
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Simulated Annealing

Lecture 03
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http://www.turingfinance.com/wp-content/uploads/2015/05/Annealing.jpg


Overview
• Motivation for Simulated Annealing 

• Simulated Annealing 

• Examples of Applications 
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Motivation
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Objective 
Function 

(to be  
maximised)

Global 
Optimum Local 

Optimum

Hill-climbing may get 
trapped in a local 

optimum.

Search 
Space

Heuristic = informed 
guess



Motivation
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If we could sometimes 
accept a downward 

move, we would have 
some chance to move to 

another hill.

Search 
Space

Objective 
Function 

(to be  
maximised)



Hill-Climbing
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Hill-Climbing (assuming maximisation) 

1. current_solution = generate initial solution randomly 

2. Repeat: 
2.1 generate neighbour solutions (differ from current solution by a   

 single element) 
2.2 best_neighbour = get highest quality neighbour of  

 current_solution 
2.3 If quality(best_neighbour) <= quality(current_solution) 

2.3.1 Return current_solution 
2.4 current_solution = best_neighbour

In simulated annealing, instead of taking the best neighbour, 
we pick a random neighbour.



Hill-Climbing
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Simulated annealing will give some chance to accept a 
bad neighbour.

Hill-Climbing (assuming maximisation) 

1. current_solution = generate initial solution randomly 

2. Repeat: 
2.1 generate neighbour solutions (differ from current solution by a   

 single element) 
2.2 best_neighbour = get highest quality neighbour of  

 current_solution 
2.3 If quality(best_neighbour) <= quality(current_solution) 

2.3.1 Return current_solution 
2.4 current_solution = best_neighbour



Simulated Annealing
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Simulated Annealing (assuming maximisation) 

1. current_solution = generate initial solution randomly 

2. Repeat: 
2.1 generate neighbour solutions (differ from current solution by a   

 single element) 

2.2 rand_neighbour = get random neighbour of current_solution 
2.3 If quality(rand_neighbour) <= quality(current_solution) 

2.3.1 With some probability,  
  current_solution = rand_neighbour 

 Else current_solution = rand_neighbour



Simulated Annealing
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Simulated Annealing (assuming maximisation) 

1. current_solution = generate initial solution randomly 

2. Repeat: 
2.1 generate neighbour solutions (differ from current solution by a   

 single element) 

2.2 rand_neighbour = get random neighbour of current_solution 
2.3 If quality(rand_neighbour) <= quality(current_solution) 

2.3.1 With some probability, 
  current_solution = rand_neighbour 

 Else current_solution = rand_neighbour



How Should the Probability 
be Set?

• Probability to accept solutions with much worse quality 
should be lower. 
• We don’t want to be dislodged from the optimum. 

• High probability in the beginning. 
• More similar effect to random search. 
• Allows us to explore the search space. 

• Lower probability as time goes by. 
• More similar effect to hill-climbing. 
• Allows us to exploit a hill.
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How to Decrease the 
Probability?
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If you decrease the 
probability slowly, you 
start to form basis of 

attraction, but you can still 
walk over small hills 

initially.

• We would like to decrease the probability slowly.



How to Decrease the 
Probability?

• We would like to decrease the probability slowly.
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As the probability 
decreases further, the 
small hills start to form 
basis of attraction too.

But if you do so slowly 
enough, you give time to 

wander to the higher 
value hills before starting 

to exploit.

So, you can find the 
global optimum!



How to Decrease the 
Probability?

• We would like to decrease the probability slowly.

12

If you decrease too 
quickly, you can get 

trapped in local optima.
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[By Kingpin13 - Own work, CC0, https://commons.wikimedia.org/w/
index.php?curid=25010763] 

https://commons.wikimedia.org/w/index.php?curid=25010763
https://commons.wikimedia.org/w/index.php?curid=25010763
https://commons.wikimedia.org/w/index.php?curid=25010763


Simulated Annealing
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Simulated Annealing (assuming maximisation) 

1. current_solution = generate initial solution randomly 

2. Repeat: 
2.1 generate neighbour solutions (differ from current solution by a   

 single element) 

2.2 rand_neighbour = get random neighbour of current_solution 
2.3 If quality(rand_neighbour) <= quality(current_solution) 

2.3.1 With some probability, 
  current_solution = rand_neighbour 

 Else current_solution = rand_neighbour 
2.4 Reduce probability



Metallurgy Annealing
• A blacksmith heats the metal to a 

very high temperature. 

• When heated, the steel’s atoms 
can move fast and randomly.
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Image from: http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg

Image from: http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg

Image from: http://2.bp.blogspot.com/--kOlrodykkg/UbfVZ0_l5HI/AAAAAAAAAJ4/0rQ98g6tDDA/s1600/annealingAtoms.png

• The blacksmith then lets it cool 
down slowly. 

• If cooled down at the right 
speed, the atoms will settle in 
nicely. 

• This makes the sword stronger 
than the untreated steel.

http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg
http://www.stormthecastle.com/indeximages/sting-steel-thumb.jpg
http://2.bp.blogspot.com/--kOlrodykkg/UbfVZ0_l5HI/AAAAAAAAAJ4/0rQ98g6tDDA/s1600/annealingAtoms.png
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Probability Function
Probability of accepting a solution of equal or worse quality, 

inspired by thermodynamics:
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ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

Assuming maximisation…

eΔΕ/Τ

T = temperature
(>0)

(<=0)



Exponential Function
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eΔΕ/Τ

ΔΕ/ΤImage form: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Exp.svg/800px-Exp.svg.png



Exponential Function
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eΔΕ/Τ

ΔΕ/ΤImage form: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Exp.svg/800px-Exp.svg.png

eΔΕ/Τ



Exponential Function
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eΔΕ/Τ

ΔΕ/ΤImage form: https://upload.wikimedia.org/wikipedia/commons/thumb/c/c6/Exp.svg/800px-Exp.svg.png

But never 
reaches  

zero

eΔΕ/Τ



How Does ΔΕ Affect the 
Probability?

