
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Multi-Objective Evolutionary Algorithms

Lecture 12

Im
ag

e 
fro

m
: h

ttp
://

ec
on

om
ic

tim
es

.in
di

at
im

es
.c

om
/p

ho
to

/4
07

69
69

2.
cm

s

http://economictimes.indiatimes.com/photo/40769692.cms


Overview
• Multi-objective optimisation problems. 

• Single-objective algorithmic design for multi-objective 
problems. 

• Non-dominated Sorting Genetic Algorithm II (NSGA-II).
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Multi-Objective Optimisation 
Problems

• Real world problems frequently have more than one objective. 

• Software project scheduling problem: 
• Cost and duration (to be minimised). 

• Some requirements selection formulations: 
• Cost (to be minimised) and score (to be maximised).
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Using Single-Objective Algorithms 
for Multi-Objective Problems

• In order to deal with multi-objective problems by using single-
objective optimisation algorithms, the multiple objectives have 
to be combined into a single fitness function. 

• E.g.: software project scheduling problem
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fitness(x) = wcost * cost(x) + wdur * duration(x)
(to be minimised)

wcost and wdur  ∈ [0,1]  

wcost + wdur = 1



Using Single-Objective Algorithms 
for Multi-Objective Problems

• Generic fitness function for k objectives:
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fitness(x) =          wi fi(x)

wi ∈ [0,1], 1 ≤ i ≤ k

kX

i=1

kX

i=1

wi = 1

Weighted average 
of objective 

functions fi(x).



Advantage of Combining Objectives 
into a Single Fitness Function

• Advantage of combining multiple objectives into a single 
fitness function: 
• Once weights are set, any single-objective optimisation 

algorithm can be used.
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Disadvantages of Combining Objectives 
into a Single Fitness Function

• Disadvantage 1: 
• Finding suitable weights is not easy before knowing what 

different trade-offs among objectives may be available. 
• Example:  
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Candidate solution 1: 
cost = 15,000 
duration = 12 months

Candidate solution 2: 
cost = 15,500 
duration = 24 months

wcost = 0.7 
wdur = 0.3 

fitness(x) = wcost * cost(x) + wdur * duration(x)    (to be minimised) 

Which of these solutions is better?



Disadvantages of Combining Objectives 
into a Single Fitness Function

• Disadvantage 1: 
• Finding suitable weights is not easy before knowing what 

different trade-offs among objectives may be available. 
• Example:  
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Candidate solution 1: 
cost = 15,000 
duration = 12 months

Candidate solution 2: 
cost = 15,500 
duration = 24 months

wcost = 0.7 
wdur = 0.3 

fitness = 10503.6 fitness = 10857.2

fitness(x) = wcost * cost(x) + wdur * duration(x)    (to be minimised) 



Disadvantages of Combining Objectives 
into a Single Fitness Function

• Disadvantage 1: 
• Finding suitable weights is not easy before knowing what 

different trade-offs among objectives may be available. 
• Example:  
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Candidate solution 1: 
cost = 15,000 
duration = 12 months

Candidate solution 2: 
cost = 14,500 
duration = 24 months

wcost = 0.7 
wdur = 0.3 

Which of these solutions is better?

fitness(x) = wcost * cost(x) + wdur * duration(x)    (to be minimised) 



Disadvantages of Combining Objectives 
into a Single Fitness Function

• Disadvantage 1: 
• Finding suitable weights is not easy before knowing what 

different trade-offs among objectives may be available. 
• Example:  
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Candidate solution 1: 
cost = 15,000 
duration = 12 months

Candidate solution 2: 
cost = 14,500 
duration = 24 months

wcost = 0.7 
wdur = 0.3 

fitness = 10503.6 fitness = 10157.2

fitness(x) = wcost * cost(x) + wdur * duration(x)    (to be minimised) 



Disadvantages of Combining Objectives 
into a Single Fitness Function

• Disadvantage 2: 
• If the different objectives have different scales, weights must 

reflect not only preferences towards certain objectives, but also 
treat the different scales. 

• E.g.: costs may typically be between 1000 and 80,000. 
Durations may typically vary between 3 and 48. 

If wcost = wdur = 0.5, costs will tend to have greater importance. 

• Disadvantage 3: 
• The weights will strongly affect the results. 

