x) + wdur * duration(x) (to be minimised)

Which of these solutions is better?

Disadvantages of Combining Objectives
into a Single Fitness Function

• Disadvantage 1:
• Finding suitable weights is not easy before knowing what

different trade-offs among objectives may be available.
• Example:

8

Candidate solution 1:
cost = 15,000
duration = 12 months

Candidate solution 2:
cost = 15,500
duration = 24 months

wcost = 0.7
wdur = 0.3

fitness = 10503.6 fitness = 10857.2

fitness(x) = wcost * cost(x) + wdur * duration(x) (to be minimised)

Disadvantages of Combining Objectives
into a Single Fitness Function

• Disadvantage 1:
• Finding suitable weights is not easy before knowing what

different trade-offs among objectives may be available.
• Example:

9

Candidate solution 1:
cost = 15,000
duration = 12 months

Candidate solution 2:
cost = 14,500
duration = 24 months

wcost = 0.7
wdur = 0.3

Which of these solutions is better?

fitness(x) = wcost * cost(x) + wdur * duration(x) (to be minimised)

Disadvantages of Combining Objectives
into a Single Fitness Function

• Disadvantage 1:
• Finding suitable weights is not easy before knowing what

different trade-offs among objectives may be available.
• Example:

10

Candidate solution 1:
cost = 15,000
duration = 12 months

Candidate solution 2:
cost = 14,500
duration = 24 months

wcost = 0.7
wdur = 0.3

fitness = 10503.6 fitness = 10157.2

fitness(x) = wcost * cost(x) + wdur * duration(x) (to be minimised)

Disadvantages of Combining Objectives
into a Single Fitness Function

• Disadvantage 2:
• If the different objectives have different scales, weights must

reflect not only preferences towards certain objectives, but also
treat the different scales.

• E.g.: costs may typically be between 1000 and 80,000.
Durations may typically vary between 3 and 48.

If wcost = wdur = 0.5, costs will tend to have greater importance.

• Disadvantage 3:
• The weights will strongly affect the results.

• You may not get certain solutions that could be interesting,
but do not look interesting based on the chosen weights.

11

Multi-Objective Evolutionary
Algorithms

• Consider different objectives separately, instead of combining
them into a single fitness function.

• Advantages:
• No need to set weights.
• Having objectives in different scales is not a problem.
• Retrieve a set of solutions with different trade-offs. E.g.:

12

Cost

Duration

[Demo]

Multi-Objective Evolutionary
Algorithms

• Consider different objectives separately, instead of combining
them into a single fitness function.

• Advantages:
• No need to set weights.
• Having objectives in different scales is not a problem.
• Retrieve a set of solutions with different trade-offs.

• Disadvantage:
• It is difficult to visualise trade-offs among >3 objectives.
• Some multi-objective evolutionary algorithms also struggle

to produce good solutions when we have >3 objectives.

13

Non-dominated Sorting
Genetic Algorithm II (NSGA-II)

• One of the most famous multi-objective optimisation algorithms.

• Evolutionary algorithms put some selective pressure towards
better individuals (parents and / or survival selection).

• The concept of what is a better individual is simple when there is
a single objective.
• Minimisation problem:

f(solA) = 5,
f(solB) = 10 —> solA is better than solB

f(solA) = 5,
f(solB) = 5 —> solA is equally good to solB

14

Non-dominated Sorting
Genetic Algorithm II (NSGA-II)

• When more than one objective is considered separately, this idea
does not work well. E.g.:
• Minimise objective f1 and objective f2.

f1(solA) = 10, f2(solA) = 5
f1(solB) = 4, f2(solB) = 10
Which solution is better?

• NSGA-II is based on the concept of dominance (and non-
dominance) to determine which solutions are better.

15

Dominance
• A solution solA dominates another solution solB if the following

conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

16

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months

Candidate solution B:
cost (min) = 16,000
duration (min) = 24 months

Solution A dominates solution B.

Dominance

17

Solution B does not dominate solution A.

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months

Candidate solution B:
cost (min) = 16,000
duration (min) = 24 months

• A solution solA dominates another solution solB if the following
conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

Dominance

18

Solution A does not dominate solution B.

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months

Candidate solution B:
cost (min) = 14,500
duration (min) = 24 months

• A solution solA dominates another solution solB if the following
conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

Dominance

19

Solution B does not dominate solution A.

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months

Candidate solution B:
cost (min) = 14,500
duration (min) = 24 months

• A solution solA dominates another solution solB if the following
conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

Dominance

20

Solution A does not dominate solution B.

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 10

Candidate solution B:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 11

• A solution solA dominates another solution solB if the following
conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

Dominance

21

Solution B dominates solution A.

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 10

Candidate solution B:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 11

• A solution solA dominates another solution solB if the following
conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

Dominance

22

Solution A does not dominate solution B.

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 10

Candidate solution B:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 10

• A solution solA dominates another solution solB if the following
conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

Dominance

23

Solution B does not dominate solution A.

Candidate solution A:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 10

Candidate solution B:
cost (min) = 15,000
duration (min) = 12 months
robustness (max) = 10

• A solution solA dominates another solution solB if the following
conditions are satisfied:
• solA is equal or better than solB in all objectives, and
• solA is strictly better than solB in at least one objective.

