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Announcements

Spare handouts in my office!
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Overview
• What is a constraint? 

• How to deal with constraints?
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What is a Constraint?

A condition that must be satisfied by a solution.

4



What is a Constraint?
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• Optimisation problem: 
• Maximise / minimise f(x), where x is the design 

variable 
• Subject to: 

• gi(x) ≤ 0  , where i=1,…,n                               
[inequality constraints] 

• hj(x) = 0, where j=1,…,p                                 
[equality constraints]

We will refer to both inequality and equality constraints by  
φi(x), i = 1,…,m, where m = n + p is the total number of constraints.
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A solution that satisfies all constraints is called feasible.  

A solution that does not satisfy one or more constraints is 
called infeasible.



Example
• Consider the following problem: 

• You need to load a lorry with products. The maximum total 
weight of products that the lorry can stand is W. 

• You have N products that can be loaded, and each product i 
has a weight wi, and a profit pi. 

• You would like to decide which products to load so as to 
maximise the total profit of loaded products.
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• Problem formulation: 
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1 

represents loaded. 
• Objective function:  

• Constraint:

Example
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f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i)  W

vi  pi    

Profit of product i

vi wi     

v



• Problem formulation: 
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1 

represents loaded. 
• Objective function:  

• Constraint:

Example
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f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i)  Wvi wi     

vi  pi    
0 if product i is not loaded 
1 otherwise

v



• Problem formulation: 
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1 

represents loaded. 
• Objective function:  

• Constraint:

Example
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f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i)  Wvi wi     

vi  pi    

Weight of product i

Total profit of loaded 
products

v



• Problem formulation: 
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1 

represents loaded. 
• Objective function:  

• Constraint:

Example
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f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i)  Wvi wi     

vi  pi    

Total weight of loaded 
products

v

NX

i=1

v(i)w(i)  Wvi wi   - W ≤ 0equivalent to:( ) 
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Constraints in Real World Problems
Many real world problems have constraints.
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[Video posted by the Optimisation and Logistics group from the University of 
Adelaide: http://cs.adelaide.edu.au/~optlog/research/energy.php]

http://cs.adelaide.edu.au/~optlog/research/energy.php


Optimising Wind Farms
• Design variable: [(x1,y1),(x2,y2),…,(xN,yN)] location of N 

turbines, xi ∈ R, yi ∈ R. 

• Objective: maximise total power output. 

• Constraints: for all i,j ∈ {1,…,N} where i ≠ j: 

• xi ≥ 0 

• xi ≤ w   

• yi ≥ 0 

• yi ≤ l    

• distance((xi,yi),(xj,yj)) ≥ C’ 
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w

l

0

dequivalent to: xi - w ≤ 0

yi - l ≤ 0

distance((xi,yi),(xj,yj)) - C’ ≥ 0 -distance((xi,yi),(xj,yj)) + C’ ≤ 0

-yi ≤ 0

-xi ≤ 0



Implicit Constraints
• Sometimes problem formulations account for constraints 

implicitly. 
• E.g.: 

Design variable: x ∈ Z 
Objective function: f(x) = x2    (to be maximised) 
Constraints: x ≥ -15 and x ≤ 15 

or  

Design variable: x ∈ {-15,-14,…,0,1,…,15} 
Objective function: f(x) = x2    (to be maximised) 
Constraints: none?
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Implicit Constraints
• Our optimisation algorithms must be designed so that they 

can handle constraints, no matter if they were implicitly or 
explicitly considered in the problem formulation.
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EA's Pseudocode
Evolutionary Algorithm 

1. Initialise population with random individuals 
2. Evaluate each individual (determine their fitness) 
3. Repeat (until a termination condition is satisfied) 

3.1 Select parents 
3.2 Recombine parents with probability Pc 
3.3 Mutate resulting offspring with probability Pm 
3.4 Evaluate offspring 
3.5 Select survivors for the next generation
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Constraints are not mentioned!



How to Deal with 
Constraints?

• Penalty functions. 

• Maintaining only feasible solutions based on special 
representation and genetic operators. 

• Separation of objectives and constraints. 

• Hybrid methods. 

• Novel approaches.
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How to Deal with 
Constraints?

• Penalty functions.

• Maintaining only feasible solutions based on special 
representation and genetic operators.

• Separation of objectives and constraints. 

• Hybrid methods. 

• Novel approaches.

19



How to Deal with 
Constraints?

• Penalty functions.

• Maintaining only feasible solutions based on special 
representation and genetic operators (recombination, 
mutation). 

• Separation of objectives and constraints. 

• Hybrid methods. 

• Novel approaches.
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Penalty Functions
• Most common approach. 

• Create a fitness function that considers both the objective 
and the constraint. 

• Problem formulation vs algorithm to solve the problem. 

• Infeasible solutions have their fitness penalised.
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fitness(x) = f(x) +- Q(x)

PenaltyActual  
objective



Penalty Functions
• Most common approach. 

• Create a fitness function that considers both the objective 
and the constraint. 

• Problem formulation vs algorithm to solve the problem. 

• Infeasible solutions have their fitness penalised.
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fitness(x) =      {f(x)      if x is feasible

+-Q(x)     otherwise
Penalty

Actual objective



Penalty Functions
• Death penalty 

• Penalty based on the level of infeasibility
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Death Penalty
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Death Penalty
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Q(x) ={ 0    if solution is feasible

c           otherwise

very large positive constant 
making infeasible solutions 

worse than any feasible ones.

