
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Requirements Selection

Lecture 09

Im
ag

e
fro

m
: h

ttp
s:

//m
ed

ia
.li

cd
n.

co
m

/m
pr

/m
pr

/s
hr

in
kn

p_
80

0_
80

0/
AA

EA
AQ

AA
AA

AA
AA

b4
AA

AA
JD

Rm
M

W
Ez

M
zA

3L
W

M
xM

W
Et

N
D

ljN
S0

5N
2N

hL
TI

w
M

jB
lN

jY
w

Zj
Q

xM
g.

jp
g

https://media.licdn.com/mpr/mpr/shrinknp_800_800/AAEAAQAAAAAAAAb4AAAAJDRmMWEzMzA3LWMxMWEtNDljNS05N2NhLTIwMjBlNjYwZjQxMg.jpg
https://media.licdn.com/mpr/mpr/shrinknp_800_800/AAEAAQAAAAAAAAb4AAAAJDRmMWEzMzA3LWMxMWEtNDljNS05N2NhLTIwMjBlNjYwZjQxMg.jpg
https://media.licdn.com/mpr/mpr/shrinknp_800_800/AAEAAQAAAAAAAAb4AAAAJDRmMWEzMzA3LWMxMWEtNDljNS05N2NhLTIwMjBlNjYwZjQxMg.jpg

Overview
• What are requirements?

• What is requirements selection?

• How to formulate it as an optimisation problem?

• How to design an optimisation algorithm for this problem?

• Variants of the problem formulation.

• [Revision of some genetic operators]

2

What Are [Software]
Requirements?

• There are different definitions.

• According to the IEEE Standard Glossary of Software
Engineering Technology, a requirement is:

1. A condition or capability needed by a user to solve a
problem or achieve an objective.

2. A condition or capability that must be met or possessed by a
system or system component to satisfy a contract, standard,
specification, or other formally imposed document.

3. A documented representation of a condition or capability as
in 1 or 2.

3

What Are [Software]
Requirements?

• More loosely, requirements can be seen as:
• [Descriptions of] services that a software system must provide

and the constraints under which it must operate.
• [Descriptions of] needs of stakeholders that are to be solved

by software.
• Examples:

• Every order should be assigned a unique identifier.
• User should be able to search the database.
• Information from the database should be retrieved to the user

in less than 1s.

4

Types of Requirements
• Requirements can be categorised according to different

perspectives. E.g.:
• Functional requirements: services to be provided by the

system.
• Non-functional requirements: constraints on the services to

be provided by the system.
• User requirements: statements in natural language and

diagrams of the services to be provided.
• System requirements: detailed descriptions of the system

services.

5

6

Each requirement has a cost.

Requirements

7

[Descriptions of] needs of stakeholders that are to
be solved by software.

Who Are the Stakeholders?
• “The people and organisations affected by the application.”

Conger, S. (1994) The New Software Engineering, International Thomson Publishing.

• “System stakeholders are people or organisations who will be
affected by the system and who have a direct or indirect
influence on the system requirements.”

Kotonya, G. and Sommerville, I. (1998) Requirements Engineering: processes and techniques, John Wiley.

• “Stakeholders are people who have a stake or interest in the
project.”

Cotterell, M. and Hughes, B. (1995) Software Project Management, International Thomson Publishing.

8

Examples of Stakeholders
• Users.

• Developers.

• Legislators, e.g.:
• professional bodies, government agencies, legal

representatives, safety executives.

• Decision-makers, e.g.:
• managers of the software development team, user

managers, financial controllers.

9

10

Different stakeholders may have different importance to a company.

Different stakeholders may see different value in different
requirements.

The level of satisfaction of a stakeholder depends on the
requirements that are satisfied.

Requirements Selection
• We need to decide which possible requirements to

implement, considering (potentially among others):
• their cost,
• their value from different stakeholders perspectives,
• the importance of the stakeholder who wants the

requirement.

11

Number of
requirements CostSatisfaction/

value

Requirements Selection
Problem

• Select requirements so as to:
• Maximise the value of the requirements selected.
• Considering the stakeholders’ importances.
• Subject to a maximum cost (budget).

• Problem gets difficult to solve manually when there are many
requirements and many stakeholders involved.

• Requirements need to be selected not only in the first release
of a software, but also in subsequent releases.
• The next release problem.

