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Announcements
• Coursework 1 is out! 

• Next problem class is on Thursday, to enable you to ask 
questions about coursework.
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Overview
• Comparison of computational intelligence algorithms. 

• The need for statistical tests. 

• Types of statistical tests. 

• Wilcoxon tests in R.
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Comparison of Computational 
Intelligence Algorithms

• Different algorithms and/or configurations may perform 
differently. 

• The best algorithm and/or configuration to use depends on the 
problem (no free lunch). 

• If we don’t know beforehand which algorithm is better for our 
problem, we need to compare different algorithms and/or 
configurations. 

• This comparison is not straightforward, due to the stochastic 
behaviour of many of the computational intelligence algorithms.
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Stochastic Behaviour of 
Computational Intelligence Algorithms

• Computational intelligence frequently involves a certain 
amount of randomness (stochastic behaviour): 

• Randomness in the data samples, affecting the algorithms’ 
results (we will learn about this later). 

• Randomness in the algorithms themselves. 
• E.g., random initial population, probability of crossover, 

probability of mutation, etc.
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If we run the algorithm different times on the same problem 
instance, we will get different results.



Stochastic Behaviour of 
Computational Intelligence Algorithms

• Example: run an EA on traveling salesman problem using 
different seeds. 

• Seed 1: min distance = 1900.58 

• Seed 3: min distance = 1719.35 

• Using the same seed allows us to repeat exactly the same 
sequence of pseudorandom numbers.  

• However, the algorithm is still stochastic, i.e., it still uses a 
sequence of pseudorandom numbers.
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If algorithms perform differently with different 
random seeds, how to compare them?
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We need to run the algorithms many times (e.g., 30+) with 
different random seeds to check what the typical behaviour of the 

algorithms is.

0.9751186599 0.9379836847

Run algorithm 1: Run algorithm 2:

0.8036808732 0.9442552933



How to Compare Different 
Approaches and/or Configurations?
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Best Fitness EA1

0.8036808732
0.1546026852
0.1507085019
0.9751186599
0.4602321477
0.0132238786
0.0175114877
0.9041741739
0.8697700955

0.676352134
0.5182328166
0.0516411681
0.5426649651
0.4973629257
0.4866079125
0.2187455767
0.8438274211
0.2644009485

0.256434446
0.0791214858
0.2856093827
0.3797759169
0.5978962695
0.0860532501
0.2860286001
0.2772790031
0.7289846656
0.3812438862

0.114495351
0.7128328204

Best Fitness EA2

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616

Ru
ns

EA2’s best fitness in the last generation 
of run 1.

EA2’s best fitness in the last generation 
of run 2.

How to compare different groups 
of observations?

In statistics, each of the cells is 
referred to as an observation, 
and each column is called a 

group.



Averages
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Average group 1: 0.4212

Average group 2: 0.6264

Problem 1: doesn’t take into account variations in the observations.

Problem 2: can be affected by outliers (very small or very large 
exceptional observations).



Averages + Standard 
Deviations
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Average group 1: 0.4212

Average group 2: 0.6264

Problem 1: difficult to know if groups are different or not.

Problem 2: still be affected by outliers.



Median
Example of median calculation for odd number of 

observations:  
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0.6, 0.75, 0.62, 0.65, 0.7, 0.8, 0.81, 0.000001, 0.8



Median
Example of median calculation for odd number of 

observations:  
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0.000001, 0.6, 0.62, 0.65, 0.7, 0.75, 0.8, 0.8, 0.81
Sorte

d observa
tions



Median
Example of median calculation for odd number of 

observations:  
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Median 
(middle point)

0.000001, 0.6, 0.62, 0.65, 0.7, 0.75, 0.8, 0.8, 0.81



Median
Example of median calculation for even number of 

observations:  
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Median = 0.725 
(average of two middle 

points)

0.000001, 0.6, 0.62, 0.65, 0.7, 0.75, 0.8, 0.8, 0.81, 0.81



Median
Example of median calculation for even number of 

observations:  
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Median = 0.725 
(average of two middle 

points)

Outlier

Medians are less affected by outliers than averages.

0.000001, 0.6, 0.62, 0.65, 0.7, 0.75, 0.8, 0.8, 0.81, 0.81



Median
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Median group 1: 0.3805

Median group 2: 0.7474

Problem 1: doesn’t take into account variations in the observations.