Probability of accepting a solution of equal or worse quality:
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eΔΕ/Τ

Assuming maximisation…

The worse the neighbour is in comparison to the current solution,  
the less likely to accept it.

(<=0)
ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

T = temperature
(>0)



How Does ΔΕ Affect the 
Probability?

Probability of accepting a solution of equal or worse quality:
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eΔΕ/Τ

Assuming maximisation…
(<=0)
ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

T = temperature
(>0)

But never reaches  
zero

We always have some probability to accept a bad neighbour,  
no matter how bad it is.
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Assuming maximisation…

The better the neighbour is, the more likely to accept it.

(<=0)
ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:

How Does ΔΕ Affect the 
Probability?



How Should the Probability 
be Set?
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• Probability to accept solutions with much worse quality 
should be lower.
• We don’t want to be dislodged from the optimum.

• High probability in the beginning. 
• More similar effect to random search. 
• Allows us to explore the search space. 

• Lower probability as time goes by. 
• More similar effect to hill-climbing. 
• Allows us to exploit a hill.

http://static.comicvine.com/uploads/original/13/130470/2931473-151295.jpg


How Does T Affect the 
Probability?

25

Assuming maximisation…
(<=0)
ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:
<=0



Probability of accepting a solution of equal or worse quality:
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Assuming maximisation…

<=0

If T is higher, the probability of accepting the neighbour is higher.

(<=0)
ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

How Does T Affect the 
Probability?
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Assuming maximisation…

<=0

If T is lower, the probability of accepting the neighbour is lower.

(<=0)
ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:

How Does T Affect the 
Probability?
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Assuming maximisation…

<=0

So, reducing the temperature over time would 
reduce the probability of accepting the neighbour.

(<=0)
ΔΕ = quality(rand_neighbour)  -  quality(current_solution)

T = temperature
(>0)

eΔΕ/Τ

Probability of accepting a solution of equal or worse quality:

How Does T Affect the 
Probability?



How Should the 
Temperature be Set?

29
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• High probability in the 
beginning. 
• More similar effect to 

random search. 
• Allows us to explore the 

search space. 

• Lower probability as time 
goes by. 
• More similar effect to 

hill-climbing. 
• Allows us to exploit a 

hill.

http://static.comicvine.com/uploads/original/13/130470/2931473-151295.jpg


How to Set and Reduce T?
• T starts with an initially high pre-defined value (parameter of 

the algorithm). 

• There are different update rules (schedules)… 

• Update rule: 
• T = αT,

30

α is close to, but smaller than, 1 
e.g., α = 0.95



Simulated Annealing
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Simulated Annealing (assuming maximisation) 

Input: initial temperature Ti 

1. current_solution = generate initial solution randomly 

2. T = Ti

3. Repeat: 
3.1 generate neighbour solutions (differ from current solution by a   

 single element) 
3.2 rand_neighbour = get random neighbour of current_solution 
3.3 If quality(rand_neighbour) <= quality(current_solution) 

3.3.1 With probability eΔΕ/Τ, 
  current_solution = rand_neighbour 

Else current_solution = rand_neighbour 
3.4 T = schedule(T)



Simulated Annealing
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Simulated Annealing (assuming maximisation) 

Input: initial temperature Ti, minimum temperature Tf 

1. current_solution = generate initial solution randomly 

2. T = Ti

3. Repeat until a minimum temperature Tf is reached or until the current solution “stops 
changing”: 

3.1 generate neighbour solutions (differ from current solution by a   
 single element) 

3.2 rand_neighbour = get random neighbour of current_solution 
3.3 If quality(rand_neighbour) <= quality(current_solution) 

3.3.1 With probability eΔΕ/Τ, 
  current_solution = rand_neighbour 

 Else current_solution = rand_neighbour 
3.4 T = schedule(T)



Local Search
• Simulated annealing can also be considered as a local 

search, as it allows to move only to neighbour solutions. 

• However, it has mechanisms to try and escape from local 
optima.
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http://static.comicvine.com/uploads/original/13/130470/2931473-151295.jpg


Examples of Applications
• Several engineering problems, 

e.g.: VLSI (Very-Large-Scale 
Integration). 
• Process of creating an 

integrated circuit by combining 
thousands of transistors into a 
single chip. 

• Decide placement of transistors. 
• Objectives: reduce area, wiring 

and congestion.
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Image from: https://upload.wikimedia.org/wikipedia/commons/9/94/VLSI_Chip.jpg

• Software engineering problems: 
• Component selection and prioritisation for the next release problem. 
• Software quality prediction.

https://upload.wikimedia.org/wikipedia/commons/9/94/VLSI_Chip.jpg


Where Are We?
So far… 

• Optimisation problems 
• Brute force 
• Hill climbing 
• Simulated annealing 

Next class: surgery. 

Please revise the lectures before the surgery!
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Further Reading

Stuart J. Russell, Peter Norvig, John F. Canny 
Artificial intelligence: a modern approach 
Section 4.1: Local Search Algorithms and Optimization Problems - Simulated 
Annealing 
Pearson Education 
2014
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http://readinglists.le.ac.uk/lists/D888DC7C-0042-
C4A3-5673-2DF8E4DFE225.html 

http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html
http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html

