CO3091 - Computational Intelligence and Software Engineering

Lecture 02

Hill-Climbing

Leandro L. Minku

Overview

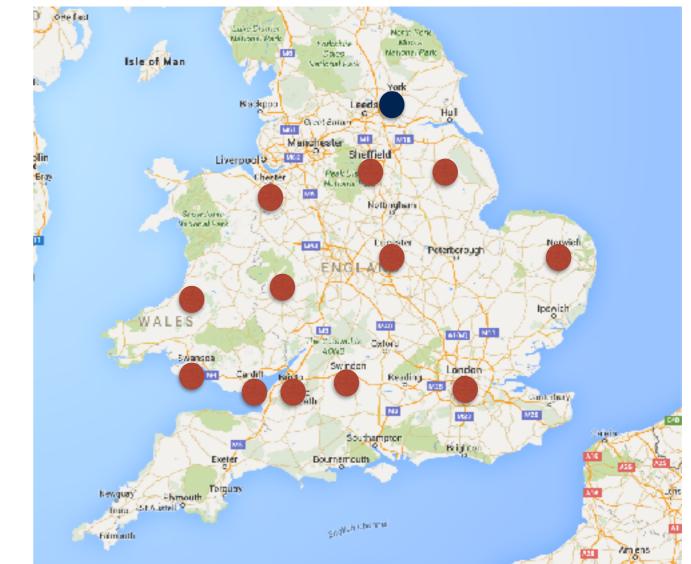
- Optimisation Problems
- Formulating Optimisation Problems
- Brute-Force Search
- Hill-Climbing
- Illustrative Example
- Example of Hill-Climbing for Software Module Clustering

Optimisation Problems

- Optimisation problems: to find a solution that achieves one or more pre-defined goals.
- Maximisation / minimisation problems.

Examples of Optimisation Problems

- Traveling Salesman
 Problem:
 - A salesman must travel passing through *N* cities.
 - Each city must be visited once.
 - He/she must finish where he/she was at first.
 - The path between each pair of cities has a distance (or cost).



Problem: find a sequence of cities that minimises traveling distance (or cost).

Examples of Optimisation Problems

• Bin packing problem:

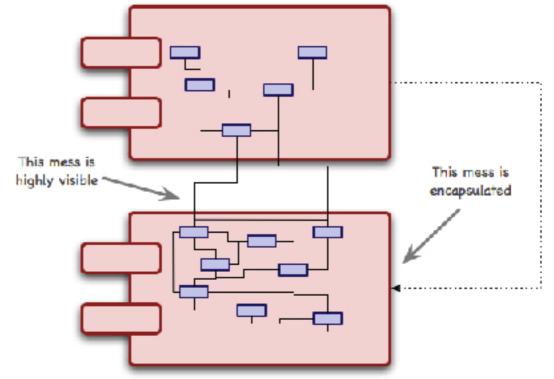
- Given bins with maximum volume V, which cannot be exceeded.
- We have *n* items to pack, each with a volume *v*.
- We must pack all items.

Problem: find an assignment of items to bins that minimises the number of bins used.

Photo from: http://www.tscargo.ca/images/cargo1.jpc

Example of Software Engineering Optimisation Problems

- Software Module Clustering:
 - Software is composed of several units, which can be organised into modules.
 - Well modularised software is easier to develop and maintain.
 - As software evolves, modularisation tends to degrade.



mage from: http://www.kirkk.com/modularity/wp-content/uploads/2009/12/EncapsulatingDesign1.jpg

Problem: find a grouping of units into modules that maximises the quality of modularisation.

Formulating Optimisation Problems

- Design variables represent a solution.
- Design variables define the search space of candidate solutions.
- [Optional] Solutions must satisfy certain constraints.
- Objective function defines our goal.
 - Can be used to evaluate the quality of solutions.
 - Function to be optimised (maximised or minimised).

Traveling Salesman Problem Formulation

- Design variables represent a solution.
 - Vector **x** of size *N*, where *N* is the number of cities.
 - **x** represents a sequence of cities to be visited.
- Design variables define the search space of candidate solutions.
 - All possible sequences of cities, where each city appears only once.
- [Optional] Solutions must satisfy certain constraints.
 - Each city must appear once and only once in **x**.
 - Salesman must return to the city of origin.
- Objective function defines our goal.
 - Total_distance(x) = sum of distances between consecutive cities in x + distance from last city to the origin.
 - To be minimised.

Brute-Force Search

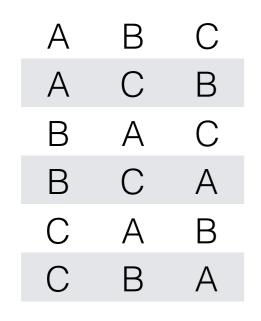
- Brute-force search = exhaustive search = generate and test.
- Systematically enumerate all possible candidates for the solution and check which one is the best.
- Guaranteed to find the optimal solution.
- Can we use brute-force search to solve optimisation problems?

Problem: high computational complexity.

Brute-Force for Traveling Salesman Problem

A solution is a sequence of cities, where each city appears only once.

- Number of cities N = 2
 - A B B A
- Number of cities N = 3



Our sequences of cities are permutations.

Number of permutations is factorial: N!

Brute-Force for Traveling Salesman Problem

- Factorial time complexity:
 - 2! = 2
 - 3! = 6
 - ...
 - 10! = 3,628,800
 - 20! = 2,432,902,008,176,640,000 $\approx 2.43 \times 10^{18}$
- Assume that 10⁹ permutations take one second.
 - $2!/10^9 = 0.00000002s$
 - $3!/10^9 = 0.00000006s$
 - . . .
 - $10!/10^9 = 0.0036288s$
 - $20!/10^9 \approx 2,432,902,008s \approx 77$ years

Brute-force works only for very small problems.

