
CO3091 - Computational Intelligence and Software Engineering

Leandro L. Minku

Hill-Climbing

Lecture 02

Photo from: http://cdn.motocross.transworld.net/files/2009/11/img-7532.jpg

http://cdn.motocross.transworld.net/files/2009/11/img-7532.jpg

Overview
• Optimisation Problems

• Formulating Optimisation Problems

• Brute-Force Search

• Hill-Climbing

• Illustrative Example

• Example of Hill-Climbing for Software Module Clustering

2

Optimisation Problems
• Optimisation problems: to find a solution that achieves one or

more pre-defined goals.

• Maximisation / minimisation problems.

3

Examples of Optimisation
Problems

• Traveling Salesman
Problem:
• A salesman must travel

passing through N cities.
• Each city must be visited

once.
• He/she must finish where

he/she was at first.
• The path between each

pair of cities has a
distance (or cost).

4

Problem: find a sequence of cities that minimises traveling
distance (or cost).

Examples of Optimisation
Problems

• Bin packing problem:
• Given bins with maximum volume

V, which cannot be exceeded.
• We have n items to pack, each

with a volume v.
• We must pack all items.

5

Photo from: http://www.tscargo.ca/images/cargo1.jpg

Photo from: http://maritime-connector.com/images/container-ship-16-wiki-19057.jpg

Problem: find an assignment of items
to bins that minimises the number of

bins used.

http://www.tscargo.ca/images/cargo1.jpg
http://maritime-connector.com/images/container-ship-16-wiki-19057.jpg

Example of Software Engineering
Optimisation Problems

• Software Module Clustering:
• Software is composed of

several units, which can be
organised into modules.

• Well modularised software is
easier to develop and
maintain.

• As software evolves,
modularisation tends to
degrade.

6

Image from: http://www.kirkk.com/modularity/wp-content/uploads/2009/12/EncapsulatingDesign1.jpg

Problem: find a grouping of units into modules that maximises the
quality of modularisation.

http://www.kirkk.com/modularity/wp-content/uploads/2009/12/EncapsulatingDesign1.jpg

Formulating Optimisation
Problems

• Design variables represent a solution.

• Design variables define the search space of candidate
solutions.

• [Optional] Solutions must satisfy certain constraints.

• Objective function defines our goal.
• Can be used to evaluate the quality of solutions.
• Function to be optimised (maximised or minimised).

7

Traveling Salesman Problem
Formulation

• Design variables represent a solution.
• Vector x of size N, where N is the number of cities.
• x represents a sequence of cities to be visited.

• Design variables define the search space of candidate solutions.
• All possible sequences of cities, where each city appears only once.

• [Optional] Solutions must satisfy certain constraints.
• Each city must appear once and only once in x.
• Salesman must return to the city of origin.

• Objective function defines our goal.
• Total_distance(x) =

sum of distances between consecutive cities in x + distance from last city
to the origin.

• To be minimised.

8

Brute-Force Search
• Brute-force search = exhaustive search = generate and test.

• Systematically enumerate all possible candidates for the
solution and check which one is the best.

• Guaranteed to find the optimal solution.

9

• Can we use brute-force search to solve optimisation problems?

Problem: high computational complexity.

10

Image from: http://vignette2.wikia.nocookie.net/creepypasta/images/8/80/Creepycemetery.jpg/revision/latest?cb=20131013135547

http://vignette2.wikia.nocookie.net/creepypasta/images/8/80/Creepycemetery.jpg/revision/latest?cb=20131013135547

Brute-Force for Traveling
Salesman Problem

• Number of cities N = 2

• Number of cities N = 3

11

A B
B A

A B C
A C B
B A C
B C A
C A B
C B A

Number of
permutations is

factorial: N!

Our sequences of cities
are permutations.

A solution is a sequence of cities, where each city appears only once.

