
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Constraints Handling

Lecture 06
Image from: http://images.fineartamerica.com/images-medium-large/restriction-ashish-kumar-rudra.jpg

http://images.fineartamerica.com/images-medium-large/restriction-ashish-kumar-rudra.jpg

Announcements

Spare handouts in my office!

2

Overview
• What is a constraint?

• How to deal with constraints?

3

What is a Constraint?

A condition that must be satisfied by a solution.

4

What is a Constraint?

5

• Optimisation problem:
• Maximise / minimise f(x), where x is the design

variable
• Subject to:

• gi(x) ≤ 0 , where i=1,…,n
[inequality constraints]

• hj(x) = 0, where j=1,…,p
[equality constraints]

We will refer to both inequality and equality constraints by
φi(x), i = 1,…,m, where m = n + p is the total number of constraints.

6

A solution that satisfies all constraints is called feasible.

A solution that does not satisfy one or more constraints is
called infeasible.

Example
• Consider the following problem:

• You need to load a lorry with products. The maximum total
weight of products that the lorry can stand is W.

• You have N products that can be loaded, and each product i
has a weight wi, and a profit pi.

• You would like to decide which products to load so as to
maximise the total profit of loaded products.

7

• Problem formulation:
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1

represents loaded.
• Objective function:

• Constraint:

Example

8

f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i) W

vi pi

Profit of product i

vi wi

v

• Problem formulation:
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1

represents loaded.
• Objective function:

• Constraint:

Example

9

f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i) Wvi wi

vi pi
0 if product i is not loaded
1 otherwise

v

• Problem formulation:
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1

represents loaded.
• Objective function:

• Constraint:

Example

10

f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i) Wvi wi

vi pi

Weight of product i

Total profit of loaded
products

v

• Problem formulation:
• Design variable: v ∈ {0,1}N, where 0 represents not loaded and 1

represents loaded.
• Objective function:

• Constraint:

Example

11

f(v) =
NX

i=1

v(i)p(i) (to be maximised).

NX

i=1

v(i)w(i) Wvi wi

vi pi

Total weight of loaded
products

v

NX

i=1

v(i)w(i) Wvi wi - W ≤ 0equivalent to:()

12

Image from: https://s.yimg.com/pw/images/spaceout.gif

https://s.yimg.com/pw/images/spaceout.gif

Constraints in Real World Problems
Many real world problems have constraints.

13

[Video posted by the Optimisation and Logistics group from the University of
Adelaide: http://cs.adelaide.edu.au/~optlog/research/energy.php]

http://cs.adelaide.edu.au/~optlog/research/energy.php

Optimising Wind Farms
• Design variable: [(x1,y1),(x2,y2),…,(xN,yN)] location of N

turbines, xi ∈ R, yi ∈ R.

• Objective: maximise total power output.

• Constraints: for all i,j ∈ {1,…,N} where i ≠ j:

• xi ≥ 0

• xi ≤ w

• yi ≥ 0

• yi ≤ l

• distance((xi,yi),(xj,yj)) ≥ C’
14

w

l

0

dequivalent to: xi - w ≤ 0

yi - l ≤ 0

distance((xi,yi),(xj,yj)) - C’ ≥ 0 -distance((xi,yi),(xj,yj)) + C’ ≤ 0

-yi ≤ 0

-xi ≤ 0

Implicit Constraints
• Sometimes problem formulations account for constraints

implicitly.
• E.g.:

Design variable: x ∈ Z
Objective function: f(x) = x2 (to be maximised)
Constraints: x ≥ -15 and x ≤ 15

or

Design variable: x ∈ {-15,-14,…,0,1,…,15}
Objective function: f(x) = x2 (to be maximised)
Constraints: none?

15

Implicit Constraints
• Our optimisation algorithms must be designed so that they

can handle constraints, no matter if they were implicitly or
explicitly considered in the problem formulation.

16

EA's Pseudocode
Evolutionary Algorithm

1. Initialise population with random individuals
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

17

Constraints are not mentioned!

How to Deal with
Constraints?

• Penalty functions.

• Maintaining only feasible solutions based on special
representation and genetic operators.

• Separation of objectives and constraints.

• Hybrid methods.

• Novel approaches.

18

How to Deal with
Constraints?

• Penalty functions.

• Maintaining only feasible solutions based on special
representation and genetic operators.

• Separation of objectives and constraints.

• Hybrid methods.

• Novel approaches.

19

How to Deal with
Constraints?

• Penalty functions.

• Maintaining only feasible solutions based on special
representation and genetic operators (recombination,
mutation).

• Separation of objectives and constraints.

• Hybrid methods.

• Novel approaches.

20

Penalty Functions
• Most common approach.

• Create a fitness function that considers both the objective
and the constraint.

• Problem formulation vs algorithm to solve the problem.

• Infeasible solutions have their fitness penalised.

21

fitness(x) = f(x) +- Q(x)

PenaltyActual
objective

Penalty Functions
• Most common approach.

• Create a fitness function that considers both the objective
and the constraint.

• Problem formulation vs algorithm to solve the problem.

• Infeasible solutions have their fitness penalised.