Solving Optimisation Problems Using Computational Intelligence

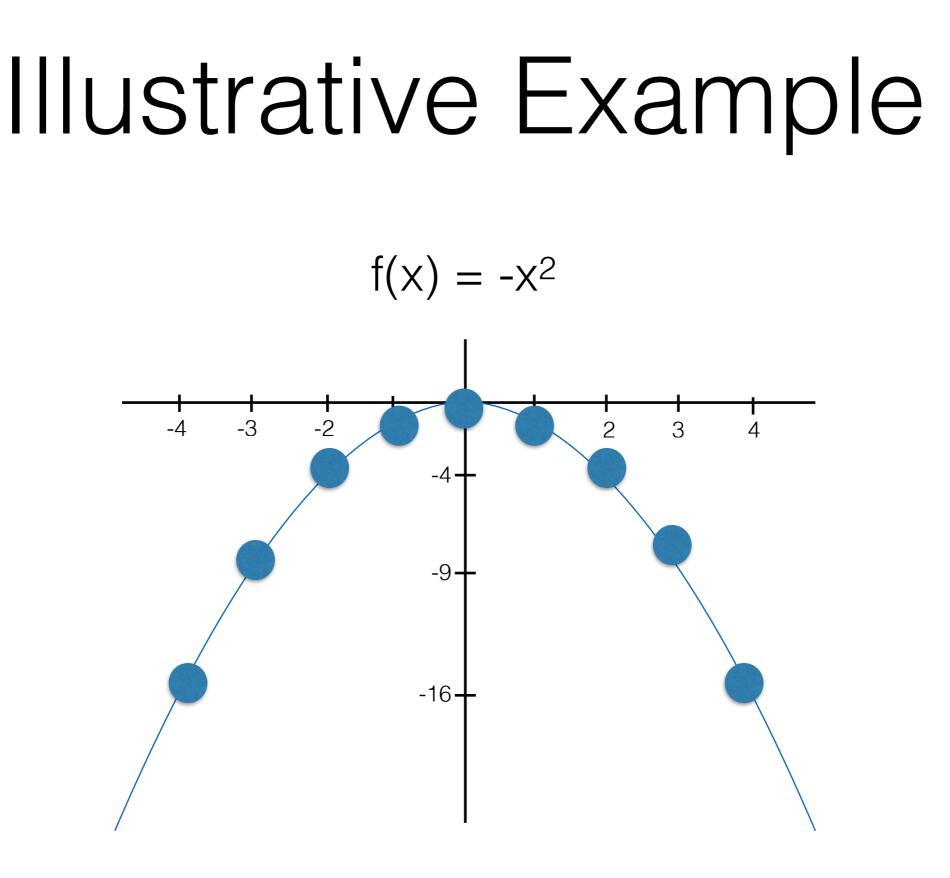
- Heuristic algorithms, which aim to find good solutions to problems in a reasonable amount of time.
 - Make informed guesses to guide the search about the direction to a goal.
 - Typically not guaranteed to find the optimum, but able to find sufficiently good or near-optimal solutions.
- Good for:
 - Large problems, where we cannot afford enumerating all possible solutions to guarantee optimality.
 - Problems where no exact optimisation algorithm exists that can solve the problem in polynomial time.
 - Problems where sufficiently good or near-optimal solutions are acceptable.

Hill-Climbing

Hill-Climbing (assuming maximisation)

- 1. current_solution = generate initial solution randomly
- 2. Repeat:
 - 2.1 generate neighbour solutions (differ from current solution by a single element)
 - 2.2 best_neighbour = get highest quality neighbour of current_solution
 - 2.3 If quality(best_neighbour) <= quality(current_solution) 2.3.1 Return current_solution
 - 2.4 current_solution = best_neighbour

- Design variables represent a solution.
 - · $\mathbf{x} \in \mathbf{Z}$
- Design variables define the search space of candidate solutions.
 - Our search space are all integer numbers.
 - This also defines our neighbourhood.
- Objective function defines our goal and represents the quality of a solution.
 - Can be used to evaluate the quality of solutions.
 - Function to be optimised (maximised or minimised).
 - $f(x) = -x^2$, to be maximised
- [Optional] Solutions must satisfy certain constraints.
 - · None



Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

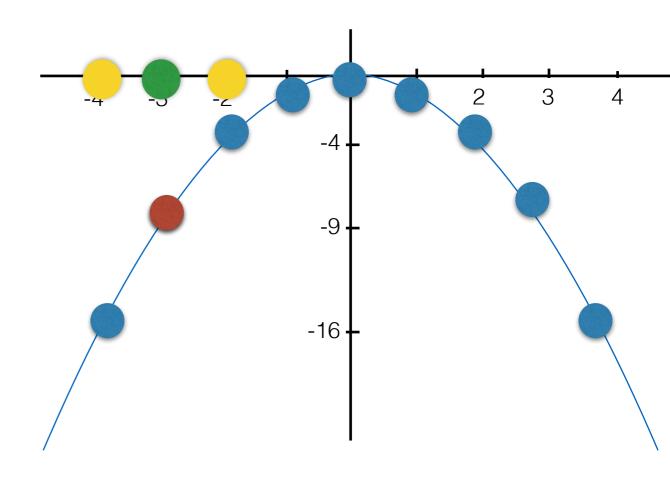
2. Repeat:

2.1 generate neighbour solutions(differ from current solution by a single element)

2.2 best_neighbour = get highest quality neighbour of current_solution

2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution



Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

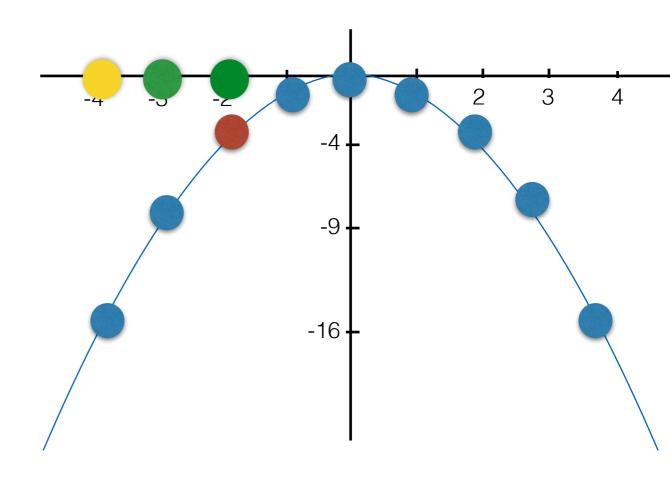
2. Repeat:

2.1 generate neighbour solutions(differ from current solution by a single element)