Brute-Force for Traveling
Salesman Problem

• Factorial time complexity:
• 2! = 2
• 3! = 6
• …
• 10! = 3,628,800
• 20! = 2,432,902,008,176,640,000 ≈ 2.43 x 1018

• Assume that 109 permutations take one second.
• 2!/109 = 0.000000002s
• 3!/109 = 0.000000006s
• …
• 10!/109 = 0.0036288s
• 20!/109 ≈ 2,432,902,008s ≈ 77years

12
Brute-force works only for very small problems.

Solving Optimisation Problems
Using Computational Intelligence

• Heuristic algorithms, which aim to find good solutions to problems in a
reasonable amount of time.
• Make informed guesses to guide the search about the direction to a

goal.
• Typically not guaranteed to find the optimum, but able to find

sufficiently good or near-optimal solutions.
• Good for:

• Large problems, where we cannot afford enumerating all possible
solutions to guarantee optimality.

• Problems where no exact optimisation algorithm exists that can
solve the problem in polynomial time.

• Problems where sufficiently good or near-optimal solutions are
acceptable.

13

Hill-Climbing
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

2. Repeat:

2.1 generate neighbour solutions (differ from current solution by a
 single element)

2.2 best_neighbour = get highest quality neighbour of
 current_solution

2.3 If quality(best_neighbour) <= quality(current_solution)
2.3.1 Return current_solution

2.4 current_solution = best_neighbour

14

Illustrative Example
• Design variables represent a solution.

• x ∈ Z

• Design variables define the search space of candidate solutions.
• Our search space are all integer numbers.
• This also defines our neighbourhood.

• Objective function defines our goal and represents the quality of a solution.
• Can be used to evaluate the quality of solutions.
• Function to be optimised (maximised or minimised).
• f(x) = -x2, to be maximised

• [Optional] Solutions must satisfy certain constraints.
• None

15

Illustrative Example

16

f(x) = -x2

 -5 -4 -3 -2 2 3 4 5 6

-4

-9

-16

 -5 -4 -3 -2 2 3 4 5 6

Illustrative Example
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial
solution randomly

2. Repeat:
2.1 generate neighbour solutions
(differ from current solution by a
single element)
2.2 best_neighbour = get highest
quality neighbour of
current_solution
2.3 If quality(best_neighbour) <=
quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution =
best_neighbour

17

-4

-9

-16

2 3 4 5 6 -5 -4 -3 -2

Illustrative Example
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial
solution randomly

2. Repeat:
2.1 generate neighbour solutions
(differ from current solution by a
single element)
2.2 best_neighbour = get highest
quality neighbour of
current_solution
2.3 If quality(best_neighbour) <=
quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution =
best_neighbour

18

-4

-9

-16

2 3 4 5 6 -5 -4 -3 -2

Illustrative Example
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial
solution randomly

2. Repeat:
2.1 generate neighbour solutions
(differ from current solution by a
single element)
2.2 best_neighbour = get highest
quality neighbour of
current_solution
2.3 If quality(best_neighbour) <=
quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution =
best_neighbour

19

-4

-9

-16

2 3 4 5 6 -5 -4 -3 -2

Illustrative Example
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial
solution randomly

2. Repeat:
2.1 generate neighbour solutions
(differ from current solution by a
single element)
2.2 best_neighbour = get highest
quality neighbour of
current_solution
2.3 If quality(best_neighbour) <=
quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution =
best_neighbour

20

-4

-9

-16

2 3 4 5 6 -5 -4 -3 -2

Illustrative Example
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial
solution randomly

2. Repeat:
2.1 generate neighbour solutions
(differ from current solution by a
single element)
2.2 best_neighbour = get highest
quality neighbour of
current_solution
2.3 If quality(best_neighbour) <=
quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution =
best_neighbour

21

-4

-9

-16

2 3 4 5 6 -5 -4 -3 -2

Illustrative Example
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial
solution randomly

2. Repeat:
2.1 generate neighbour solutions
(differ from current solution by a
single element)
2.2 best_neighbour = get highest
quality neighbour of
current_solution
2.3 If quality(best_neighbour) <=
quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution =
best_neighbour

