
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Software Project Scheduling — Part I

Lecture 10

Overview
• Part I:

• What is the Software Project Scheduling Problem (SPSP)?
• Why are automated methods important for the SPSP?
• How to formulate the SPSP as an optimisation problem?
• How to solve the SPSP using optimisation algorithms?
• [Except constraints]

• Part II:
• How to formulate the constraints of the SPSP?
• How to deal with the constraints of the SPSP?

2

Announcements
• tail -1 logFile.tsv | cut -f 4 -d$'\t'

• tail -1 logFile.tsv | cut -f 4

3

Where Are We?

4

Hill Climbing
Simulated Annealing

Evolutionary Algorithms

Optimisation Algorithms How to Apply for SE problems
Software Modularisation
Requirements Selection

Other Applications
Traveling Salesman Problem

Lorry Problem
Very Large Scale Integration

Wind Farm

Evaluation

Statistical Tests

Understanding is important to be able to
propose good designs for different

applications

Can help you to choose parameters and
designs, and better understand their impact

Practice identifying optimisation problems
and solving them using computational

intelligence

Practice identifying optimisation problems
and solving them using computational

intelligence

Where Are We Going?
• How to apply optimisation algorithms for:

• Software project scheduling
• Software energy optimisation
• Software testing

• Other optimisation algorithms:
• NSGA-II
• Ant colony optimisation

• Machine learning
• …

5

Software Project Scheduling
Problem (SPSP)

6

Each task requires a set of skills and effort.
Tasks also have a precedence relation.

Allocate

Different allocations will lead to different

project cost and duration.

Sk
Sk Sk Sk Sk Sk
Sk Sk Sk Sk Sk

Sk Sk Sk Sk Sk
Sk Sk Sk Sk

Sk
Sk

Sk
Sk

Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk

Software Project Scheduling
Problem (SPSP)

7

SPSP: find a good allocation of employees to tasks in a software project so as to
minimise its cost and duration.

We can use optimisation algorithms (e.g., EAs) to solve the SPSP!

It is very difficult to optimally assign employees to
tasks manually.

• The space of possible allocations can be
enormous.

Advantages of Optimisation
Algorithms for the SPSP

• Insight into how to optimise objectives -- they may find
solutions that no human has thought of.

• Speed up the task of allocating employees to tasks.

• Help software manager to find solutions that satisfy all
constraints.

• Team must have skills to perform a task.

• No overwork is allowed.

8

Problem Formulation and
Evolutionary Algorithm Design

9

Formulating the SPSP

10

Setting: assume we are given
• n employees e1, . . . , en with salaries sali and sets of skills skilli;
• m tasks t1, . . . , tm with required efforts reqEffj and sets of required

skills reqSkj;
• a task precedence graph (TPG).

Problem: allocate employees to tasks so as to:
• minimise cost (total salaries paid) and
• minimise duration (completion time).

Constraints:
• team must have required skills and
• no overwork.

11

For the purpose of today’s lecture, let’s
pretend that there are no constraints.

x’i,j

Formulation — Design
Variable

• We have n employees and m tasks.
• We need to assign employees to tasks.
• An employee can be assigned to more than one task.
• Design variable:

• x’ = Matrix of employees by tasks.
• Entries x’i,j represent the dedication of employee i to task j.
• Dedication = percentage of the employee’s time dedicated to the task.
• Which values could each entry x’i,j assume?
• Depends on the granularity k of the problem.

12

x’ t1 t2 ... tm
e1 x’1,1 x’1,2 ... x’1,m

e2 x’2,1 x’2,2 ... x’2,m

...
en x’n,1 x’n,2 ... x’n,m

EA Design —
Representation

13

x t1 t2 ... tm
e1 x1,1 x1,2 ... x1,m

e2 x2,1 x2,2 ... x2,m

...
en xn,1 xn,2 ... xn,m

• Representation: x = matrix of dedications of employees to
tasks, where dedications are integers in {0,…,k}.

{0,…,k}

EA Design — Mutation

Mutation of xi,j picks a new dedication uniformly at random from:

14

Can you propose a better mutation operator?

{0,…,k} \ xi,j

15

Exchange rows

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

EA Design — Crossover

16

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

EA Design — Crossover
Exchange rows

17

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

EA Design — Crossover
Exchange columns

EA Design — Crossover
• Which is better: rows or columns?

• We don’t know!

• We can randomly decide which of them to apply whenever
we need to perform crossover.

18

Formulation — Objective
Functions

• Problem: allocate employees to tasks so as to:
• minimise cost (total salaries paid) and
• minimise duration (completion time).

• Objectives:
• cost (total salaries paid) and
• duration (completion time).

19

How to calculate cost and duration?