2.2 best_neighbour = get highest quality neighbour of current_solution

2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution



Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

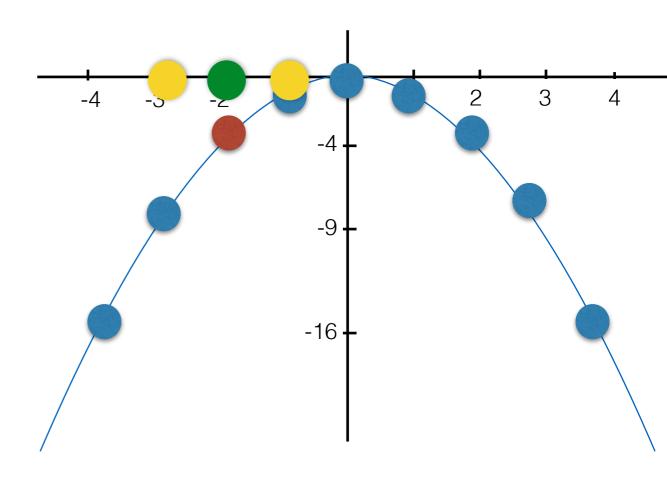
2. Repeat:

2.1 generate neighbour solutions(differ from current solution by a single element)

2.2 best_neighbour = get highest quality neighbour of current_solution

2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution



Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

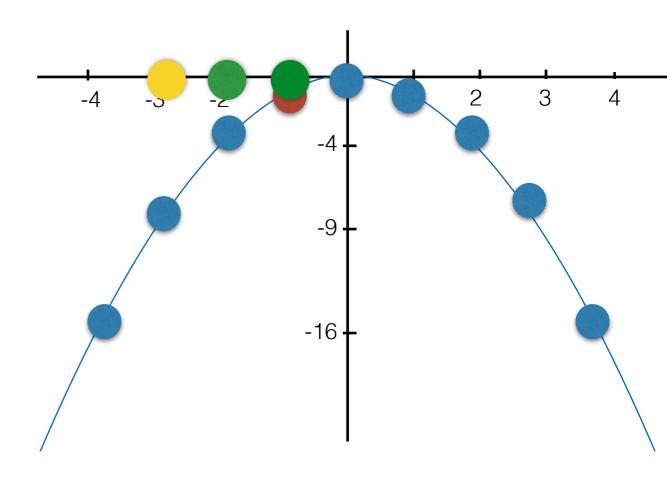
2. Repeat:

2.1 generate neighbour solutions(differ from current solution by a single element)

2.2 best_neighbour = get highest quality neighbour of current_solution

2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution



Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

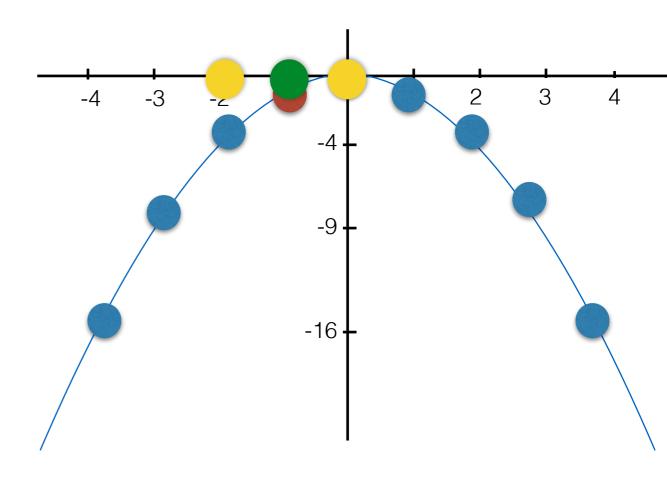
2. Repeat:

2.1 generate neighbour solutions(differ from current solution by a single element)

2.2 best_neighbour = get highest quality neighbour of current_solution

2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution



Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

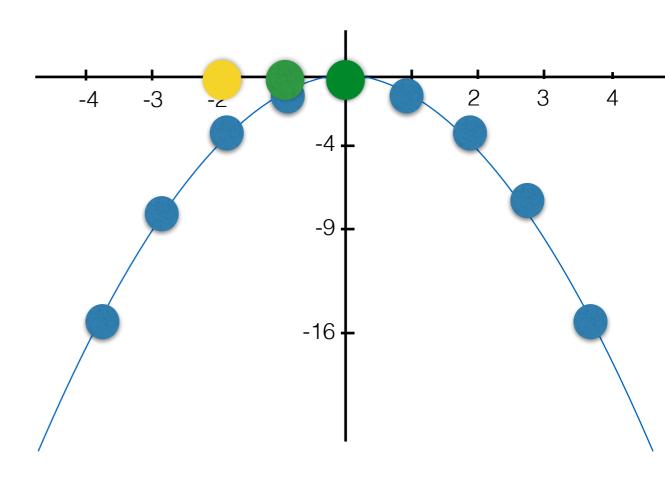
2. Repeat:

2.1 generate neighbour solutions(differ from current solution by a single element)

2.2 best_neighbour = get highest quality neighbour of current_solution

2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution



Hill-Climbing (assuming maximisation)

1. current_solution = generate initial solution randomly

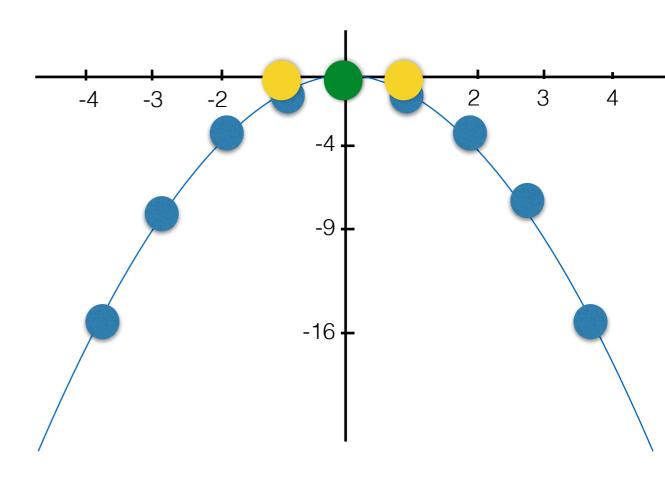
2. Repeat:

2.1 generate neighbour solutions(differ from current solution by a single element)

