
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Evolutionary Algorithms — Part II

Lecture 05
Image from: http://uioslonorway.files.wordpress.com/2014/05/dna.jpg

1 2
7 3
1 0
1 4
9 0

1 0 0 1 1 0 1

Overview — Previous
Lecture

Some concepts from natural evolution.

Evolutionary algorithms.

• Representation.

• Initialisation of the population.

• Determining the fitness of individuals.

2

Overview

3

Evolutionary Algorithm
1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

Overview — Today’s Lecture

Evolutionary Algorithm
1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

4

EA's Pseudocode

5

Evolutionary Algorithm
1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

Parent Selection

6

• Usually probabilistic:
• Better fit solutions more likely to become parents than less fit

solutions.
• Even the worst in current population usually has non-zero

probability of becoming a parent.

• This stochastic nature can help to escape from local optima.

Image from: https://lh6.googleusercontent.com/-wCEtlOfs4II/TXjes2fSfaI/AAAAAAAABEg/7yOX_b1D2Ho/s1600/pavoesMenor.jpg

https://lh6.googleusercontent.com/-wCEtlOfs4II/TXjes2fSfaI/AAAAAAAABEg/7yOX_b1D2Ho/s1600/pavoesMenor.jpg

Parent Selection
Mechanisms

• Roulette Wheel

• Tournament Selection

• Ranking Selection

7

Parent Selection
Mechanisms

• Roulette Wheel

• Tournament Selection

• Ranking Selection

8

Roulette Wheel Parents
Selection

9

• Probability of an individual to be selected as parent is proportional to
its fitness. Assuming maximisation of positive fitnesses: f(x) / Σf(x).

• Example:
• Problem: maximise f(x) = x2, x ∈ {-15,-14,…,0,1,2,…,15}
• Representation: {0,1}5.

Genotypes Phenotypes Fitnesses Probability
00011 3 9 9/179 = 0.0503
01000 8 64 64/179 = 0.3575
10101 -5 25 25/179 = 0.1397
01001 9 81 81/179 = 0.4525
Sum (Σ): 179 1

10

Roulette Wheel Parents
Selection — Selecting 4 Parents

45%

14%

36%

5%

00011 01000
10101 01001

45%

14%

36%

5%

00011 01000
10101 01001

45%

14%

36%

5%

00011 01000
10101 01001

45%

14%

36%

5%

00011 01000
10101 01001

Randomly
selected
Parents:
01001
10101
01000
01000

Genotypes Phenotypes Fitnesses Probability
00011 3 9 9/179 = 0.0503
01000 8 64 64/179 = 0.3575
10101 -5 25 25/179 = 0.1397
01001 9 81 81/179 = 0.4525
Sum (Σ): 179 1

Problems of Roulette Wheel
Parents Selection

• Outstanding individuals may take over the population very
quickly, causing premature convergence.

• When fitness values are very close to each other, there is
almost no selection pressure.

• The mechanism behaves differently on transposed versions of
the same function.

11

Problems of Roulette Wheel
Parents Selection

12

Image from Eiben and Smith’s slides.

Tournament Selection
• Informal Procedure:

• Pick k individuals at random then select the best of these.
• Repeat to select more individuals.

13

Genotypes Phenotypes Fitnesses

00011 3 9

01000 8 64

10101 -5 25

01001 9 81

E.g.: k = 2, assuming maximisation

Parent: 01001

How Many Parents to
Select?

• This is a design choice of the algorithm.

• Frequently, if your population size is S, you choose the
number of parents so as to produce S children.

• E.g., if each pair of parents can produce 2 children by
recombination, you could select S parents to produce S
children.

14

EA's Pseudocode
Evolutionary Algorithm

1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

15

Recombination
• Creates offspring based on parent individuals.

• We have a certain probability that recombination between parents
will occur. If it doesn’t occur, we clone the parents.

• Most offspring may be worse or similar to the parents, because
the choice of what genes from what parent goes to the offspring is
random.

• Hope: some offspring are better, by combining the good elements
of the genotype of each parent.

• Principle used for millennia by breeders for plants and livestock.

• Genetic algorithms are evolutionary algorithms that give high
emphasis to recombination (probability is typically in [0.6,0.9]).

16

Recombination Operators for Binary,
Integer and Floating Point Vectors

• 1-Point Crossover

• Multi-parent recombination

• Uniform Crossover

• N-Point Crossover

• …

17

PS: the term crossover is usually used for recombination involving 2 parents.

Recombination Operators for Binary,
Integer and Floating Point Vectors

• 1-Point Crossover

• Multi-parent recombination

• Uniform Crossover

• N-Point Crossover

• …

18

PS: the term crossover is usually used for recombination involving 2 parents.