12

Requirements Selection
Problem Formulation

• Consider that you have:
• A set of stakeholders for a software system:

Stakeholders = {s1, s2, …, sm}

• Weight reflecting the importance of each stakeholder:
Importance = {imp(s1), imp(s2), …, imp(sm)}
imp(si) ∈ [0,1]
sum of the importances = 1

• A set of possible requirements:
Requirements = {r1, r2, …, rn}
(assuming the requirements are independent)

• Cost of each requirement:
Costs = {cost(r1), cost(r2), …, cost(rn)}

13

Requirements Selection
Problem Formulation

Each stakeholder si assigns a value to each requirement rj.

14

0 if si doesn’t want rj

>0 if si wants rj

The higher the value(rj,si), the more important rj is to si.

value(rj,si)

Requirements Selection
Problem Formulation

Score of requirement rj:

15

score(rj) =
mX

i=1

imp(si) value(rj,si)

sum of values of the requirement from different
stakeholders’ perspectives

Requirements Selection
Problem Formulation

Score of requirement rj:

16

score(rj) =
mX

i=1

imp(si) value(rj,si)

weighted sum of values of the requirement

Objective: Maximise score(rj) xj

nX

j=1

Design variable:
xj = 0 if requirement rj is not included

xj = 1 if requirement rj is included
x = {0,1}n

Requirements Selection
Problem Formulation

17

Constraint: cost(rj) xj ≤ C
nX

j=1

Selected requirements must be within budget.

total cost of selected requirements

Example of Evolutionary
Algorithm Design

Representation: binary x = {0,1}n, where
• n is the number of potential requirements,
• each position corresponds to a specific potential requirement,
• 0 represents that the corresponding requirement is not

included,
• 1 represents that the corresponding requirement is included.

18

Fitness function: score(rj) xj (to be maximised)
nX

j=1

total score of selected requirements

Example of Evolutionary
Algorithm Design

19

1 0 1 1 1

r1 r2 r3 r4 r5

score(r1) = 3
cost(r1) = 50

score(r2) = 1
cost(r2) = 50 score(r3) = 4

cost(r3) = 30

score(r4) = 7
cost(r4) = 40

score(r5) = 8
cost(r5) = 40

C = 100
total cost =1 160

Dealing with the budget constraint:
• Repair operator:

while total cost > C
delete (flip to zero) the currently included requirement with lowest score

Example of Evolutionary
Algorithm Design

20

0 0 1 1 1

r1 r2 r3 r4 r5

score(r1) = 3
cost(r1) = 50

score(r2) = 1
cost(r2) = 50 score(r3) = 4

cost(r3) = 30

score(r4) = 7
cost(r4) = 40

score(r5) = 8
cost(r5) = 40

C = 100
total cost = 1101

Dealing with the budget constraint:
• Repair operator:

while total cost > C
delete (flip to zero) the currently included requirement with lowest score

Example of Evolutionary
Algorithm Design

21

0 0 0 1 1

r1 r2 r3 r4 r5

score(r1) = 3
cost(r1) = 50

score(r2) = 1
cost(r2) = 50 score(r3) = 4

cost(r3) = 30

score(r4) = 7
cost(r4) = 40

score(r5) = 8
cost(r5) = 40

C = 100
total cost = 80

Dealing with the budget constraint:
• Repair operator:

while total cost > C
delete (flip to zero) the currently included requirement with lowest score

Example of Evolutionary
Algorithm Design

Crossover: uniform crossover

Mutation: bitwise bit-flipping

Parents selection: 2-tournament selection

Survivor selection: elitist + age-based

Stoping criterion: maximum number of generations

22

Uniform Crossover
• For each gene of offspring 1:

• Give 50% chance for gene to come from parent 1 and 50%
to come from parent 2.

• Make an inverse copy of the gene for the offspring 2.

• Inheritance is independent of position.

23

1 0 0 1 0 0 0 1
0 1 0 1 1 0 1 0

1 1 0 1 1 00 0
0 0 0 1 0 0 1 1

Parent 1

Child 1

Im
ag

e
fro

m
: h

ttp
://

ca
cm

.a
cm

.o
rg

/s
ys

te
m

/a
ss

et
s/

00
01

/3
91

8/
11

20
13

_C
AC

M
pg

12
6_

Pu
zz

le
d.

la
rg

e.
jp

g?
13

84
86

97
00

&1
38

48
69

70
0

heads = from parent 1
tails = from parent 2

heads = from parent 1

Parent 2

Child 2

http://cacm.acm.org/system/assets/0001/3918/112013_CACMpg126_Puzzled.large.jpg?1384869700&1384869700

Bitwise Bit-Flipping Mutation
• Flip each gene (from 0 to 1 or vice-versa) with probability Pm.

