
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Simulated Annealing

Lecture 03

Im
ag

e
fro

m
: h

ttp
://

w
w

w.
tu

rin
gfi

na
nc

e.
co

m
/w

p-
co

nt
en

t/u
pl

oa
ds

/2
01

5/
05

/A
nn

ea
lin

g.
jp

g

http://www.turingfinance.com/wp-content/uploads/2015/05/Annealing.jpg

Overview
• Motivation for Simulated Annealing

• Simulated Annealing

• Examples of Applications

2

Motivation

3

Objective
Function

(to be
maximised)

Global
Optimum Local

Optimum

Hill-climbing may get
trapped in a local

optimum.

Search
Space

Heuristic = informed
guess

Motivation

4

If we could sometimes
accept a downward

move, we would have
some chance to move to

another hill.

Search
Space

Objective
Function

(to be
maximised)

Hill-Climbing

5

Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:
2.1 generate neighbour solutions (differ from current solution by a

 single element)
2.2 best_neighbour = get highest quality neighbour of

 current_solution
2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution = best_neighbour

In simulated annealing, instead of taking the best neighbour,
we pick a random neighbour.

Hill-Climbing

6

Simulated annealing will give some chance to accept a
bad neighbour.

Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:
2.1 generate neighbour solutions (differ from current solution by a

 single element)
2.2 best_neighbour = get highest quality neighbour of

 current_solution
2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution = best_neighbour

Simulated Annealing

7

Simulated Annealing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:
2.1 generate neighbour solutions (differ from current solution by a

 single element)

2.2 rand_neighbour = get random neighbour of current_solution
2.3 If quality(rand_neighbour) <= quality(current_solution)

2.3.1 With some probability,
 current_solution = rand_neighbour

 Else current_solution = rand_neighbour

Simulated Annealing

8

Simulated Annealing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:
2.1 generate neighbour solutions (differ from current solution by a

 single element)

2.2 rand_neighbour = get random neighbour of current_solution
2.3 If quality(rand_neighbour) <= quality(current_solution)

2.3.1 With some probability,
 current_solution = rand_neighbour

 Else current_solution = rand_neighbour

How Should the Probability
be Set?

• Probability to accept solutions with much worse quality
should be lower.
• We don’t want to be dislodged from the optimum.

• High probability in the beginning.
• More similar effect to random search.
• Allows us to explore the search space.

• Lower probability as time goes by.
• More similar effect to hill-climbing.
• Allows us to exploit a hill.

9

How to Decrease the
Probability?

10

If you decrease the
probability slowly, you
start to form basis of

attraction, but you can still
walk over small hills

initially.

• We would like to decrease the probability slowly.

How to Decrease the
Probability?

• We would like to decrease the probability slowly.

11

As the probability
decreases further, the
small hills start to form
basis of attraction too.

But if you do so slowly
enough, you give time to

wander to the higher
value hills before starting

to exploit.

So, you can find the
global optimum!

How to Decrease the
Probability?

• We would like to decrease the probability slowly.

12

If you decrease too
quickly, you can get

trapped in local optima.

13

[By Kingpin13 - Own work, CC0, https://commons.wikimedia.org/w/
index.php?curid=25010763]

https://commons.wikimedia.org/w/index.php?curid=25010763
https://commons.wikimedia.org/w/index.php?curid=25010763
https://commons.wikimedia.org/w/index.php?curid=25010763

Simulated Annealing

14

Simulated Annealing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:
2.1 generate neighbour solutions (differ from current solution by a

 single element)

2.2 rand_neighbour = get random neighbour of current_solution
2.3 If quality(rand_neighbour) <= quality(current_solution)

2.3.1 With some probability,
 current_solution = rand_neighbour

 Else current_solution = rand_neighbour
2.4 Reduce probability

Metallurgy Annealing
• A blacksmith heats the metal to a

very high temperature.

• When heated, the steel’s atoms
can move fast and randomly.

15

Image from: http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg

Image from: http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg

Image from: http://2.bp.blogspot.com/--kOlrodykkg/UbfVZ0_l5HI/AAAAAAAAAJ4/0rQ98g6tDDA/s1600/annealingAtoms.png

• The blacksmith then lets it cool
down slowly.

• If cooled down at the right
speed, the atoms will settle in
nicely.

• This makes the sword stronger
than the untreated steel.

http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg
http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg
http://2.bp.blogspot.com/--kOlrodykkg/UbfVZ0_l5HI/AAAAAAAAAJ4/0rQ98g6tDDA/s1600/annealingAtoms.png

16

Probability Function
Probability of accepting a solution of equal or worse quality,

inspired by thermodynamics:

17

ΔΕ = quality(rand_neighbour) - quality(current_solution)

Assuming maximisation…

eΔΕ/Τ

T = temperature
(>0)

(<=0)

Exponential Function

18

eΔΕ/Τ

ΔΕ/ΤImage form: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Exp.svg/800px-Exp.svg.png

Exponential Function

19

eΔΕ/Τ

ΔΕ/ΤImage form: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Exp.svg/800px-Exp.svg.png

eΔΕ/Τ

Exponential Function

20

eΔΕ/Τ

ΔΕ/ΤImage form: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Exp.svg/800px-Exp.svg.png

But never
reaches

zero

eΔΕ/Τ

How Does ΔΕ Affect the
Probability?

Probability of accepting a solution of equal or worse quality:

21

eΔΕ/Τ

Assuming maximisation…

The worse the neighbour is in comparison to the current solution,
the less likely to accept it.

(<=0)
ΔΕ = quality(rand_neighbour) - quality(current_solution)

T = temperature
(>0)

How Does ΔΕ Affect the
Probability?