Median, 1st and 3rd 
Quartiles
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0.000001, 0.6, 0.62, 0.65, 0.7, 0.75, 0.8, 0.8, 0.81

Median 
(middle point)1st Quartile = median of  

left observations
3rd Quartile = median of  

right observations

Quartiles divide the observations into 4 chunks.  
Median can be referred to as 2nd quartile.



Median, 1st and 3rd 
Quartiles
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0.000001, 0.6, 0.62, 0.65, 0.7, 0.75, 0.8, 0.8, 0.81

Median 
(middle point)1st Quartile = median of  

left observations
3rd Quartile = median of  

right observations

Quartiles divide the observations into 4 chunks.  
Median can be referred to as 2nd quartile.

Quartiles are less affected by outliers than standard deviations.



Median + 1st and 3rd 
Quartiles
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Median group 1: 0.3805

Median group 2: 0.7474

Problem: sometimes it is still difficult to know if groups are different or not.



How to Compare Different 
Approaches and/or Configurations?
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We need a scientific method!

Statistical hypothesis test:  
scientific method for testing a statistical hypothesis,  
e.g., that two or more algorithms perform similarly.



Statistical Hypothesis Tests
1. Decide what to compare and formulate hypothesis. 

2. Choose appropriate statistical hypothesis test. 

3. Run the statistical hypothesis test to check whether 
hypothesis is or is not rejected.
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Statistical Hypothesis Tests
1. Decide what to compare and formulate hypothesis. 

2. Choose appropriate statistical hypothesis test. 

3. Run the statistical hypothesis test to check whether 
hypothesis is or is not rejected.
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What to Compare?
• In this lecture: performance (e.g., fitness) of two algorithms 

and/or configurations. 
• This means we have two groups of observations. 

• Make sure the comparison between two groups is fair! 
• Use the same number of fitness evaluations, unless the 

purpose of your comparison is to determine whether having 
more fitness evaluations helps to get better results. 

• E.g., when comparing simulated annealing with 10,000 
iterations against an evolutionary algorithm with a population 
of size 10 which generates 10 new offspring per generation, 
the evolutionary algorithm should run for ??? generations.
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What to Compare?
• In this lecture: performance (e.g., fitness) of two algorithms and/

or configurations. 
• This means we have two groups of observations. 

• Make sure the comparison between two groups is fair! 
• Use the same number of fitness evaluations, unless the 

purpose of your comparison is to determine whether having 
more fitness evaluations helps to get better results. 

• E.g., when comparing simulated annealing with 10,000 
iterations against an evolutionary algorithm with a population 
of size 10 which generates 10 new offspring per generation, 
the evolutionary algorithm should run for 1000 - 1 generations.
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Statistical Hypothesis Tests 
for Two Groups

Statistical hypothesis: scientific hypothesis about how the 
groups of observations compare to each other. 

• Two-tailed (two-sided) test: 
• H0: Group 1 = Group 2  
• H1: Group 1 ≠ Group 2 
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Null  

Hypothesis

Alternative 

Hypothesis
H1 is usually the 

desirable outcome.

Example: 
• H0: Fitness(EA1) = Fitness (EA2) 

  H1: Fitness(EA1) ≠ Fitness(EA2)



Statistical Hypothesis Tests 
for Two Groups

Statistical hypothesis: scientific hypothesis about how the 
groups of observations compare to each other. 

• One-tailed (one-sided) test: 
• H0: Group 1 ≤ Group 2 

 H1: Group 1 > Group 2 
Only recommended when the consequences of having an undesirable    
outcome of < is the same as an undesirable outcome of =. 

• H0: Group 1 ≥ Group 2 
 H1: Group 1 < Group 2 
 Only recommended when the consequences of having an undesirable    
outcome of > is the same as an undesirable outcome of =. 

• Rarely used in computational intelligence experiments.
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Statistical Hypothesis Tests
1. Decide what to compare and formulate hypothesis. 

