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• Optimisation Problems 

• Formulating Optimisation Problems 

• Brute-Force Search 

• Hill-Climbing 

• Illustrative Example 
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Optimisation Problems
• Optimisation problems: to find a solution that achieves one or 

more pre-defined goals.  

• Maximisation / minimisation problems.

3



Examples of Optimisation 
Problems

• Traveling Salesman 
Problem: 
• A salesman must travel 

passing through N cities. 
• Each city must be visited 

once. 
• He/she must finish where 

he/she was at first. 
• The path between each 

pair of cities has a 
distance (or cost).
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Problem: find a sequence of cities that minimises traveling 
distance (or cost).



Examples of Optimisation 
Problems

• Bin packing problem:  
• Given bins with maximum volume 

V, which cannot be exceeded. 
• We have n items to pack, each 

with a volume v. 
• We must pack all items.
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Problem: find an assignment of items 
to bins that minimises the number of 

bins used.
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Example of Software Engineering 
Optimisation Problems

• Software Module Clustering: 
• Software is composed of 

several units, which can be 
organised into modules. 

• Well modularised software is 
easier to develop and 
maintain. 

• As software evolves, 
modularisation tends to 
degrade.
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Problem: find a grouping of units into modules that maximises the 
quality of modularisation.
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Formulating Optimisation 
Problems

• Design variables represent a solution. 

• Design variables define the search space of candidate 
solutions. 

• [Optional] Solutions must satisfy certain constraints. 

• Objective function defines our goal. 
• Can be used to evaluate the quality of solutions. 
• Function to be optimised (maximised or minimised).
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Traveling Salesman Problem 
Formulation

• Design variables represent a solution. 
• Vector x of size N, where N is the number of cities. 
• x represents a sequence of cities to be visited. 

• Design variables define the search space of candidate solutions. 
• All possible sequences of cities, where each city appears only once. 

• [Optional] Solutions must satisfy certain constraints. 
• Each city must appear once and only once in x. 
• Salesman must return to the city of origin. 

• Objective function defines our goal. 
• Total_distance(x) =  

sum of distances between consecutive cities in x + distance from last city 
to the origin.

• To be minimised.
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Brute-Force Search
• Brute-force search = exhaustive search = generate and test. 

• Systematically enumerate all possible candidates for the 
solution and check which one is the best. 

• Guaranteed to find the optimal solution.
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• Can we use brute-force search to solve optimisation problems?



Problem: high computational complexity.
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Brute-Force for Traveling 
Salesman Problem

• Number of cities N = 2 

• Number of cities N = 3
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Number of 
permutations is 

factorial: N!

Our sequences of cities  
are permutations.

A solution is a sequence of cities, where each city appears only once.



Brute-Force for Traveling 
Salesman Problem

• Factorial time complexity: 
• 2! = 2 
• 3! = 6 
• … 
• 10! = 3,628,800 
• 20! = 2,432,902,008,176,640,000 ≈ 2.43 x 1018 

• Assume that 109 permutations take one second.  
• 2!/109 = 0.000000002s 
• 3!/109 = 0.000000006s 
• … 
• 10!/109 = 0.0036288s 
• 20!/109 ≈ 2,432,902,008s ≈ 77years
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Brute-force works only for very small problems.



Solving Optimisation Problems 
Using Computational Intelligence

• Heuristic algorithms, which aim to find good solutions to problems in a 
reasonable amount of time. 
• Make informed guesses to guide the search about the direction to a 

goal. 
• Typically not guaranteed to find the optimum, but able to find 

sufficiently good or near-optimal solutions. 
• Good for: 

• Large problems, where we cannot afford enumerating all possible 
solutions to guarantee optimality. 

• Problems where no exact optimisation algorithm exists that can 
solve the problem in polynomial time. 

• Problems where sufficiently good or near-optimal solutions are 
acceptable.
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Hill-Climbing
Hill-Climbing (assuming maximisation) 

1. current_solution = generate initial solution randomly 

2. Repeat: 

2.1 generate neighbour solutions (differ from current solution by a   
 single element) 

2.2 best_neighbour = get highest quality neighbour of  
 current_solution 

2.3 If quality(best_neighbour) <= quality(current_solution) 
2.3.1 Return current_solution 

2.4 current_solution = best_neighbour
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Illustrative Example
• Design variables represent a solution. 