22

fitness(x) = {f(x) if x is feasible

+-Q(x) otherwise
Penalty

Actual objective

Penalty Functions
• Death penalty

• Penalty based on the level of infeasibility

23

24

Image from: http://globe-views.com/dcim/dreams/death/death-02.jpg

Death Penalty

http://globe-views.com/dcim/dreams/death/death-02.jpg

Death Penalty

25

Q(x) ={ 0 if solution is feasible

c otherwise

very large positive constant
making infeasible solutions

worse than any feasible ones.

Assigns worse possible fitness to infeasible solutions.

Death Penalty

26

fitness(x) = f(x) +- Q(x)

fitness(x) = {f(x) if x is feasible

+-Q(x) otherwise

For maximisation problems, should we add or subtract Q(x)?

very large positive constant
for infeasible solutions

Not usually
computed for

infeasible solutions

27

fitness(x) = f(x) +- Q(x)

fitness(x) = {f(x) if x is feasible

+-Q(x) otherwise

very large positive constant
for infeasible solutions

For maximisation problems: use -Q(x)
For minimisation problems: use +Q(x)

Death Penalty
Not usually

computed for
infeasible solutions

Death Penalty
• Easy to apply.

• Efficient:
• No need to calculate fitness of infeasible solutions.
• No need to calculate level of infeasibility.

• Problem:

• All infeasible solutions are considered equally bad.

28

Death penalty offers no guidance towards feasibility.

Using Level of Infeasibility

29

Q(x) =
.c φ(x)2

0 if x is feasible

otherwise
Very large positive constant

Violated constraint (squared){

Example for Lorry Problem

Q(x) =

30

.

φ(v) =
NX

i=1

v(i)w(i)vi wi - W

c φ(x)2

0 if x is feasible

otherwise
Very large positive constant

Violated constraint (squared){
Example with 1 constraint

NX

i=1

v(i)w(i) Wvi wi - W ≤ 0()) (

Example for Lorry Problem

31

.

The more overloaded the lorry is,
the more penalty it gets.Example with 1 constraint

Q(x) =
c φ(x)2

0 if x is feasible

otherwise{

φ(v) =
NX

i=1

v(i)w(i)vi wi - W
NX

i=1

v(i)w(i) Wvi wi - W ≤ 0()) (

Example for Lorry Problem

32

fitness(x) = f(x) +- Q(x)

fitness(x) = {f(x) if x is feasible

+-Q(x) otherwise

Should we add or subtract Q(x)?

very large positive value
for overloaded lorries

maximise

maximise

Subtract

Using Level of Infeasibility

Q(x) =

33

.c [φ1(x)2 + φ2(x)2 + … + φk(x)2]

0 if x is feasible

otherwise

If you have k violated constraints instead of 1:

{

Using Level of Infeasibility

• Less computationally efficient than death penalty, but

• may be able to guide the search from infeasible to feasible
solutions.

34

Penalty Functions

35

Easy or relatively easy to implement.

May not work well for problems where it is extremely
difficult to find a single feasible solution.

How to Deal with
Constraints?

• Penalty functions.

• Maintaining only feasible solutions based on special
representation and genetic operators.

• Separation of objectives and constraints.

• Hybrid methods.

• Novel approaches.

36

Special Representation and
Genetic Operators

• Restrictive representation and variation (mutation /
recombination) operators

• Decoding operator

• Repair operator

37

Restrictive Representation
and Variation Operators

• Representation and variation operators that ensure the
constraints to be satisfied by simplifying the search space.
• Representation is used to restrict the search space.

• Operators are used to preserve feasibility.

38

Restrictive Representation
and Variation Operators

• Example:
• If an integer variable must be between 0 and 15, set a

binary representation to use 4 bits.
• Use of permutations as the representation for traveling

salesman problem, design operators that produce
offspring that are also permutations.

• Care must be taken not to oversimplify the search space.
• This could result in optimal solutions being eliminated from

the search space.

39

Decoding Operators
• Decoding operation gives instructions on how to create a feasible

phenotype from a possibly infeasible genotype.

• Does not change the genotype.

• Example:
• Once the maximum weight of the lorry is reached, stop loading

products.

• Depending on the design, it is more difficult to guide the search towards
optimal solutions.
• E.g., parts of the genotype may be bad, but the individual could still be

evaluated as good.
• E.g., parts of the genotype may be unused, and any mutation /

recombination affecting those parts would be useless.

• Depending on the design, it may be computationally expensive.
40

Repair Operator
• Fix an infeasible genotype to make it feasible.

• Example:
• If the maximum loaded weight is exceeded, delete less

profitable products from the genotype until the maximum
weight is satisfied.

• Depending on the problem, it may harm the evolutionary process:
• It may destroy good building blocks of the parent solutions

carried in the children.
• Greediness might cause algorithms to get stuck in local

optima.
• E.g., one of the less profitable products may be a good

product to have in the solution, depending on its weight.

41

Special Representation and
Operators

42

Work well for problems where it is extremely difficult to
find a single feasible solution.

May be very difficult to design.

Further Reading

Carlos Coello, A Survey of Constraint Handling Techniques used
with Evolutionary Algorithms, Laboratorio Nacional de
Informática Avanzada, 1999. Read sections 1-3, section 4 until
the end of section 4.1, and section 4.8.

43

http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.43.9288

Reminder: lab session today at 3pm!

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.9288
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.9288