2. Choose appropriate statistical hypothesis test. 

3. Run the statistical hypothesis test to check whether 
hypothesis is or is not rejected.
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Statistical Hypothesis Tests
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Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test



Which Test to Use?
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Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test



Which Test to Use?
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Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test



Which Test to Use?
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Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test



Normality Assumption
• Normality assumption: the frequency of observed values for 

each group follows a normal distribution.

32
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• Normality assumption: the frequency of observed values for 
each group follows a normal distribution.

Normality Assumption

33
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Image from: https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-Normal_Distribution_PDF.svg.png

https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-Normal_Distribution_PDF.svg.png


Normality Assumption
• Example of observations not following a normal distribution:
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Which Test to Use?
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Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Parametric tests are more powerful (better at detecting differences), than non-
parametric ones, but can be highly affected by violations of assumptions.



Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Which Test to Use?
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We will use non-parametric tests in this course.



Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent) Wilcoxon rank-sum test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Which Test to Use?
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Group 1

0.8036808732

0.1546026852

0.1507085019

0.9751186599

0.4602321477

0.0132238786

0.0175114877

0.9041741739

0.8697700955

0.676352134

0.5182328166

0.0516411681

0.5426649651

0.4973629257

Group 2

0.9442552933

0.7277129425

0.4319811615

0.9379836847

0.786503003

0.8191139316

0.9236880897

0.8155635942

0.7694358404

0.3217702059

0.9849161406

0.2586409871

0.7945434749

0.8179485709

Example: using the same initial conditions to both groups (e.g., 
same initial population).



Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Which Test to Use?
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Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Which Test to Use?
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Example: using different random seeds or number of runs.

Group 1

0.8036808732

0.1546026852

0.1507085019

0.9751186599

0.4602321477

0.0132238786

0.0175114877

0.9041741739

0.8697700955

0.676352134

0.5182328166

0.0516411681

0.5426649651

0.4973629257

Group 2

0.9442552933

0.7277129425

0.4319811615

0.9379836847

0.786503003

0.8191139316

0.9236880897

0.8155635942

0.7694358404

0.3217702059



Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Which Test to Use?
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Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Which Test to Use?

41

Similar idea for n groups.



Data Distribution 2 groups n groups (n>2)

Parametric
(normality)

Unpaired
(independent) Unpaired t-test ANOVA

Paired
(related) Paired t-test ANOVA

Non-parametric 
(no normality)

Unpaired
(independent)

Wilcoxon rank-sum test = 
Mann–Whitney U test Kruskal-Wallist test

Paired
(related) Wilcoxon signed-rank test Friedman test

Which Test to Use?
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Paired tests use more information, being more powerful (i.e., better 
at detecting significant differences).



Statistical Hypothesis Tests
1. Decide what to compare and formulate hypothesis. 

2. Choose appropriate statistical hypothesis test. 

3. Run the statistical hypothesis test to check whether 
hypothesis is or is not rejected.
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Test Output
• The output of the test is a numerical value referred to as test statistic, 

used to decide whether or not to reject H0.  
• H0: Group 1 = Group 2  
• H1: Group 1 ≠ Group 2 
• Not rejecting H0 means that no statistically significant 

difference has been found between groups 1 and 2. 
• Rejecting H0 means that there is statistically significant 

difference between groups 1 and 2, i.e., unlikely that the different 
values in groups 1 and 2 have occurred purely by change. 

• Once we know they are different, we can look at the medians to 
gain an insight into which of the groups is better. 

• We normally compare the test statistic to some threshold value to decide 
whether or not to reject H0. 

• The threshold value depends on the test being used.
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Test Output
• P-values are usually included in the test output and are easier to 

interpret and use. 

• Once we have the p-value, we can decide whether or not to reject 
H0 without having to look for thresholds specific to the 
corresponding statistical test. 

• Estimated probability of observing a given test statistic assuming 
that H0 is true. 
• If the p-value is high, this means that the probability of 

observing the given test statistic when H0 is true is high. So, 
should we reject or not reject H0?
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Test Output
• P-values are usually included in the test output and are easier to 

interpret and use. 

• Once we have the p-value, we can decide whether or not to reject 
H0 without having to look for thresholds specific to the 
corresponding statistical test. 

• Estimated probability of observing a given test statistic assuming 
that H0 is true. 
• If the p-value is high, this means that the probability of 

observing the given test statistic when H0 is true is high. So, we 
do not reject H0. 