Assigns worse possible fitness to infeasible solutions.



Death Penalty
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fitness(x) = f(x) +- Q(x)

fitness(x) =      {f(x)      if x is feasible

+-Q(x)     otherwise

For maximisation problems, should we add or subtract Q(x)?

very large positive constant 
for infeasible solutions

Not usually 
computed for 

infeasible solutions
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fitness(x) = f(x) +- Q(x)

fitness(x) =      {f(x)      if x is feasible

+-Q(x)     otherwise

very large positive constant 
for infeasible solutions

For maximisation problems: use -Q(x)
For minimisation problems: use +Q(x)

Death Penalty
Not usually 

computed for 
infeasible solutions



Death Penalty
• Easy to apply. 

• Efficient: 
• No need to calculate fitness of infeasible solutions. 
• No need to calculate level of infeasibility. 

• Problem: 

• All infeasible solutions are considered equally bad.
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Death penalty offers no guidance towards feasibility.



Using Level of Infeasibility
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Q(x) =     
.c  φ(x)2

0  if x is feasible

otherwise
Very large positive constant

Violated constraint (squared){



Example for Lorry Problem

Q(x) =     

30

.

φ(v) = 
NX

i=1

v(i)w(i)vi wi   - W      

c  φ(x)2

0  if x is feasible

otherwise
Very large positive constant

Violated constraint (squared){
Example with 1 constraint

NX

i=1

v(i)w(i)  Wvi wi   - W ≤ 0( ) ) ( 



Example for Lorry Problem
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.

The more overloaded the lorry is, 
the more penalty it gets.Example with 1 constraint

Q(x) =     
c  φ(x)2

0  if x is feasible

otherwise{

φ(v) = 
NX

i=1

v(i)w(i)vi wi   - W      
NX

i=1

v(i)w(i)  Wvi wi   - W ≤ 0( ) ) ( 



Example for Lorry Problem
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fitness(x) = f(x) +- Q(x)

fitness(x) =      {f(x)      if x is feasible

+-Q(x)     otherwise

Should we add or subtract Q(x)?

very large positive value 
for overloaded lorries

maximise

maximise

Subtract



Using Level of Infeasibility

Q(x) =     
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.c  [φ1(x)2 + φ2(x)2 + … + φk(x)2]

0  if x is feasible

otherwise

If you have k violated constraints instead of 1:

{



Using Level of Infeasibility

• Less computationally efficient than death penalty, but  

• may be able to guide the search from infeasible to feasible 
solutions.
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Penalty Functions
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Easy or relatively easy to implement.

May not work well for problems where it is extremely 
difficult to find a single feasible solution.



How to Deal with 
Constraints?

• Penalty functions. 

• Maintaining only feasible solutions based on special 
representation and genetic operators.

• Separation of objectives and constraints. 

• Hybrid methods. 

• Novel approaches.
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Special Representation and 
Genetic Operators

• Restrictive representation and variation (mutation / 
recombination) operators 

• Decoding operator 

• Repair operator
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Restrictive Representation 
and Variation Operators

• Representation and variation operators that ensure the 
constraints to be satisfied by simplifying the search space. 
• Representation is used to restrict the search space. 

• Operators are used to preserve feasibility.
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Restrictive Representation 
and Variation Operators

• Example:  
• If an integer variable must be between 0 and 15, set a 

binary representation to use 4 bits. 
• Use of permutations as the representation for traveling 

salesman problem, design operators that produce 
offspring that are also permutations. 

• Care must be taken not to oversimplify the search space. 
• This could result in optimal solutions being eliminated from 

the search space.
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Decoding Operators
• Decoding operation gives instructions on how to create a feasible 

phenotype from a possibly infeasible genotype. 

• Does not change the genotype. 

• Example:  
• Once the maximum weight of the lorry is reached, stop loading 

products. 

• Depending on the design, it is more difficult to guide the search towards 
optimal solutions. 
• E.g., parts of the genotype may be bad, but the individual could still be 

evaluated as good. 
• E.g., parts of the genotype may be unused, and any mutation / 

recombination affecting those parts would be useless. 

• Depending on the design, it may be computationally expensive.
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Repair Operator
• Fix an infeasible genotype to make it feasible. 

• Example:  
• If the maximum loaded weight is exceeded, delete less 

profitable products from the genotype until the maximum 
weight is satisfied. 

• Depending on the problem, it may harm the evolutionary process: 
• It may destroy good building blocks of the parent solutions 

carried in the children. 
• Greediness might cause algorithms to get stuck in local 

optima. 
• E.g., one of the less profitable products may be a good 

product to have in the solution, depending on its weight.
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Special Representation and 
Operators
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Work well for problems where it is extremely difficult to 
find a single feasible solution.

May be very difficult to design.



Further Reading

Carlos Coello, A Survey of Constraint Handling Techniques used 
with Evolutionary Algorithms, Laboratorio Nacional de 
Informática Avanzada, 1999. Read sections 1-3, section 4 until 
the end of section 4.1, and section 4.8.
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http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.43.9288 

Reminder: lab session today at 3pm!

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.9288
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.9288