22

-4

-9

-16

2 3 4 5 6 -5 -4 -3 -2

Illustrative Example
Hill-Climbing (assuming maximisation)

1. current_solution = generate initial
solution randomly

2. Repeat:
2.1 generate neighbour solutions
(differ from current solution by a
single element)
2.2 best_neighbour = get highest
quality neighbour of
current_solution
2.3 If quality(best_neighbour) <=
quality(current_solution)

2.3.1 Return current_solution
2.4 current_solution =
best_neighbour

23

-4

-9

-16

Traveling Salesman Problem
Formulation

• Design variables represent a solution.
• Vector x of size N, where N is the number of cities.
• x represents a sequence of cities to be visited.

• Design variables define the search space of candidate solutions.
• All possible sequences of cities, where each city appears only once.
• Neighbourhood: reverse path between two cities in the sequence.

• [Optional] Solutions must satisfy certain constraints.
• Each city must appear once and only once in x.
• Salesman must return to the city of origin.

• Objective function defines our goal.
• Total_distance(x) =

sum of distances between consecutive cities in x + distance from last city to
the origin.

• To be minimised.

24

25
[Video posted by sarahbau: https://youtu.be/3TrnjUKeFg8

https://youtu.be/3TrnjUKeFg8

General Idea

26

Objective
Function

Search
Space

Strong point: Hill climbing allows you to
quickly reach the top.

Greedy Local Search

27

Objective
Function

Global
Optimum Local

Optimum
Hill-climbing is a local

search method.

Weakness: Hill-
climbing may get
trapped in a local

optimum.

Search
Space

Hill-climbing is greedy.

Greedy Local Search

28

Objective
Function

Search
Space

Greedy Local Search

29

Objective
Function Weakness: Hill-

climbing may get
trapped in plateaux.

Plateaux

Search
Space

30

The success of hill-climbing depends on the shape
of the quality function for the problem instance in

hands.

Summary
• How to formulate optimisation problems.

• Brute-force search.

• How hill-climbing works.

• Problems of hill-climbing.

31

Examples of Software Engineering
Optimisation Problems

• Software Module Clustering:
• Software is composed of several

units, which can be organised into
modules.

• Well modularised software is easier
to develop and maintain.

• As software evolves, modularisation
tends to degrade.

32

Image from: http://www.kirkk.com/modularity/wp-content/uploads/2009/12/EncapsulatingDesign1.jpg

Problem: find a grouping of units into modules that maximises the
quality of modularisation.

• Hill-climbing has been successfully applied to software module clustering.

Formulation Optimisation
Problems

• Design variables represent a solution.

• Design variables define the search space of candidate
solutions.

• Objective function defines our goal.
• Can be used to evaluate the quality of solutions.
• Function to be optimised (maximised or minimised).

• [Optional] Solutions must satisfy certain constraints.

33

Formulating Software Module
Clustering as an Optimisation Problem
Design variable: grouping of units into modules.

• Consider that we have N units.
• We have at most N modules.
• Our variable could be a list of N modules, each of which is a

set of units.

34

• E.g., if we have N=5, a possible grouping is {{},{1},{2,4,5},{},{3}}.
 Search space: all possible groupings.

Module 2 Module 3 Module 5

unit 1
unit 2

unit 4

unit 5

unit 3

Module 1 Module 4

Module 4

Neighbourhood
• A neighbour would be a solution where a single unit moves

from one module to another. E.g.:

35

Module 2 Module 3 Module 5

unit 1
unit 2

unit 4 unit 3

unit 5

Module 1

Objective function: quality of modularisation (to be maximised).
How to compute quality?
What does good quality mean?

Lots of connections inside a module (high cohesion) and few
connections between modules (low coupling).