• If the p-value is low, this means that the probability of observing 
the given test statistic when H0 is true is low. So, we reject H0.
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Rejecting or Not Rejecting 
H0

• We want small p-values for rejecting H0. 

• We set a threshold (level of significance) on how small the p-
values should be for rejecting H0. 

• Usually, level of significance is set to 0.05. 
• If p-value ≤ 0.05, we reject H0.
• If p-value > 0.05, we do not reject H0.

• Level of confidence= 1 - level of significance. 

• For critical applications, people may use level of significance 
of 0.01.
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R
• Programming language for statistical computing. 

• Can be used to run statistical tests.
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Reading 
Observations

• You can enter observations manually, 
or you can load observations from 
a .csv table. E.g.: 
• observation = read.csv('/
Users/llm11/Desktop/
observations.csv', header 
= TRUE, sep = ",")

• For help with a command: 
• help(command)

49

Group 1,Group 2 
0.803680873,0.944255293 
0.154602685,0.727712943 
0.150708502,0.431981162 
0.97511866,0.937983685 
0.460232148,0.786503003 
0.013223879,0.819113932 
0.017511488,0.92368809 
0.904174174,0.815563594 
0.869770096,0.76943584 
0.676352134,0.321770206 
0.518232817,0.984916141 
0.051641168,0.258640987 
0.542664965,0.794543475 
0.497362926,0.817948571 
0.486607913,0.413216708 
0.218745577,0.591558823 
0.843827421,0.593674664 
0.264400949,0.438692375 
0.256434446,0.743990941 
0.079121486,0.795106819 
0.285609383,0.331450863 
0.379775917,0.9218094 
0.59789627,0.750849697 
0.08605325,0.13729544 
0.2860286,0.12517536 
0.277279003,0.785829481 
0.728984666,0.459297733 
0.381243886,0.158332721 
0.114495351,0.403745207 
0.71283282,0.807401962



Accessing Observations
• observation[1,2] 
• observation[,2] 
• observation[1,] 

• You can type observation[1,2], 
observation[,2] and observation[1,] 
in R to see their content.
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Group 1 Group 2

0.8036808732 0.9442552933
0.1546026852 0.7277129425
0.1507085019 0.4319811615
0.9751186599 0.9379836847
0.4602321477 0.786503003
0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
0.8697700955 0.7694358404

0.676352134 0.3217702059
0.5182328166 0.9849161406
0.0516411681 0.2586409871
0.5426649651 0.7945434749
0.4973629257 0.8179485709
0.4866079125 0.4132167082
0.2187455767 0.5915588229
0.8438274211 0.5936746635
0.2644009485 0.4386923753

0.256434446 0.743990941
0.0791214858 0.7951068189
0.2856093827 0.3314508633
0.3797759169 0.9218094004
0.5978962695 0.7508496968
0.0860532501 0.1372954398
0.2860286001 0.1251753599
0.2772790031 0.7858294814
0.7289846656 0.4592977329
0.3812438862 0.1583327209

0.114495351 0.4037452065
0.7128328204 0.8074019616



• observation[1,2] —> take the 
observation from the first row and 
second column 
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Group 1 Group 2

0.8036808732 0.9442552933
0.1546026852 0.7277129425
0.1507085019 0.4319811615
0.9751186599 0.9379836847
0.4602321477 0.786503003
0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
0.8697700955 0.7694358404

0.676352134 0.3217702059
0.5182328166 0.9849161406
0.0516411681 0.2586409871
0.5426649651 0.7945434749
0.4973629257 0.8179485709
0.4866079125 0.4132167082
0.2187455767 0.5915588229
0.8438274211 0.5936746635
0.2644009485 0.4386923753

0.256434446 0.743990941
0.0791214858 0.7951068189
0.2856093827 0.3314508633
0.3797759169 0.9218094004
0.5978962695 0.7508496968
0.0860532501 0.1372954398
0.2860286001 0.1251753599
0.2772790031 0.7858294814
0.7289846656 0.4592977329
0.3812438862 0.1583327209

0.114495351 0.4037452065
0.7128328204 0.8074019616

Accessing Observations



• observation[1,2] —> take the 
observation from the first row and 
second column 

• observation[,2] —> 
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Group 1 Group 2