2.2 best_neighbour = get highest quality neighbour of current_solution

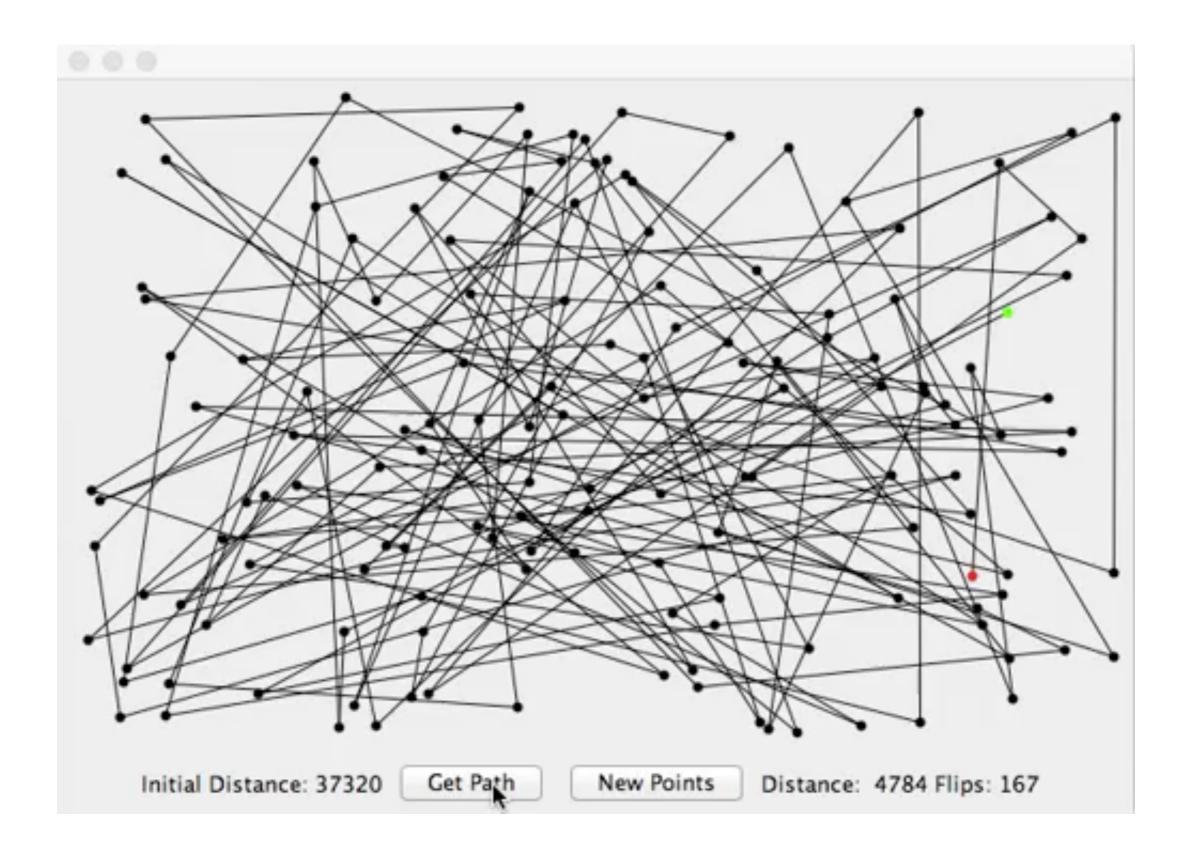
2.3 If quality(best_neighbour) <= quality(current_solution)

2.3.1 Return current_solution



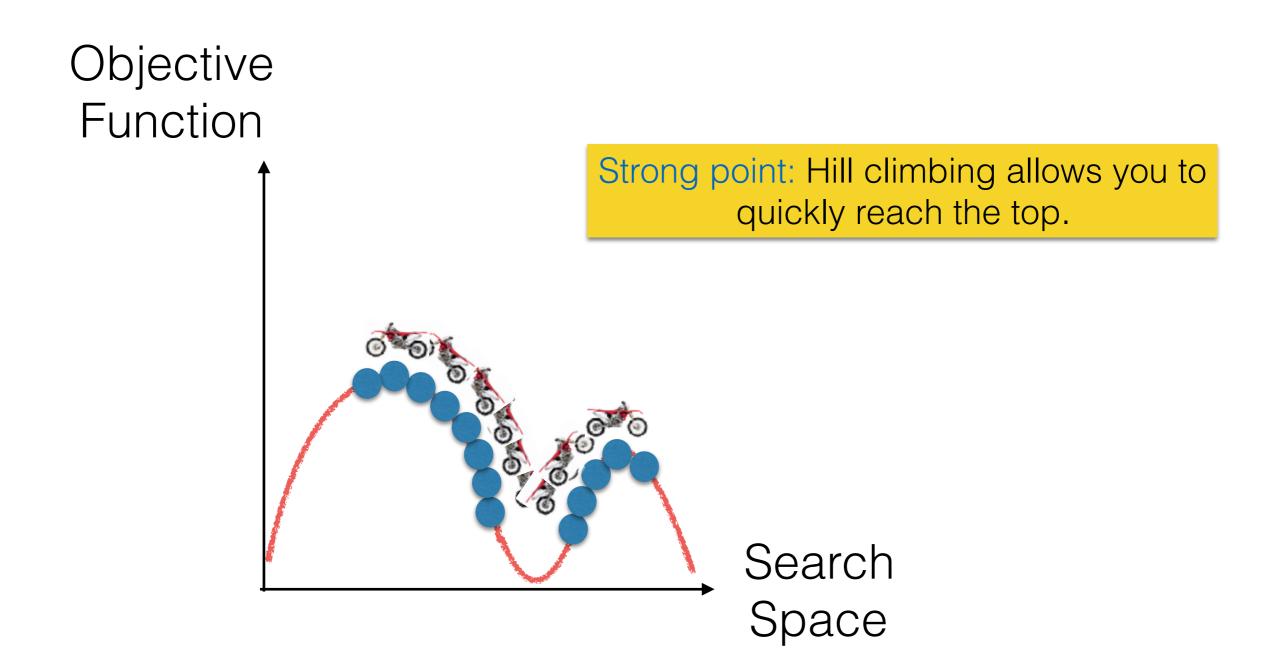
Traveling Salesman Problem Formulation

- Design variables represent a solution.
 - Vector **x** of size *N*, where *N* is the number of cities.
 - **x** represents a sequence of cities to be visited.
- Design variables define the search space of candidate solutions.
 - All possible sequences of cities, where each city appears only once.
 - Neighbourhood: reverse path between two cities in the sequence.
- [Optional] Solutions must satisfy certain constraints.
 - Each city must appear once and only once in **x**.
 - Salesman must return to the city of origin.
- Objective function defines our goal.
 - Total_distance(x) = sum of distances between consecutive cities in x + distance from last city to the origin.
 - To be minimised.