• You may not get certain solutions that could be interesting, 
but do not look interesting based on the chosen weights.
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Multi-Objective Evolutionary 
Algorithms

• Consider different objectives separately, instead of combining 
them into a single fitness function. 

• Advantages:  
• No need to set weights. 
• Having objectives in different scales is not a problem. 
• Retrieve a set of solutions with different trade-offs. E.g.:

12

Cost

Duration

[Demo]



Multi-Objective Evolutionary 
Algorithms

• Consider different objectives separately, instead of combining 
them into a single fitness function. 

• Advantages:  
• No need to set weights. 
• Having objectives in different scales is not a problem. 
• Retrieve a set of solutions with different trade-offs. 

• Disadvantage: 
• It is difficult to visualise trade-offs among >3 objectives. 
• Some multi-objective evolutionary algorithms also struggle 

to produce good solutions when we have >3 objectives.
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Non-dominated Sorting 
Genetic Algorithm II (NSGA-II)

• One of the most famous multi-objective optimisation algorithms. 

• Evolutionary algorithms put some selective pressure towards 
better individuals (parents and / or survival selection). 

• The concept of what is a better individual is simple when there is 
a single objective. 
• Minimisation problem: 

f(solA) = 5,  
f(solB) = 10 —> solA is better than solB 

f(solA) = 5,  
f(solB) = 5 —> solA is equally good to solB
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Non-dominated Sorting 
Genetic Algorithm II (NSGA-II)

• When more than one objective is considered separately, this idea 
does not work well. E.g.: 
• Minimise objective f1 and objective f2. 

f1(solA) = 10, f2(solA) = 5 
f1(solB) = 4,   f2(solB) = 10 
Which solution is better? 

• NSGA-II is based on the concept of dominance (and non-
dominance) to determine which solutions are better.
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Dominance
• A solution solA dominates another solution solB if the following 

conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.

16

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months

Candidate solution B: 
cost (min) = 16,000 
duration (min) = 24 months

Solution A dominates solution B.



Dominance
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Solution B does not dominate solution A.

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months

Candidate solution B: 
cost (min) = 16,000 
duration (min) = 24 months

• A solution solA dominates another solution solB if the following 
conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.



Dominance
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Solution A does not dominate solution B.

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months

Candidate solution B: 
cost (min) = 14,500 
duration (min) = 24 months

• A solution solA dominates another solution solB if the following 
conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.



Dominance
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Solution B does not dominate solution A.

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months

Candidate solution B: 
cost (min) = 14,500 
duration (min) = 24 months

• A solution solA dominates another solution solB if the following 
conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.



Dominance
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Solution A does not dominate solution B.

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 10

Candidate solution B: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 11

• A solution solA dominates another solution solB if the following 
conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.



Dominance
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Solution B dominates solution A.

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 10

Candidate solution B: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 11

• A solution solA dominates another solution solB if the following 
conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.



Dominance

22

Solution A does not dominate solution B.

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 10

Candidate solution B: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 10

• A solution solA dominates another solution solB if the following 
conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.



Dominance
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Solution B does not dominate solution A.

Candidate solution A: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 10

Candidate solution B: 
cost (min) = 15,000 
duration (min) = 12 months 
robustness (max) = 10

• A solution solA dominates another solution solB if the following 
conditions are satisfied: 
• solA is equal or better than solB in all objectives, and  
• solA is strictly better than solB in at least one objective.



Optimal Solutions
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Cost

Duration

Consider that all possible 
solutions are plotted in this graph. 

Pareto front is shown in blue.

does not dominate

• Instead of having single best solutions, we have sets of best 
solutions with different trade-offs. 

• Pareto front: set of solutions that are non-dominated by any 
other solution in the search space. 

• NSGA-II aims at finding the Pareto front.
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[Youtube video posted by DataAb: https://youtu.be/
sEEiGM9em8s] 

https://youtu.be/sEEiGM9em8s
https://youtu.be/sEEiGM9em8s


Non-dominated Fronts
• NSGA-II sorts solutions according to their quality based on non-

dominated fronts (non-dominated sorting). 

• This makes it easier to compare solutions.
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Cost

Duration

First front
Second front

Third front
Fourth front

Fifth front

Consider that 
all solutions 

from a certain 
generation are 
plotted in this 

graph.
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Cost

Duration

First front
Second front

Third front
Fourth front

Fifth front

Solutions in former fronts are considered better than solutions in 
latter fronts and will be preferred for parents / survival selection.

