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Supplementary Material to “Evolving Memristive
Reservoir”

Xinming Shi, Leandro L. Minku IEEE Senior Member, and Xin Yao IEEE Fellow

Abstract—This supplementary material contains the pseduo
codes of crossover and mutation operations, the evolved mem-
ristive reservoir circuits and their corresponding configuration,
the parameter setting of the memristor model, the preliminary
experiments to our proposed preprocessing steps, and the pa-
rameter setting of SOTA models. We also repeat some necessary
contents here for easy reference and understanding.

I. PSEUDO CODE OF CROSSOVER OPERATION

Algorithm 1 displays the pseudocode of the crossover
operation. As for the crossover of the reservoir’s genome, the
parent could be regarded as the product of Wres and Wbool

of one individual. For the crossover operation of parents with
different sizes, the size of the offspring’s reservoir should be
determined first. There are two alternatives for determining
the size of the offspring’s reservoir, which are to follow the
parent with a larger size and to choose the size of the parent
with better fitness, respectively. The crossover probability is
Pc, which is to decide whether to take the crossover operation.
Besides the determination of offspring’s size, the weights value
of the offspring’s reservoir is determined by the following rule
[1]:
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II. PSEUDO CODE OF MUTATION OPERATION

In order to encourage diversity of reservoirs during the
evolution, five types of mutation operators are applied to the
evolution.

• Weight mutation: For the values in Wres corresponding
to the position where Wbool is not zero, there will be
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Algorithm 1 Pseudo code of crossover crossover()
Input: genomes in the current generation, Pc

Output: genomes after crossover operations
1: parent1, parent2 selection by tournament strategy
2: if random() < Pc then
3: if parent1.size()! = parent2.size() then
4: if parent1.size() > parent2.size() then
5: temp off ← parent1
6: else
7: temp off ← parent2
8: end if
9: else

10: if parent1.fitness > parent2.fitness then
11: temp off ← parent1
12: else
13: temp off ← parent2
14: end if
15: end if
16: for each element wij in temp off.size() do
17: if wij is in overlapped area then
18: Set wij based on Eq. (1), where w1

ij and w2
ij

are the corresponding elements from parent1 and
parent2, respectively

19: else
20: Discard wij

21: end if
22: end for
23: Return temp off

24: end if
25: Return parent1

the probability Pm to mutate them to a new value taken
uniformly at random within the allowable range. The
pseudo code of weight mutation is given in Algorithm 2.

• Add node: To add a node to the reservoir and initialize
its corresponding Wbool matrix to 0. The pseudo code of
add node is given in Algorithm 3

• Delete node: To calculate the weight sum of Wres

associated with each node, and delete the node with the
smallest weight sum.

• Jump mutation: The jump step of CRJ structure will
be mutated. The value range of the step is between 2
and N/2. According to the new jump step, Wbool will be
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updated, so that the CRJ structure could be rebuilt.
• Input/GND node mutation: The position of reservoir

nodes connected to the input signal and GND will be
mutated to increase circuit diversity picking a new posi-
tion uniformly at random, since different terminals of the
circuit connected to Input or GND could be a different
circuit.

Algorithm 2 Pseudo code of weight mutation
mutate_weight()
Input: genomes that will be taken the mutate_weight(),

Pmem1

Output: genomes after mutate_weight()
1: for i in N do
2: for j in N do
3: if random() < Pmem1 then
4: Wmem[i][j]← random.uniform(0, 1)

5: end if
6: end for
7: end for
8: Return genomes with mutated Wres

Algorithm 3 Pseudo code of add node mutate_add()
Input: genomes that will be taken the mutate_add()
Output: genomes after mutate_add ()

1: Initializing temp row mem in [0, 1] with size 1 × N .
Initializing temp con mem in [0, 1] with size (N+1)×1

2: Stacking Wres with temp row mem

3: Stacking Wres with temp con mem;
4: Initializing temp bool with 0
5: Stacking Wbool with temp bool;
6: N+=1
7: Return genomes with added node

Algorithm 4 Pseudo code of delete node
mutate_delete()
Input: genomes that will be taken the mutate_delete()
Output: genomes after mutate_delete ()

1: index← a random index within N

2: Deleting one row with index of W bool

3: Deleting one column with index of W bool

4: Deleting one row with the same index of W res

5: Deleting one column with the same index of W res

6: N-=1
7: Return genomes with deleted node

III. THE EVOLVED MEMRISTIVE RESERVOIR CIRCUITS AND

THEIR CORRESPONDING CONFIGURATION

This presents the evolved memristive reservoir circuits and
their corresponding configuration, which is shown in Figure. 1.

Algorithm 5 Pseudo code of jump mutation
mutate_jump()
Input: genomes that will be taken the mutate_jump()
Output: genomes after mutate_jump ()

1: step← a random step between (2, N
2 )

2: for i in (0, N − 1) do
3: W bool[i][i+ 1] = 1

4: start=0
5: while (start+ step) ≤ (N − 1) do
6: W bool[start][start+ step] = 1

7: W bool[start+ step][start] = 1

8: start+=step
9: end while

10: end for
11: Return genomes with jump mutation

Algorithm 6 Pseudo code of input or GND mutation
mutate_In/GND()

1: index ← a random index of the terminal list IN/GND.
2: a← a random number between (1, N)
3: while a in the terminal list of input or GND do
4: a← a random number between (1, N)
5: end while
6: The terminal in IN/GND with index ← a

7: Return genomes with mutated the terminals of connect-
ing Input and GND.