Probability of accepting a solution of equal or worse quality:

22

eΔΕ/Τ

Assuming maximisation…
(<=0)
ΔΕ = quality(rand_neighbour) - quality(current_solution)

T = temperature
(>0)

But never reaches
zero

We always have some probability to accept a bad neighbour,
no matter how bad it is.

23

Assuming maximisation…

The better the neighbour is, the more likely to accept it.

(<=0)
ΔΕ = quality(rand_neighbour) - quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:

How Does ΔΕ Affect the
Probability?

How Should the Probability
be Set?

24
Im

ag
e

fro
m

: h
ttp

://
st

at
ic

.c
om

ic
vi

ne
.c

om
/u

pl
oa

ds
/o

rig
in

al
/1

3/
13

04
70

/2
93

14
73

-1
51

29
5.

jp
g

• Probability to accept solutions with much worse quality
should be lower.
• We don’t want to be dislodged from the optimum.

• High probability in the beginning.
• More similar effect to random search.
• Allows us to explore the search space.

• Lower probability as time goes by.
• More similar effect to hill-climbing.
• Allows us to exploit a hill.

http://static.comicvine.com/uploads/original/13/130470/2931473-151295.jpg

How Does T Affect the
Probability?

25

Assuming maximisation…
(<=0)
ΔΕ = quality(rand_neighbour) - quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:
<=0

Probability of accepting a solution of equal or worse quality:

26

Assuming maximisation…

<=0

If T is higher, the probability of accepting the neighbour is higher.

(<=0)
ΔΕ = quality(rand_neighbour) - quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

How Does T Affect the
Probability?

27

Assuming maximisation…

<=0

If T is lower, the probability of accepting the neighbour is lower.

(<=0)
ΔΕ = quality(rand_neighbour) - quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:

How Does T Affect the
Probability?

28

Assuming maximisation…

<=0

So, reducing the temperature over time would
reduce the probability of accepting the neighbour.

(<=0)
ΔΕ = quality(rand_neighbour) - quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:

How Does T Affect the
Probability?

How Should the
Temperature be Set?

29

Im
ag

e
fro

m
: h

ttp
://

st
at

ic
.c

om
ic

vi
ne

.c
om

/u
pl

oa
ds

/o
rig

in
al

/1
3/

13
04

70
/2

93
14

73
-1

51
29

5.
jp

g

• High probability in the
beginning.
• More similar effect to

random search.
• Allows us to explore the

search space.

• Lower probability as time
goes by.
• More similar effect to

hill-climbing.
• Allows us to exploit a

hill.

http://static.comicvine.com/uploads/original/13/130470/2931473-151295.jpg

How to Set and Reduce T?
• T starts with an initially high pre-defined value (parameter of

the algorithm).

• There are different update rules (schedules)…

• Update rule:
• T = αT,

30

α is close to, but smaller than, 1
e.g., α = 0.95

Simulated Annealing

31

Simulated Annealing (assuming maximisation)

Input: initial temperature Ti

1. current_solution = generate initial solution randomly

2. T = Ti

3. Repeat:
3.1 generate neighbour solutions (differ from current solution by a

 single element)
3.2 rand_neighbour = get random neighbour of current_solution
3.3 If quality(rand_neighbour) <= quality(current_solution)

3.3.1 With probability eΔΕ/Τ,
 current_solution = rand_neighbour

Else current_solution = rand_neighbour
3.4 T = schedule(T)

Simulated Annealing

32

Simulated Annealing (assuming maximisation)

Input: initial temperature Ti, minimum temperature Tf

1. current_solution = generate initial solution randomly

2. T = Ti

3. Repeat until a minimum temperature Tf is reached or until the current solution “stops
changing”:

3.1 generate neighbour solutions (differ from current solution by a
 single element)

3.2 rand_neighbour = get random neighbour of current_solution
3.3 If quality(rand_neighbour) <= quality(current_solution)

3.3.1 With probability eΔΕ/Τ,
 current_solution = rand_neighbour

 Else current_solution = rand_neighbour
3.4 T = schedule(T)

Local Search
• Simulated annealing can also be considered as a local

search, as it allows to move only to neighbour solutions.

• However, it has mechanisms to try and escape from local
optima.

33
Im

ag
e

fro
m

: h
ttp

://
st

at
ic

.c
om

ic
vi

ne
.c

om
/u

pl
oa

ds
/o

rig
in

al
/1

3/
13

04
70

/2
93

14
73

-1
51

29
5.

jp
g

http://static.comicvine.com/uploads/original/13/130470/2931473-151295.jpg

Examples of Applications
• Several engineering problems,

e.g.: VLSI (Very-Large-Scale
Integration).
• Process of creating an

integrated circuit by combining
thousands of transistors into a
single chip.

• Decide placement of transistors.
• Objectives: reduce area, wiring

and congestion.

34

Image from: https://upload.wikimedia.org/wikipedia/commons/9/94/VLSI_Chip.jpg

• Software engineering problems:
• Component selection and prioritisation for the next release problem.
• Software quality prediction.

https://upload.wikimedia.org/wikipedia/commons/9/94/VLSI_Chip.jpg

Where Are We?
So far…

• Optimisation problems
• Brute force
• Hill climbing
• Simulated annealing

Next class: surgery.

Please revise the lectures before the surgery!

35

Further Reading

Stuart J. Russell, Peter Norvig, John F. Canny
Artificial intelligence: a modern approach
Section 4.1: Local Search Algorithms and Optimization Problems - Simulated
Annealing
Pearson Education
2014

36

http://readinglists.le.ac.uk/lists/D888DC7C-0042-
C4A3-5673-2DF8E4DFE225.html

http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html
http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html