Calculating Cost and
Duration

20

x t1 t2 t3 t4
e1 x1,1 x1,2 x1,3 x1,4

e2 x2,1 x2,2 x2,3 x2,4

e3 x3,1 x3,2 x3,3 x3,4

+ TPG, tasks required efforts

Cost and duration
+ salaries

x’ t1 t2 t3 t4
e1 x’1,1 x’1,2 x’1,3 x’1,4

e2 x’2,1 x’2,2 x’2,3 x’2,4

e3 x’3,1 x’3,2 x’3,3 x’3,4

decode

Example for 1 Employee,
4 Tasks, k=2

21

x t1 t2 t3 t4
e1 1 1 1 1

t1

t2

t3

t4

G
an

tt
C

ha
rt

t1's required effort and skills: 4 p-month, {sql, java}
t2's required effort and skills: 4 p-month, {java}
t3's required effort and skills: 8 p-month, {java}
t4's required effort and skills: 2 p-month, {java}
e1's salary and skills: $1000 per full time month, {sql, java}

Example for 1 Employee,
4 Tasks, k=2

22

x’ t1 t2 t3 t4
e1 0.5 0.5 0.5 0.5

t1

t2

t3

t4

G
an

tt
C

ha
rt

t1's required effort and skills: 4 p-month, {sql, java}
t2's required effort and skills: 4 p-month, {java}
t3's required effort and skills: 8 p-month, {java}
t4's required effort and skills: 2 p-month, {java}
e1's salary and skills: $1000 per full time month, {sql, java}

Example for 1 Employee,
4 Tasks, k=2

23

x’ t1 t2 t3 t4
e1 0.5 0.5 0.5 0.5

t1: 4 / 0.5 = 8 months

t1

t2

t3

t4

G
an

tt
C

ha
rt

t1's required effort and skills: 4 p-month, {sql, java}
t2's required effort and skills: 4 p-month, {java}
t3's required effort and skills: 8 p-month, {java}
t4's required effort and skills: 2 p-month, {java}
e1's salary and skills: $1000 per full time month, {sql, java}

Example for 1 Employee,
4 Tasks, k=2

24

x’ t1 t2 t3 t4
e1 0.5 0.5 0.5 0.5

t1: 4 / 0.5 = 8 months

t2: 4 / 0.5 = 8 months

t1

t2

t3

t4

G
an

tt
C

ha
rt

t1's required effort and skills: 4 p-month, {sql, java}
t2's required effort and skills: 4 p-month, {java}
t3's required effort and skills: 8 p-month, {java}
t4's required effort and skills: 2 p-month, {java}
e1's salary and skills: $1000 per full time month, {sql, java}

Example for 1 Employee,
4 Tasks, k=2

25

x’ t1 t2 t3 t4
e1 0.5 0.5 0.5 0.5

t1: 4 / 0.5 = 8 months

t2: 4 / 0.5 = 8 months

t3: 8 / 0.5 = 16 months

t1

t2

t3

t4

G
an

tt
C

ha
rt

t1's required effort and skills: 4 p-month, {sql, java}
t2's required effort and skills: 4 p-month, {java}
t3's required effort and skills: 8 p-month, {java}
t4's required effort and skills: 2 p-month, {java}
e1's salary and skills: $1000 per full time month, {sql, java}

26

x’ t1 t2 t3 t4
e1 0.5 0.5 0.5 0.5

t1: 4 / 0.5 = 8 months

t2: 4 / 0.5 = 8 months

t3: 8 / 0.5 = 16 months
t4:

t1

t2

t3

t4

G
an

tt
C

ha
rt

t1's required effort and skills: 4 p-month, {sql, java}
t2's required effort and skills: 4 p-month, {java}
t3's required effort and skills: 8 p-month, {java}
t4's required effort and skills: 2 p-month, {java}
e1's salary and skills: $1000 per full time month, {sql, java}

2 / 0.5 =
4 months

Example for 1 Employee,
4 Tasks, k=2

EA Design — Fitness
Function

27

fitness(x’) = wcost * cost(x’) + wdur * duration(x’)
(to be minimised)

wcost and wdur ∈ [0,1]

wcost + wdur = 1

EA Design — Parents and
Survival Selection

• Parents selection: 2-Tournament Selection.

• Survivor selection: fitness-based delete-worst.

• Stoping criterion: maximum number of generations.

28

Summary

29

Summary of Problem
Formulation

• Design variable: matrix of dedications of employees to tasks.

• Objectives: cost and duration (to be minimised).

• Constraints: ?

30

Summary of Evolutionary
Algorithm Design

• Representation: integer matrix of employees by tasks.

• Fitness function:

• Mutation: picks new dedication uniformly at random.

• Crossover: exchanges rows or columns.

• Parents selection: 2-Tournament selection.

• Survival selection: fitness-based delete-worst.

• Stoping criterion: maximum number of generations

• Constraints: ?
31

fitness(x’) = wcost * cost(x’) + wdur * duration(x’)

Further Reading
L. Minku, D. Sudholt and X. Yao. "Improved Evolutionary Algorithm
Design for the Project Scheduling Problem Based on Runtime
Analysis", IEEE Transactions on Software Engineering vol. 40, n. 1, p.
83-102, 2014. Read sections 1—3.

http://ieeexplore.ieee.org/document/6648326/

32

http://ieeexplore.ieee.org/document/6648326/