 #intra_edges_i

36

Module 2 Module 3 Module 5

unit 1
unit 2

unit 4

unit 5

unit 3

#intra_edges_i + 1/2 x #inter_edges_i

1/2 is used to split the
penalty of inter-edges

across the two modules
connected by that

edge

Formulating Software Module
Clustering as an Optimisation Problem
 Constraints: N/A

(maximise)
Quality of module i =

Module 4 Module 1

Objective function: quality of modularisation (to be maximised).
How to compute quality?
What does good quality mean?

Lots of connections inside a module (high cohesion) and few
connections between modules (low coupling).

 #intra_edges_i

37
#intra_edges_i + 1/2 x #inter_edges_i

Quality of a
solution =

sum of quality of
its non-empty

modules

Formulating Software Module
Clustering as an Optimisation Problem

(maximise)
Quality of module i =

Module 2 Module 3 Module 5

unit 1
unit 2

unit 4

unit 5

unit 3

Module 4 Module 1

Example of Hill-Climbing for
Software Module Clustering

38

Number of units N = 3

1. current_solution = generate initial solution randomly

current_solution
{2}{3}{1}

Module 2

unit 3

Module 3

unit 1

Module 1

unit 2

Connections between
units can be retrieved
automatically from the

software code.

Example of Hill-Climbing for
Software Module Clustering

39

Module 2

unit 3

Module 3

unit 1

2.1 generate neighbour solutions (differ from current
 solution by a single element)

All solutions with
a single unit
moving to a

different module

Module 1

unit 2

Module 2

unit 3

Module 3

unit 1

Module 1
unit 2

Module 2 Module 3

unit 1

Module 1
unit 2 unit 3

Module 2 Module 3
unit 1

Module 1

unit 2
unit 3

{}{2,3}{1}

{}{3}{1,2}

{2}{}{1,3}

current_solution
{2}{3}{1}

neighbours

Example of Hill-Climbing for
Software Module Clustering

40

2.2 best_neighbour = get highest quality neighbour of
 current_solution

Module 2

unit 3

Module 3

unit 1

Module 1

unit 2

Module 2

unit 3

Module 3

unit 1

Module 1
unit 2

Module 2 Module 3

unit 1

Module 1
unit 2 unit 3

Module 2 Module 3
unit 1

Module 1

unit 2
unit 3

quality = 0

quality = 0.8

quality = 0

quality = 0.5

neighbours
{}{2,3}{1}

{}{3}{1,2}

{2}{}{1,3}

current_solution
{2}{3}{1}

Example of Hill-Climbing for
Software Module Clustering

41

2.3 If quality(best_neighbour) <= quality(current_solution)
2.3.1 Return current_solution

Module 2

unit 3

Module 3

unit 1

Module 1

unit 2

Module 2

unit 3

Module 3

unit 1

Module 1
unit 2

Module 2 Module 3

unit 1

Module 1
unit 2 unit 3

Module 2 Module 3
unit 1

Module 1

unit 2
unit 3

quality = 0

quality = 0.8

quality = 0

quality = 0.5

neighbours
{}{2,3}{1}

{}{3}{1,2}

{2}{}{1,3}

current_solution
{2}{3}{1}

Example of Hill-Climbing for
Software Module Clustering

42

2.4 current_solution = best_neighbour

Module 2

unit 3

Module 3

unit 1

Module 1
unit 2 quality = 0.8

current_solution
{}{2,3}{1}

Further Reading
All material available from Reading Lists (http://readinglists.le.ac.uk/lists/
D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html)

Stuart J. Russell, Peter Norvig, John F. Canny
Artificial intelligence: a modern approach
Section 4.1: Local Search Algorithms and Optimization Problems - Hill-Climbing
Search
Pearson Education
2014

Brian S. Mitchell and Spiros Mancoridis
Using Heuristic Search Techniques to Extract Design Abstractions from Source Code
Sections 3 up to the end of section 3.1.1
Proceedings of the Genetic and Evolutionary Computation Conference
Pages 1375-1382
2002

43

http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html
http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html
http://readinglists.le.ac.uk/lists/D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html