1-Point Crossover
• Select a random point.
• Split parents at this point.
• Exchange tails to create children.
• Example:

19

0 1 0 0 1
1 0 1 0 1

0 1 0 0 0
0 1 0 0 0

1 0 1
0 0 1

0 1 0
0 1 0

Parents

Offspring

30%

70%
Crossover
No crossover

30%

70%
Crossover
No crossover

0 1
1 0

0 0
0 0

0 1 0 0 1
1 0 1 0 1

30%

70%
Crossover
No crossover

0 1 0 0 1
1 0 1 0 1

1-Point Crossover

20

0 1 0 0 1
1 0 1 0 1

1 0 1
0 0 1

Parents

Offspring 0 1
1 0

• 1-point crossover: • 1-point crossover can also be used
for integer and floating point
vectors.

Problem of 1-Point
Crossover

• Positional bias:

• Performance depends on the order that components of the
design variable occur in the representation.

• More likely to keep together genes that are near each
other.

• Can never keep together genes from opposite ends of
vector.

• Can be exploited if we know about the structure of our
problem, but this is not usually the case.

21

Multi-Parent Recombination
• Multi-parent recombination.

• E.g.:

22

Image from Channel 4 animation.

23

[Youtube video posted by CCTV News (Feb 2015): https://youtu.be/
GcubrH6HRnk]

https://youtu.be/GcubrH6HRnk
https://youtu.be/GcubrH6HRnk

Diagonal “Crossover”
• For k parents, select k-1 crossover points.
• Create k children diagonally.
• Alternatively, create only the first of the children.

24

1 0 0 1 0 0 0 1
0 1 0 1 1 0 1 1
0 0 1 1 1 0 1 0

1 0 0 1 1 0 1 0
0 1 1 1 1 0 0 1
0 0 0 1 0 0 1 1

Parents

Offspring

Other Recombination Operators
for Floating-Point Representation

• Intermediate recombination
• Simple average between parents

25

10.2, 5.6, 3.4
 5.2, 4.4, 10.4 7.7, 5.0, 6.9

EA's Pseudocode
Evolutionary Algorithm

1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

26

Mutation
• Acts on one genotype and generates another.

• Typically causes small changes.

• Randomness differentiates it from other unary heuristic operators.

• Can introduce traits that were originally inexistent in a population.

27

Image from: http://www.cheatsheet.com/wp-content/uploads/2014/01/Waterworld.jpg?

http://www.cheatsheet.com/wp-content/uploads/2014/01/Waterworld.jpg?7abf10

Bitwise Bit-Flipping Mutation
• Flip each gene (from 0 to 1 or vice-versa) with probability Pm.

• Pm is called mutation rate, and is typically in
 [1/pop_size, 1/chromosome_length].

• Example:

28

80%

20%
Mutation
No mutation

0 80%

20%
Mutation
No mutation

78%

22%
Mutation
No mutation

80%

20%
Mutation
No mutation

1 1 1

Before mutation

After mutation

0 1 1 0 1

1 80%

20%
Mutation
No mutation

Mutation for Integer
Representation

• Random Reset

• Creep Mutation

29

Random Reset
• More adequate for categorical design variables.

• E.g., design variable in {Toyota, Volkswagen, Fiat, Vauxhall, BMW,
Mercedes}.

• Pick a new value from the permissible set of values.

• Same probability for all possible values (discrete uniform distribution).

• E.g., let’s say that your design variable could take any value in {1,2,…,
6} in your integer representation.

30

1 2

1 5

equally likely to

Discrete Uniform Distribution

31

Pr
ob

ab
ilit

y

Values1 2 3 4 5 6

1/6

Creep Mutation
• More adequate for ordinal design variables.

• E.g., for the problem of maximising f(x) = x2, x ∈ {1,2,…,6}.

• Change the gene value to another value in the following way:
• Small changes should be more likely than bigger changes.

• Increases or reductions are equally likely.

• Pick the new value from a symmetric probability distribution centred
at the current value.

32

1 2
1 5

more likely

less likely

5 6
5 4

equally likely

Creep Mutation

33

Image from: https://upload.wikimedia.org/wikipedia/en/c/cc/Binomial_distribution_pdf.png

E.g., pick a value from a binomial
distribution, and subtract a certain

amount (the mean of the distribution)
to centre it at zero.

Binomial Distribution B(n,p)

Pr
ob

ab
ilit

y

Values

https://upload.wikimedia.org/wikipedia/en/c/cc/Binomial_distribution_pdf.png

Mutation for Floating Point
Representation

• Uniform

• Non-Uniform

34

Uniform Mutation for Floating
Point Representation

• Similar to random resetting.
• Take a new number among all possible numbers.
• Same probability for all numbers (uniform distribution).
• E.g., let’s say your design variable can take any value in

[-20,20] in your representation.