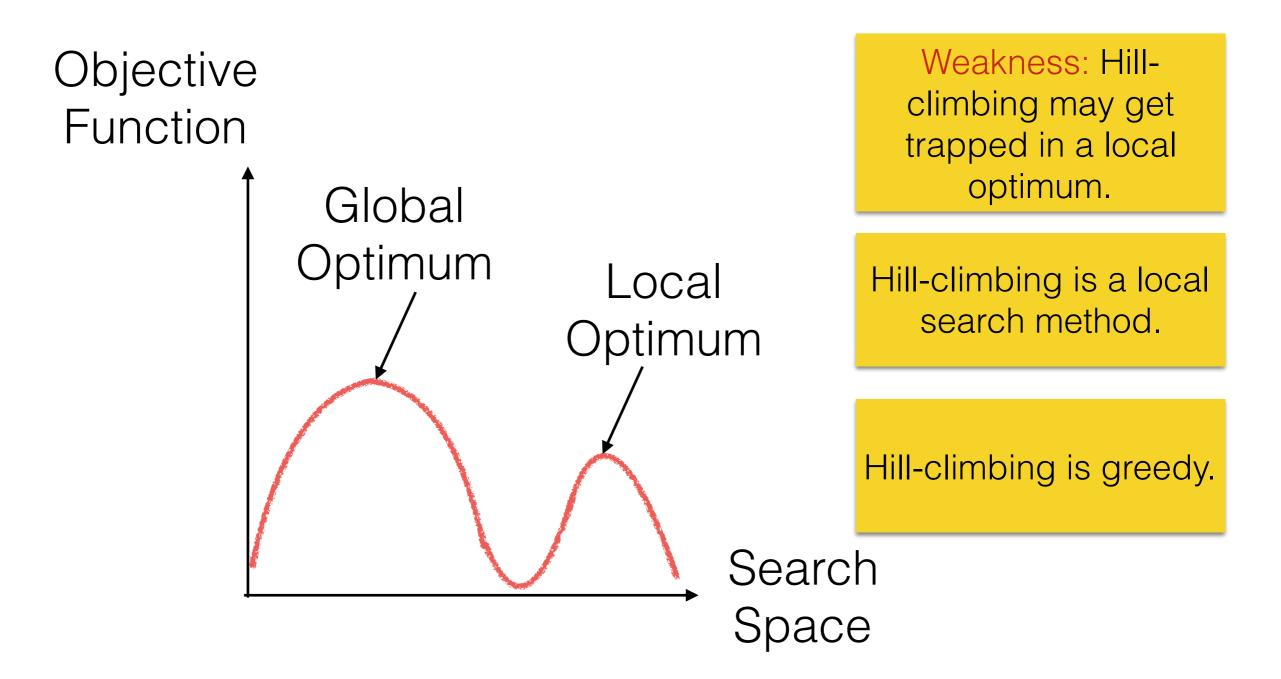


[Video posted by sarahbau: <u>https://youtu.be/3TrnjUKeFg8</u>

General Idea



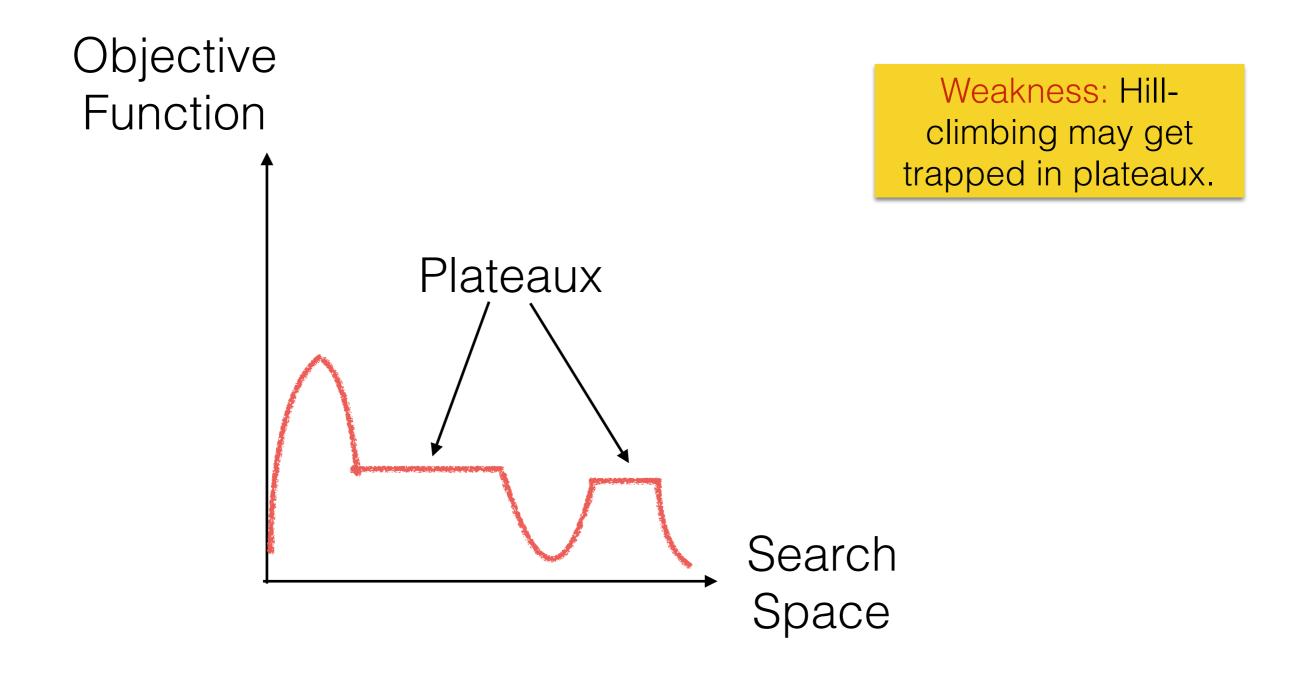
Greedy Local Search



Greedy Local Search

Objective Function Search Space

Greedy Local Search



The success of hill-climbing depends on the shape of the quality function for the problem instance in hands.

Summary

- How to formulate optimisation problems.
- Brute-force search.
- How hill-climbing works.
- Problems of hill-climbing.

Examples of Software Engineering Optimisation Problems

- Hill-climbing has been successfully applied to software module clustering.
- Software Module Clustering:
 - Software is composed of several units, which can be organised into modules.
 - Well modularised software is easier to develop and maintain.
 - As software evolves, modularisation tends to degrade.