0.8036808732 0.9442552933
0.1546026852 0.7277129425
0.1507085019 0.4319811615
0.9751186599 0.9379836847
0.4602321477 0.786503003
0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
0.8697700955 0.7694358404

0.676352134 0.3217702059
0.5182328166 0.9849161406
0.0516411681 0.2586409871
0.5426649651 0.7945434749
0.4973629257 0.8179485709
0.4866079125 0.4132167082
0.2187455767 0.5915588229
0.8438274211 0.5936746635
0.2644009485 0.4386923753

0.256434446 0.743990941
0.0791214858 0.7951068189
0.2856093827 0.3314508633
0.3797759169 0.9218094004
0.5978962695 0.7508496968
0.0860532501 0.1372954398
0.2860286001 0.1251753599
0.2772790031 0.7858294814
0.7289846656 0.4592977329
0.3812438862 0.1583327209

0.114495351 0.4037452065
0.7128328204 0.8074019616

Accessing Observations



• observation[1,2] —> take the 
observation from the first row and 
second column 

• observation[,2] —> take all the 
observations from the second 
column

53

Group 1 Group 2

0.8036808732 0.9442552933
0.1546026852 0.7277129425
0.1507085019 0.4319811615
0.9751186599 0.9379836847
0.4602321477 0.786503003
0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
0.8697700955 0.7694358404

0.676352134 0.3217702059
0.5182328166 0.9849161406
0.0516411681 0.2586409871
0.5426649651 0.7945434749
0.4973629257 0.8179485709
0.4866079125 0.4132167082
0.2187455767 0.5915588229
0.8438274211 0.5936746635
0.2644009485 0.4386923753

0.256434446 0.743990941
0.0791214858 0.7951068189
0.2856093827 0.3314508633
0.3797759169 0.9218094004
0.5978962695 0.7508496968
0.0860532501 0.1372954398
0.2860286001 0.1251753599
0.2772790031 0.7858294814
0.7289846656 0.4592977329
0.3812438862 0.1583327209

0.114495351 0.4037452065
0.7128328204 0.8074019616

Accessing Observations



• observation[1,2] —> take the 
observation from the first row and 
second column 

• observation[,2] —> take all the 
observations from the second 
column 

• observation[1,] —> ?
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Group 1 Group 2

0.8036808732 0.9442552933
0.1546026852 0.7277129425
0.1507085019 0.4319811615
0.9751186599 0.9379836847
0.4602321477 0.786503003
0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
0.8697700955 0.7694358404

0.676352134 0.3217702059
0.5182328166 0.9849161406
0.0516411681 0.2586409871
0.5426649651 0.7945434749
0.4973629257 0.8179485709
0.4866079125 0.4132167082
0.2187455767 0.5915588229
0.8438274211 0.5936746635
0.2644009485 0.4386923753

0.256434446 0.743990941
0.0791214858 0.7951068189
0.2856093827 0.3314508633
0.3797759169 0.9218094004
0.5978962695 0.7508496968
0.0860532501 0.1372954398
0.2860286001 0.1251753599
0.2772790031 0.7858294814
0.7289846656 0.4592977329
0.3812438862 0.1583327209

0.114495351 0.4037452065
0.7128328204 0.8074019616

Accessing Observations



• observation[1,2] —> take the 
observation from the first row and 
second column 

• observation[,2] —> take all the 
observations from the second 
column 

• observation[1,] —> take all the 
observations from the first row
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Group 1 Group 2

0.8036808732 0.9442552933
0.1546026852 0.7277129425
0.1507085019 0.4319811615
0.9751186599 0.9379836847
0.4602321477 0.786503003
0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
0.8697700955 0.7694358404

0.676352134 0.3217702059
0.5182328166 0.9849161406
0.0516411681 0.2586409871
0.5426649651 0.7945434749
0.4973629257 0.8179485709
0.4866079125 0.4132167082
0.2187455767 0.5915588229
0.8438274211 0.5936746635
0.2644009485 0.4386923753

0.256434446 0.743990941
0.0791214858 0.7951068189
0.2856093827 0.3314508633
0.3797759169 0.9218094004
0.5978962695 0.7508496968
0.0860532501 0.1372954398
0.2860286001 0.1251753599
0.2772790031 0.7858294814
0.7289846656 0.4592977329
0.3812438862 0.1583327209

0.114495351 0.4037452065
0.7128328204 0.8074019616

Accessing Observations



Accessing Observations
• Advantage of languages such as R and 

Matlab: 
• No need for a loop to get all observations of 

a given column or row when using the 
notation explained in the previous slide. 