35

5.2 5.5

5.2 15.7

equally likely to

Continuous Uniform
Distribution

36

Re
la

tiv
e

Li

ke
lih

oo
d

Values-20 0 20

1
20-(-20)

Non-Uniform Mutation for
Floating Point Representation
• Similar to Creep Mutation.

• E.g.: Change the floating point value to another one in the following
way:
• Small changes should be more likely than bigger changes.

• Increases and reductions are equally likely.

• Pick the new value from a symmetric probability distribution centred at the
current value.

37

5.2 5.5
5.2 15.7

more likely

less likely

5.2 5.5
5.2 4.9

equally likely

Non-Uniform Mutation for
Floating Point Representation

38

Image from: https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-Normal_Distribution_PDF.svg.png

Re
la

tiv
e

Li
ke

lih
oo

d

Value

Normal Distribution N(μ,σ2)

https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-Normal_Distribution_PDF.svg.png

EA's Pseudocode
Evolutionary Algorithm

1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

39

EA's Pseudocode
Evolutionary Algorithm

1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

40

Survival Selection
Mechanisms

• How many survivors?
• Typically, if the population size is S, we will select S

individuals to survive.
• So, the population size is kept constant as generations

pass.

• Types of survival selection:
• Age-based selection.
• Fitness-based selection.

41

Age-Based Survival
Selection

• All offspring survive and all previous generation dies.

• Problem: may loose good individuals from the previous
generation.

42

Fitness-Based Survival
Selection

• Delete-worst:
• Delete worse individuals among children + parents.
• Only best individuals survive.
• Problem: premature convergence.

• Elitism:
• Frequently combined with age-based selection.
• Always keep at least one copy of the fittest individual.
• This copy replaces the worst child.

43

EA's Pseudocode
Evolutionary Algorithm

1. Initialise population
2. Evaluate each individual (determine their fitness)
3. Repeat (until a termination condition is satisfied)

3.1 Select parents
3.2 Recombine parents with probability Pc
3.3 Mutate resulting offspring with probability Pm
3.4 Evaluate offspring
3.5 Select survivors for the next generation

44

Termination
• Reaching some maximum allowed number of generations.

• Reaching some (known/hoped for) fitness.

• Reaching some minimum level of diversity.

• Reaching some specified number of generations without fitness
improvement.

45

Typical EA run:

Designing an Evolutionary
Algorithm

46

Representation
Initialisation
Recombination
Mutation
Parent selection
Survivor selection
Termination criteria

Fitness function
How to deal with constraints

Problem (In)Dependence
• Evolutionary algorithms can be applied to a variety of

optimisation problems (problem independence).

• Choice of design depends on the problem.
• Choice of representation depends on the problem.
• Choice of recombination and mutation operators depends

on the problem and the representation chosen.
• …

47

48

[Youtube video (super mario bros) posted by Michael Roberts:
https://youtu.be/05rEefXlmhI]

https://youtu.be/05rEefXlmhI

Summary of Variants of
Evolutionary Algorithms

• Representation:
• Binary strings
• Integer vectors
• Floating-point vectors
• Permutations
• Matrices
• Etc

• Parents selection:
• Roulette wheel
• Tournament selection
• Ranking selection

• Crossover for binary and integer representation
• 1-Point Crossover
• N-Points Crossover
• Uniform

• Crossover for floating point representation
• Discrete
• Intermediate
• There are also recombination methods for more than

2 parents

• Crossover for permutations
• Order 1 crossover
• Partially mapped crossover
• Cycle crossover
• Edge recombination

49

• Mutation for binary representation
• Bitwise bit-flipping

• Mutation for integer representation
• Random reset
• Creep mutation

• Mutation for floating-point representation
• Uniform
• Non-uniform

• Mutation for permutations
• Swap mutation
• Insert Mutation
• Inversion Mutation
• Scramble Mutation

• Survival selection:
• Age-based

• Generational
• Fitness-based

• Delete-worst
• Elitism

Evolutionary Algorithm
Glossary

• Population = multiset of individuals.

• Individual = candidate solution

• Chromosome = representation of candidate solution

• Gene = a component of chromosome

• Allele = value at a gene

• Mutation = unary variation operator

• Crossover = binary variation operator

• Recombination = n-ary variation operator

• Fitness function = objective or quality function

• Generations = iterations

50

Further Reading

51

• Eiben and Smith, Introduction to Evolutionary Computing,
Chapter 3 (Genetic Algorithms), Springer 2003.