Optimal Solutions

24

Cost

Duration

Consider that all possible
solutions are plotted in this graph.

Pareto front is shown in blue.

does not dominate

• Instead of having single best solutions, we have sets of best
solutions with different trade-offs.

• Pareto front: set of solutions that are non-dominated by any
other solution in the search space.

• NSGA-II aims at finding the Pareto front.

25

[Youtube video posted by DataAb: https://youtu.be/
sEEiGM9em8s]

https://youtu.be/sEEiGM9em8s
https://youtu.be/sEEiGM9em8s

Non-dominated Fronts
• NSGA-II sorts solutions according to their quality based on non-

dominated fronts (non-dominated sorting).

• This makes it easier to compare solutions.

26

Cost

Duration

First front
Second front

Third front
Fourth front

Fifth front

Consider that
all solutions

from a certain
generation are
plotted in this

graph.

27

Cost

Duration

First front
Second front

Third front
Fourth front

Fifth front

Solutions in former fronts are considered better than solutions in
latter fronts and will be preferred for parents / survival selection.

Non-dominated Fronts

• Solutions in the
same front do not
dominate each
other, and are not
dominated by any
solution from latter
fronts.

• Some solutions in
former fronts
dominate solutions
in latter fronts.

28

Cost

Duration

First front
Second front

Third front
Fourth front

Fifth front

NSGA-II considers solutions in former fronts as better than solutions
in latter fronts and will prefer them during parents / survival selection.

Many solutions are
non-dominated by

each other.

How to decide
between solutions

from the same front?

Non-dominated Fronts

Deciding Between Non-
Dominated Solutions

• We prefer solutions in less crowded areas of a given front.

29

Cost

Duration

Solution in less crowded area.

How to determine how crowded a certain solution is?

Crowding Distance

30

Cost

Duration

Crowding distance of solA

solA
solB

solC

• The crowding distance of a solution defines how crowded the
region where a given solution is.
1. Consider the non-dominated front where a solution is.
2. Find the two solutions in either side of the solution.
3. Calculate the distance between these two solutions in the

objective space.

Solutions with higher crowding
distance are in less crowded

regions.

solA

Crowding Distance

31

Crowding distance of solA:
1-norm distance between solB and solCCost

Duration

solB

solC

|cost(solB)� cost(solC)|+ |duration(solB)� duration(solC)|

• The crowding distance of a solution defines how crowded the
region where a given solution is.
1. Consider the non-dominated front where a solution is.
2. Find the two solutions in either side of the solution.
3. Calculate the distance between these two solutions in the

objective space.

Crowding distance for the left-most
and right-most solutions is infinite.

Why Preferring Solutions
from Less Crowded Areas?

• We aim at finding the Pareto set of optimal solutions.

• Pareto set provides several trade-offs among objectives.

• If we lack diversity, we may may miss some optimal solutions, and be
unable to provide a good spread of trade-offs between different
objectives.

32

Favouring solutions from
less crowded areas

encourages more diversity,
helping to find the Pareto

set.

Cost

Duration

Deciding Between Solutions
• If solA is in a former non-dominated font than solB:

• we prefer the solA.

• If solA and solB are in the same non-dominated front:
• we prefer the solution from less crowded area, i.e., with

higher crowding distance.

33

NSGA-II Algorithm
1. Set t = 0 (current generation)
2. Initialise population Pt with size N.
3. Sort Pt into different non-dominated fronts.
4. Determine the crowding distance of each individual in Pt.
5. While t < tmax

1. Select parents from Pt using 2-tournament selection based on non-
dominated fronts and crowding distance.

2. Apply crossover to generate children individuals C with probability Pc.
3. Apply mutation to children individuals C with probability Pm.
4. S <— Pt U C.
5. Sort S in different non-dominated fronts F0 to Fn.
6. Determine the crowding distance of each individual in S.
7. Select survivors from S based on non-dominated fronts and crowding

distance.
8. t <— t+1

34

NSGA-II Algorithm —
Survivor Selection

1. Set Pt+1 <— {}, i <— 0
2. While size of Pt+1 + size of Fi <= N

1. Pt+1 <— Pt+1 U Fi
2. i++

3. Top Pt+1 up with the individuals from Fi that have the highest
crowding distance.

35

Elitist survivor selection that picks the best individuals according to the
non-dominated fronts and the crowding distance.

While whole front Fi fits
within Pt+1.

Further Reading
A fast and elitist multiobjective genetic algorithm: NSGA-II
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan
IEEE Transactions on Evolutionary Computation
Vol 6, Issue 2, pages 182—197, 2002
Read until section III.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=996017&tag=1

Optional:
Multi-Objective Approaches to Optimal Testing Resource Allocation in Modular
Software Systems
Z. Wang, K. Tang, X. Yao
IEEE Transactions on Reliability
Vol 59, Issue 3, pages 563—575, 2010
http://ieeexplore.ieee.org/abstract/document/5549979/

36

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=996017&tag=1
http://ieeexplore.ieee.org/abstract/document/5549979/