• Matrix operations are easier than in 
languages such as Java or C++.  
• A %*% B 

• These languages offer lots of packages with 
the implementation of methods frequently 
used by mathematicians and statisticians. 

• In our case, we use the statistical tests. 

• Potential disadvantages: 
• No compiler — bugs found at runtime. 
• Slow…….
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Group 1 Group 2

0.8036808732 0.9442552933
0.1546026852 0.7277129425
0.1507085019 0.4319811615
0.9751186599 0.9379836847
0.4602321477 0.786503003
0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
0.8697700955 0.7694358404

0.676352134 0.3217702059
0.5182328166 0.9849161406
0.0516411681 0.2586409871
0.5426649651 0.7945434749
0.4973629257 0.8179485709
0.4866079125 0.4132167082
0.2187455767 0.5915588229
0.8438274211 0.5936746635
0.2644009485 0.4386923753

0.256434446 0.743990941
0.0791214858 0.7951068189
0.2856093827 0.3314508633
0.3797759169 0.9218094004
0.5978962695 0.7508496968
0.0860532501 0.1372954398
0.2860286001 0.1251753599
0.2772790031 0.7858294814
0.7289846656 0.4592977329
0.3812438862 0.1583327209

0.114495351 0.4037452065
0.7128328204 0.8074019616



Two-Tailed Wilcoxon Rank-
Sum in R

wilcox.test(x, y, alternative = ”two.sided”, paired = FALSE, 
conf.level = 0.95)

• Example: 
• H0: Group 1 = Group 2  
• H1: Group 1 ≠ Group 2 
• Level of significance = 0.05 

• wilcox.test(observation[,1],observation[,2],alternative 
= "two.sided",paired=FALSE, conf.level = 0.95)

• p-value: 0.007647 ≤ 0.05 (reject H0)

• Groups 1 and 2 are statistically significantly different. 

• Median(group 1) = 0.3805, Median(group 2) = 0.7474

57



Two-Tailed Wilcoxon Sign 
Rank in R
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wilcox.test(x, y, alternative = ”two.sided”, paired = TRUE, conf.level 
= 0.95)

• Example: 
• H0: Group 1 = Group 2  

H1: Group 1 ≠ Group 2 
Level of significance = 0.05 

• wilcox.test(observation[,1],observation[,2],alternative 
= "two.sided",paired=TRUE, conf.level = 0.95)

• p-value: 0.002766 ≤ 0.05 (reject H0)

• Groups 1 and 2 are statistically significantly different.

• Median(group 1) = 0.3805, Median(group 2) = 0.7474



Completely Equal 
Pairs of Observations

• observation = read.csv('/Users/
llm11/Desktop/
observations_null.csv', header 
= TRUE, sep = ",")

• wilcox.test(observation[,
1],observation[,2],alternative 
= "two.sided",paired=TRUE, 
conf.level = 0.95)

• p-value = NA
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Group 1,Group 2 
1,1 
2,2 
3,3 
4,4 
5,5 
6,6 
7,7 
8,8 
9,9 
10,10 
11,11 
12,12 
13,13 
14,14 
15,15 
16,16 
17,17 
18,18 
19,19 
20,20 
21,21 
22,22 
23,23 
24,24 
25,25 
26,26 
27,27 
28,28 
29,29 
30,30



Further Reading
• Check the following R help pages: 

• help(read.csv) 
• help(wilcox.test) 

• Background information: 
• http://www.biostathandbook.com/wilcoxonsignedrank.html  
• http://www.biostathandbook.com/

kruskalwallis.html#mannwhitney 
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Tomorrow:  
lecture 9am GP LTA 
lab session 10am

http://www.biostathandbook.com/wilcoxonsignedrank.html
http://www.biostathandbook.com/kruskalwallis.html#mannwhitney
http://www.biostathandbook.com/kruskalwallis.html#mannwhitney