Non-dominated Fronts

• Solutions in the 
same front do not 
dominate each 
other, and are not 
dominated by any 
solution from latter 
fronts. 

• Some solutions in 
former fronts 
dominate solutions 
in latter fronts.
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Cost

Duration

First front
Second front

Third front
Fourth front

Fifth front

NSGA-II considers solutions in former fronts as better than solutions 
in latter fronts and will prefer them during parents / survival selection.

Many solutions are 
non-dominated by 

each other.

How to decide 
between solutions 

from the same front?

Non-dominated Fronts



Deciding Between Non-
Dominated Solutions

• We prefer solutions in less crowded areas of a given front.
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Cost

Duration

Solution in less crowded area.

How to determine how crowded a certain solution is? 



Crowding Distance
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Cost

Duration

Crowding distance of solA

solA
solB

solC

• The crowding distance of a solution defines how crowded the 
region where a given solution is. 
1. Consider the non-dominated front where a solution is. 
2. Find the two solutions in either side of the solution. 
3. Calculate the distance between these two solutions in the 

objective space.

Solutions with higher crowding 
distance are in less crowded 

regions.



solA

Crowding Distance
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Crowding distance of solA: 
1-norm distance between solB and solCCost

Duration

solB

solC

|cost(solB)� cost(solC)|+ |duration(solB)� duration(solC)|

• The crowding distance of a solution defines how crowded the 
region where a given solution is. 
1. Consider the non-dominated front where a solution is. 
2. Find the two solutions in either side of the solution. 
3. Calculate the distance between these two solutions in the 

objective space.

Crowding distance for the left-most 
and right-most solutions is infinite.



Why Preferring Solutions 
from Less Crowded Areas?

• We aim at finding the Pareto set of optimal solutions. 

• Pareto set provides several trade-offs among objectives. 

• If we lack diversity, we may may miss some optimal solutions, and be 
unable to provide a good spread of trade-offs between different 
objectives.
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Favouring solutions from 
less crowded areas 

encourages more diversity, 
helping to find the Pareto 

set.

Cost

Duration



Deciding Between Solutions
• If solA is in a former non-dominated font than solB: 

• we prefer the solA. 

• If solA and solB are in the same non-dominated front: 
• we prefer the solution from less crowded area, i.e., with 

higher crowding distance.
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NSGA-II Algorithm
1. Set t = 0 (current generation) 
2. Initialise population Pt with size N. 
3. Sort Pt into different non-dominated fronts. 
4. Determine the crowding distance of each individual in Pt. 
5. While t < tmax 

1. Select parents from Pt using 2-tournament selection based on non-
dominated fronts and crowding distance. 

2. Apply crossover to generate children individuals C with probability Pc. 
3. Apply mutation to children individuals C with probability Pm. 
4. S <— Pt U C. 
5. Sort S in different non-dominated fronts F0 to Fn. 
6. Determine the crowding distance of each individual in S. 
7. Select survivors from S based on non-dominated fronts and crowding 

distance. 
8. t <— t+1
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NSGA-II Algorithm — 
Survivor Selection

1. Set Pt+1 <— {}, i <— 0 
2. While size of Pt+1 + size of Fi <= N 

1. Pt+1 <— Pt+1 U Fi 
2. i++ 

3. Top Pt+1 up with the individuals from Fi that have the highest 
crowding distance.
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Elitist survivor selection that picks the best individuals according to the 
non-dominated fronts and the crowding distance.

While whole front Fi fits 
within Pt+1.



Further Reading
A fast and elitist multiobjective genetic algorithm: NSGA-II 
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan 
IEEE Transactions on Evolutionary Computation 
Vol 6, Issue 2, pages 182—197, 2002 
Read until section III. 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=996017&tag=1  

Optional: 
Multi-Objective Approaches to Optimal Testing Resource Allocation in Modular 
Software Systems 
Z. Wang, K. Tang, X. Yao 
IEEE Transactions on Reliability 
Vol 59, Issue 3, pages 563—575, 2010 
http://ieeexplore.ieee.org/abstract/document/5549979/ 
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=996017&tag=1
http://ieeexplore.ieee.org/abstract/document/5549979/