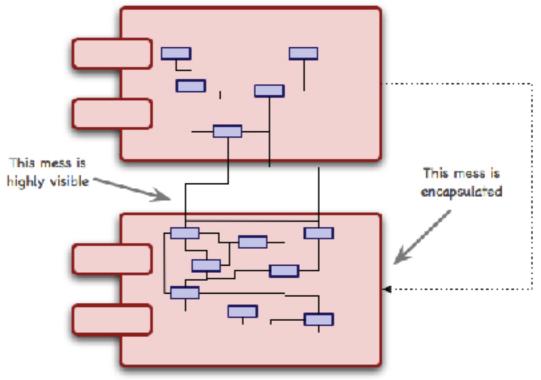


Image from: http://www.kirkk.com/modularity/wp-content/uploads/2009/12/EncapsulatingDesign1.jpg

Problem: find a grouping of units into modules that maximises the quality of modularisation.

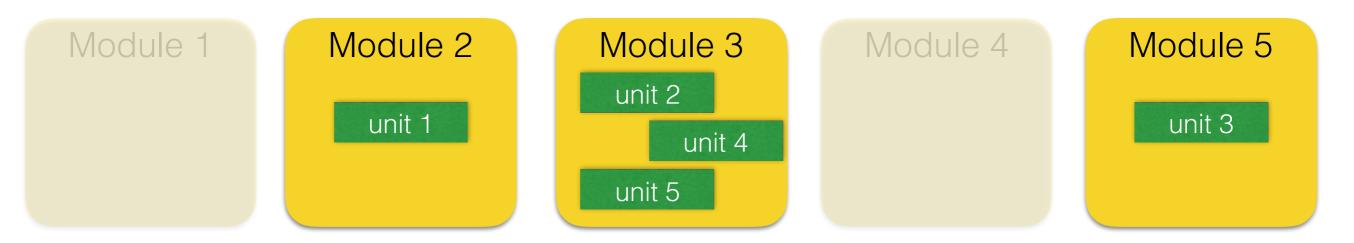
Formulation Optimisation Problems

- Design variables represent a solution.
- Design variables define the search space of candidate solutions.
- Objective function defines our goal.
 - Can be used to evaluate the quality of solutions.
 - Function to be optimised (maximised or minimised).
- [Optional] Solutions must satisfy certain constraints.

Formulating Software Module Clustering as an Optimisation Problem

Design variable: grouping of units into modules.

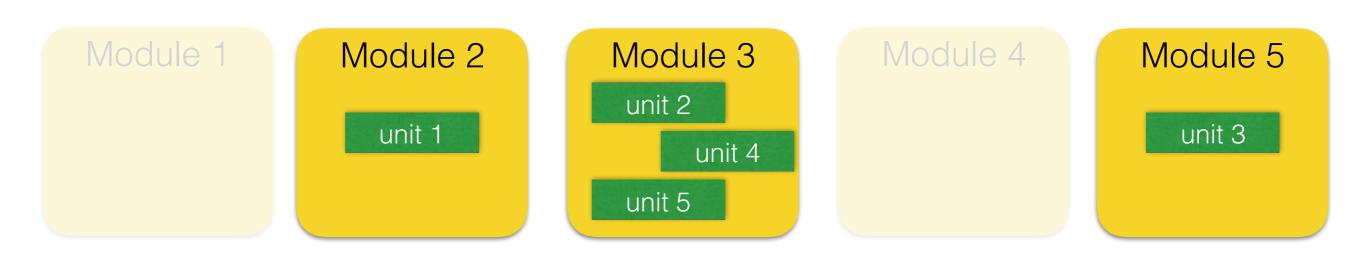
- Consider that we have N units.
- We have at most *N* modules.
- Our variable could be a list of *N* modules, each of which is a set of units.



E.g., if we have N=5, a possible grouping is {{},{1},{2,4,5},{},{3}}.
 Search space: all possible groupings.

Neighbourhood

• A neighbour would be a solution where a single unit moves from one module to another. E.g.:



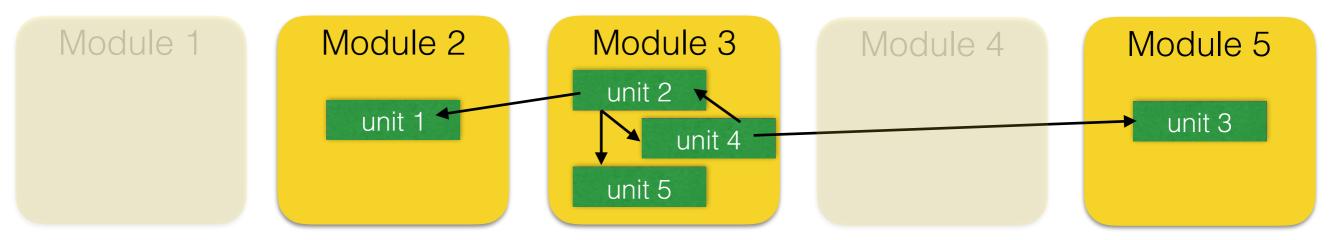
Formulating Software Module Clustering as an Optimisation Problem

Constraints: N/A

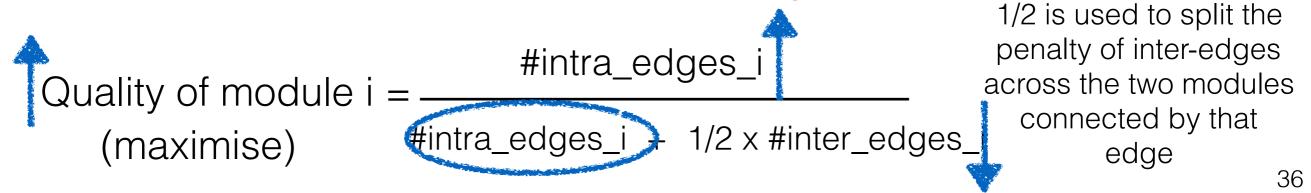
Objective function: quality of modularisation (to be maximised).

How to compute quality?

What does good quality mean?