• x ∈ Z

• Design variables define the search space of candidate solutions. 
• Our search space are all integer numbers.
• This also defines our neighbourhood. 

• Objective function defines our goal and represents the quality of a solution. 
• Can be used to evaluate the quality of solutions. 
• Function to be optimised (maximised or minimised). 
• f(x) = -x2, to be maximised

• [Optional] Solutions must satisfy certain constraints. 
• None
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Illustrative Example
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f(x) = -x2
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Traveling Salesman Problem 
Formulation

• Design variables represent a solution. 
• Vector x of size N, where N is the number of cities. 
• x represents a sequence of cities to be visited. 

• Design variables define the search space of candidate solutions. 
• All possible sequences of cities, where each city appears only once. 
• Neighbourhood: reverse path between two cities in the sequence. 

• [Optional] Solutions must satisfy certain constraints. 
• Each city must appear once and only once in x. 
• Salesman must return to the city of origin. 

• Objective function defines our goal. 
• Total_distance(x) =  

sum of distances between consecutive cities in x + distance from last city to 
the origin.

• To be minimised.
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General Idea
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Objective 
Function

Search 
Space

Strong point: Hill climbing allows you to 
quickly reach the top.



Greedy Local Search
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Objective 
Function

Global 
Optimum Local 

Optimum
Hill-climbing is a local 

search method.

Weakness: Hill-
climbing may get 
trapped in a local 

optimum.

Search 
Space

Hill-climbing is greedy.



Greedy Local Search
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Objective 
Function

Search 
Space



Greedy Local Search
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Objective 
Function Weakness: Hill-

climbing may get 
trapped in plateaux.

Plateaux

Search 
Space
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The success of hill-climbing depends on the shape 
of the quality function for the problem instance in 

hands.



Summary
• How to formulate optimisation problems. 

• Brute-force search. 

• How hill-climbing works. 

• Problems of hill-climbing.
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Examples of Software Engineering 
Optimisation Problems

• Software Module Clustering: 
• Software is composed of several 

units, which can be organised into 
modules. 

• Well modularised software is easier 
to develop and maintain. 

• As software evolves, modularisation 
tends to degrade.

32

Image from: http://www.kirkk.com/modularity/wp-content/uploads/2009/12/EncapsulatingDesign1.jpg

Problem: find a grouping of units into modules that maximises the 
quality of modularisation.

• Hill-climbing has been successfully applied to software module clustering.



Formulation Optimisation 
Problems

• Design variables represent a solution. 

• Design variables define the search space of candidate 
solutions. 

• Objective function defines our goal. 
• Can be used to evaluate the quality of solutions. 
• Function to be optimised (maximised or minimised). 

• [Optional] Solutions must satisfy certain constraints.
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Formulating Software Module 
Clustering as an Optimisation Problem
Design variable: grouping of units into modules. 

• Consider that we have N units. 
• We have at most N modules. 
• Our variable could be a list of N modules, each of which is a 

set of units.
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• E.g., if we have N=5, a possible grouping is {{},{1},{2,4,5},{},{3}}. 
 Search space: all possible groupings.

Module 2 Module 3 Module 5

unit 1
unit 2

unit 4

unit 5

unit 3

Module 1 Module 4 



Module 4 

Neighbourhood
• A neighbour would be a solution where a single unit moves 

from one module to another. E.g.:
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Module 2 Module 3 Module 5

unit 1
unit 2

unit 4 unit 3

unit 5

Module 1 



Objective function: quality of modularisation (to be maximised). 
How to compute quality? 
What does good quality mean? 

Lots of connections inside a module (high cohesion) and few 
connections between modules (low coupling). 