• Pm is called mutation rate, and is typically in
 [1/pop_size, 1/chromosome_length].

• Example:

24

80%

20%
Mutation
No mutation

0 80%

20%
Mutation
No mutation

80%

20%
Mutation
No mutation

80%

20%
Mutation
No mutation

1 1 1

Before mutation

After mutation

0 1 1 0 1

1 80%

20%
Mutation
No mutation

Tournament Parents
Selection

• Informal Procedure:
• Pick k members at random then select the best of these.
• Repeat to select more individuals.

25

Genotypes Fitnesses

00011 9

01000 64

10101 25

01001 81

E.g.: k = 2, assuming maximisation

Parent: 01001

Elitist + Age-Based Survivor
Selection

1. set of survivors = all children

2. Find the best individual among children and previous
generation.

3. If the best individual is an individual from the previous
generation
1. Replace the worst child in the set of survivors by this best

individual.

4. Make set of survivors survive!

26

EA Pseudocode

27

Evolutionary Algorithm
1. Initialise population (random, using binary representation)
2. Evaluate each individual (repair and determine the total score of selected
requirements)
3. Repeat (until a maximum number of generations)

3.1 Select parents (using tournament selection)
3.2 Recombine parents with probability Pc (using uniform crossover)
3.3 Mutate resulting offspring with probability Pm (using bitwise bit-flipping)
3.4 Evaluate offspring (repair and determine the total score of selected
requirements)
3.5 Select survivors for the next generation (elitist + age-based)

Alternative Problem
Formulation

• There is no constraint on the total cost.

• We want to maximise the total score and minimise the total
cost.

• Fitness function can be the weighted average between total
score and total cost of selected requirements.

28

Alternative Problem
Formulation

• There are relationships among requirements.
• Dependency: some requirements can only be included if

some other requirements are also included.
• Conflict: some requirements cannot co-exist.

29

Example of How to Deal with
Constraints

• Repair operator for dealing with dependency constraint:
• For each included requirement with dependencies,

Set all genes on which the requirement depends to 1.

Ensure that the dependencies of the newly added
requirements are satisfied too.

30

0 0 1 1 0

r1 r2 r3 r4 r5

Depends on

Depends on

Example of How to Deal with
Constraints

31

0 1 1 1 0

r1 r2 r3 r4 r5

Depends on

Depends on

• Repair operator for dealing with dependency constraint:
• For each included requirement with dependencies,

Set all genes on which the requirement depends to 1.

Ensure that the dependencies of the newly added
requirements are satisfied too.

Example of How to Deal with
Constraints

32

0 1 1 1 1

r1 r2 r3 r4 r5

Depends on

Depends on

• Repair operator for dealing with dependency constraint:
• For each included requirement with dependencies,

Set all genes on which the requirement depends to 1.

Ensure that the dependencies of the newly added
requirements are satisfied too.

Example of How to Deal with
Constraints

• Repair operator for dealing with conflict constraint:
• For each included requirement with conflicts,

• Randomly select only one of the conflicting
requirements to be kept as 1.

33

1 0 1 1 1

r1 r2 r3 r4 r5

Conflicting
33%

33%

33%

r1 r4 r5

1

Example of How to Deal with
Constraints

• Repair operator for dealing with conflict constraint:
• For each included requirement with conflicts,

• Randomly select only one of the conflicting
requirements to be kept as 1.

34

0 0 1 1 0

r1 r2 r3 r4 r5

Conflicting

Summary
• Requirements selection is difficult to perform manually when

the number of potential requirements and stakeholders is
large.

• We can formulate it as an optimisation problem.

• Requirements selection is quite similar to the lorry problem.

• There are different variants of the requirements selection
problem.

• Different variants need different algorithm designs.

35

Further Reading

Requirements Interaction in the Next Release Problem
José del Sagrado, Isabel M. Águila, Francisco J. Orellana
Proceedings of the 13th annual conference companion on Genetic and
evolutionary computation, Pages 241-242
http://dl.acm.org/citation.cfm?id=2001858.2001994

36

http://dl.acm.org/citation.cfm?id=2001858.2001994