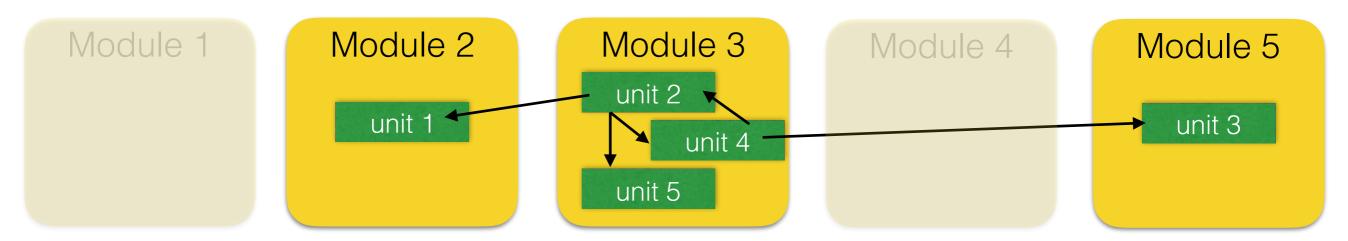


Lots of connections inside a module (high cohesion) and few connections between modules (low coupling).

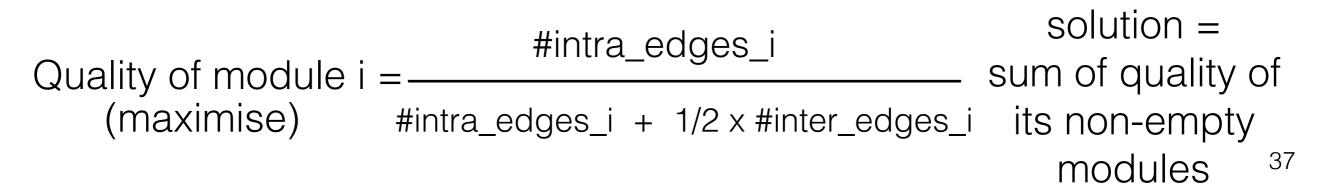


Formulating Software Module Clustering as an Optimisation Problem

Objective function: quality of modularisation (to be maximised). How to compute quality? What does good quality mean?

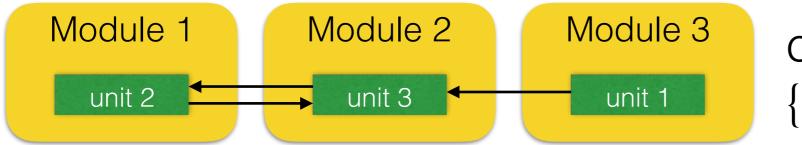


Lots of connections inside a module (high cohesion) and few connections between modules (low coupling). Quality of a



Number of units N = 3

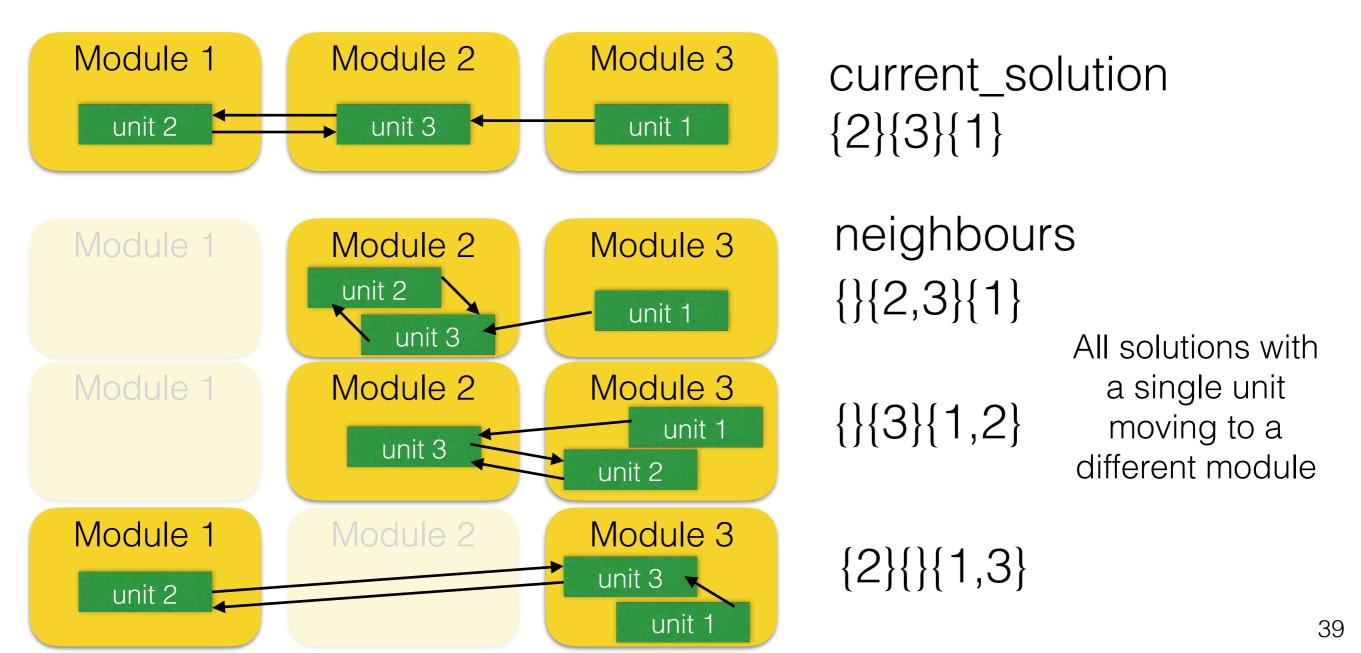
1. current_solution = generate initial solution randomly