                                            #intra_edges_i 
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Module 2 Module 3 Module 5

unit 1
unit 2

unit 4

unit 5

unit 3

#intra_edges_i  +  1/2 x #inter_edges_i

1/2 is used to split the 
penalty of inter-edges 

across the two modules 
connected by that 

edge

Formulating Software Module 
Clustering as an Optimisation Problem
 Constraints: N/A

(maximise)
Quality of module i =

Module 4 Module 1 



Objective function: quality of modularisation (to be maximised). 
How to compute quality? 
What does good quality mean? 

Lots of connections inside a module (high cohesion) and few 
connections between modules (low coupling). 

                                              #intra_edges_i 
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#intra_edges_i  +  1/2 x #inter_edges_i

Quality of a 
solution =  

sum of quality of 
its non-empty 

modules

Formulating Software Module 
Clustering as an Optimisation Problem

(maximise)
Quality of module i =

Module 2 Module 3 Module 5

unit 1
unit 2

unit 4

unit 5

unit 3

Module 4 Module 1 



Example of Hill-Climbing for 
Software Module Clustering
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Number of units N = 3

1. current_solution = generate initial solution randomly

current_solution 
{2}{3}{1}

Module 2 

unit 3

Module 3 

unit 1

Module 1 

unit 2

Connections between 
units can be retrieved 
automatically  from the 

software code.



Example of Hill-Climbing for 
Software Module Clustering
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Module 2 

unit 3

Module 3 

unit 1

2.1 generate neighbour solutions (differ from current  
      solution by a single element)

All solutions with 
a single unit  
moving to a 

different module

Module 1 

unit 2

Module 2 

unit 3

Module 3 

unit 1

Module 1 
unit 2

Module 2 Module 3 

unit 1

Module 1 
unit 2 unit 3

Module 2 Module 3 
unit 1

Module 1 

unit 2
unit 3

{}{2,3}{1}

{}{3}{1,2}

{2}{}{1,3}

current_solution 
{2}{3}{1}

neighbours



Example of Hill-Climbing for 
Software Module Clustering
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2.2 best_neighbour = get highest quality neighbour of  
 current_solution

Module 2 

unit 3

Module 3 

unit 1

Module 1 

unit 2

Module 2 

unit 3

Module 3 

unit 1

Module 1 
unit 2

Module 2 Module 3 

unit 1

Module 1 
unit 2 unit 3

Module 2 Module 3 
unit 1

Module 1 

unit 2
unit 3

quality = 0

quality = 0.8

quality = 0

quality = 0.5

neighbours
{}{2,3}{1}

{}{3}{1,2}

{2}{}{1,3}

current_solution 
{2}{3}{1}



Example of Hill-Climbing for 
Software Module Clustering
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2.3 If quality(best_neighbour) <= quality(current_solution) 
2.3.1 Return current_solution

Module 2 

unit 3

Module 3 

unit 1

Module 1 

unit 2

Module 2 

unit 3

Module 3 

unit 1

Module 1 
unit 2

Module 2 Module 3 

unit 1

Module 1 
unit 2 unit 3

Module 2 Module 3 
unit 1

Module 1 

unit 2
unit 3

quality = 0

quality = 0.8

quality = 0

quality = 0.5

neighbours
{}{2,3}{1}

{}{3}{1,2}

{2}{}{1,3}

current_solution 
{2}{3}{1}



Example of Hill-Climbing for 
Software Module Clustering
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2.4 current_solution = best_neighbour

Module 2 

unit 3

Module 3 

unit 1

Module 1 
unit 2 quality = 0.8

current_solution
{}{2,3}{1}



Further Reading
All material available from Reading Lists (http://readinglists.le.ac.uk/lists/
D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html) 

Stuart J. Russell, Peter Norvig, John F. Canny 
Artificial intelligence: a modern approach 
Section 4.1: Local Search Algorithms and Optimization Problems - Hill-Climbing 
Search 
Pearson Education 
2014 

Brian S. Mitchell and Spiros Mancoridis  
Using Heuristic Search Techniques to Extract Design Abstractions from Source Code  
Sections 3 up to the end of section 3.1.1 
Proceedings of the Genetic and Evolutionary Computation Conference 
Pages 1375-1382  
2002
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