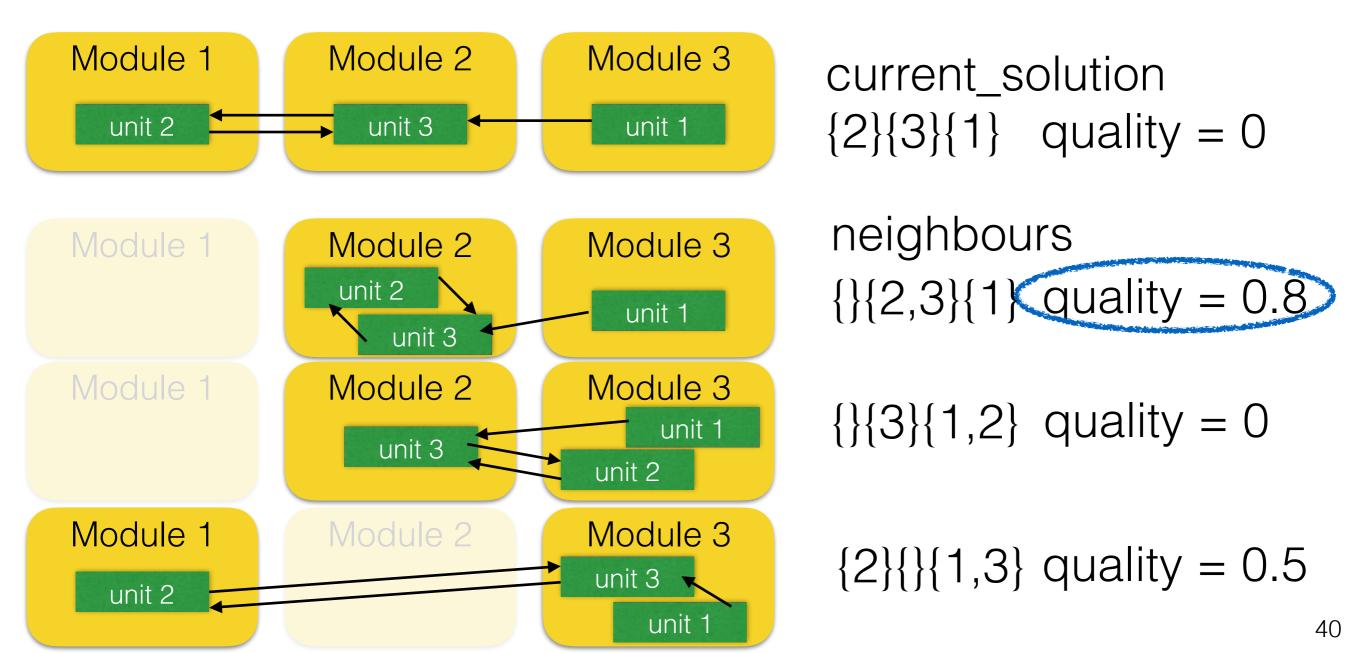
current_solution {2}{3}{1}

Connections between units can be retrieved automatically from the software code.

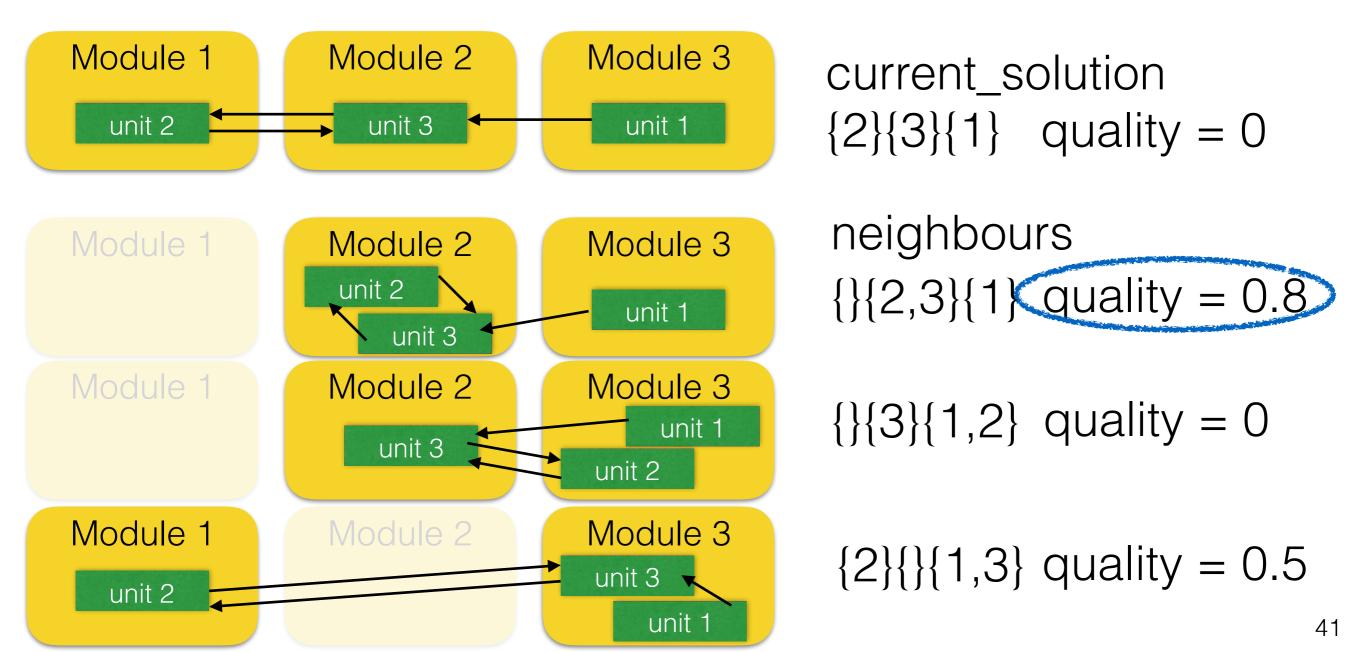
2.1 generate neighbour solutions (differ from current solution by a single element)

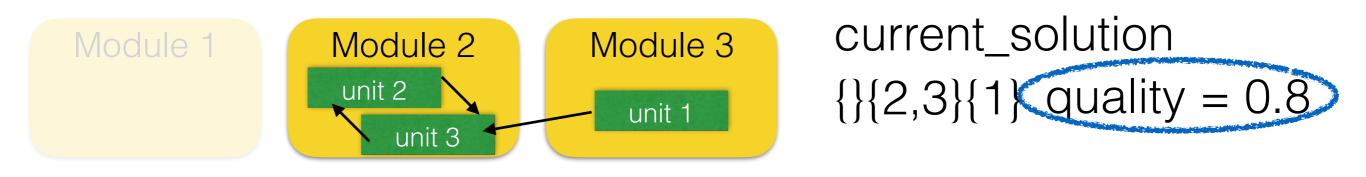


2.2 best_neighbour = get highest quality neighbour of current_solution



2.3 If quality(best_neighbour) <= quality(current_solution) 2.3.1 Return current_solution





Further Reading

All material available from Reading Lists (<u>http://readinglists.le.ac.uk/lists/</u> D888DC7C-0042-C4A3-5673-2DF8E4DFE225.html)

Stuart J. Russell, Peter Norvig, John F. Canny Artificial intelligence: a modern approach Section 4.1: Local Search Algorithms and Optimization Problems - Hill-Climbing Search Pearson Education 2014

Brian S. Mitchell and Spiros Mancoridis Using Heuristic Search Techniques to Extract Design Abstractions from Source Code Sections 3 up to the end of section 3.1.1 Proceedings of the Genetic and Evolutionary Computation Conference Pages 1375-1382 2002