Fig. 2 shows the superposition between the actual outputs of
our proposed memristive reservoir vs corresponding targets.
They show that the signal generated by our proposed mem-
ristive reservoir circuit is mimicking the desired signal well.

IV. MEMRISTOR MODEL CHARACTERISTICS AND

PARAMETER SETTING

This section provides the memristor model characteristics
and corresponding parameter settings. Table I introduces the
parameter meaning and setting of the applied memristor model
[2]. They were adapted from the parameters of the bipolar
model of the memristor model in [2] by being tuned further
based on preliminary circuit simulation to ensure the memris-
tors could generate the fading dynamics within our simulated
time window (0.5s) one by one.

Regarding preliminary circuit simulation, it includes the
following steps:

• Step 1: The range of the input signal has been limited to
(2.5V, 5V ). Therefore, we first apply the pulse with the
minimum voltage 2.5V as input to the embryo circuit.

• Step 2: Check if the fading state of the memristor current
can be observed in the given time window, which is 0.5s.

• Step 3: For each parameter related to the fading effect
(τ , σ, δ, θ), repeat steps 3.1 and 3.2:
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Fig. 1. Visualization of memristive reservoir topology and equivalent circuits. (a) Narma-10; (b) Nonlinear audio; (c) ARFIMA series; (d) Tree ring; (e) DJI
(f) Santa Fe laser.

• Step 3.1: If no fading effect is observed, this means that
the parameter is set too large, requiring more simulation
time than 0.5s. Therefore, the parameter is tuned by
decreasing it by 1% of its original value.

• Step 3.2: If the fading effect is observed sharply, this
means that the parameter is set too large, requiring more
simulation time than 0.5s. Therefore, the parameter is
tuned by increasing it by 1% of its original value.

• Step 4: Based on these tuned parameters, we then apply
the pulse with maximum voltage 5V as input to the
embyro circuit. Steps 2 and 3 are repeated to further tune
these parameters based on the 5V voltage.

• Step 5: α, β, γ, λ are related to the rate of state switching.
Then, similar steps as Step 3 and 4 will be applied to tune
these parameters.

The memristor model we have applied in this work has
the forgetting effect, which will be applied to implement the
short-term memory effect of the reservoir in this work. Its

mathematical model is shown as follows:

i = (1− x)α[1− e−βv] + xγsinh(δv), (2)

ẋ = (λ[eη1v − eη2v]− x− θ

τ
)f(x), (3)

ε̇ = σ(eη1v − eη2v)f(x), (4)

τ̇ = θ(eη1v − eη2v), (5)

f(x) =

(sign(v) + 1)(sign(1− x) + 1) + (sign(−v) + 1)(sign(x) + 1)

4
,

(6)
Figure. 3 shows the circuit simulation result of the memris-

tor state variable x under the pulse stimulus, where Figure. 3
(b) is our applied memristor. During the phase 2 and 4, when
there is no pulse stimulus, the memristor state variable will
fade toward the initial state.

This memristor model can also describe four different types
of characteristics by setting different parameters, which are



4

(a)

(b)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 2. Actual outputs of our proposed memristive reservoir vs corresponding targets. (a) Wave generation task; (b) Narma-10; (c) Nonlinear audio; (d)
ARFIMA series; (e) Tree ring; (f) DJI (g) Santa Fe laser.

TABLE I
THE PARAMETERS OF APPLIED MEMRISTOR MODEL

Model parameters [2] Meaning Value

α Prefactor corresponding to barrier height for Schottky barrier 1e-4
β Exponent corresponding to depletion width for Schottky barrier 0.2
γ Prefactor corresponding to barrier height for tunneling 1e-3
δ Exponent corresponding to effective tunneling distance in the conducting region 1
ε Retention of the Ohmic-like conducting channel 0.1
η1 Interface effect with positive voltage 4
η2 Interface effect with negative voltage 2
λ Positive constant to control the change rate of x 0.005
τ Diffusion time 0.5
θ Positive-valued coefficient for τ 0.01
σ Positive-valued coefficient for ε 0.0001

the bipolar, the unipolar, the bipolar with forgetting effect, the
reversible bipolar and unipolar. The detailed definition of them
are the following:

• The bipolar: The memristance increases and decreases by
different polar voltages.

• The unipolar: The memristance can increase and decrease
by the same polar voltage.

• The bipolar with forgetting effect: The memristance in-
creases and decreases by different polarity of voltage, but
the memristance will spontaneously decay at the mean
time, even with no voltage.

• The reversible bipolar and unipolar: Memristor will be-
have as the bipolar memristor first, but after some itera-
tions, it will turn to be a unipolar memristor.

The parameters setting for these four different types of the
memristor are listed in the following Table II.

The window functions f(x) used in different types of
memrsitor are listed as follow:

TABLE II
THE PARAMETER SETTING AND CORRESPONDING DIFFERENT

CHARACTERISTICS

Parameters Bipolar Bipolar with forgetting effect Unipolar Reversible
α 0.5e-5 0.5e-7 0.5e-4 0.5e-4
β 0.5 0.01 0.01 0.01
γ 25e-5 2e-7 3e-4 3e-4
δ 1 4 1 1
λ 1 0.13 0.5 0.05
η1 1 4 3 1
η2 2 2 3 1
θ 0.04 0.04 0.0001 0.03
σ 0.03 0.03 0.03 0.0001
ε 0.1 0.1 0.01 0.001
τ 10,000 0.15 0.05 0.5

Window function Function (7) Function (9) Function (8) Function (9)

f(x) = 1− (2x− 1)2p (7)

f(x) = 1− (x− stp(−i))2p stp(i) =

{
1 i ≥ 0

0 i < 0
(8)
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Fig. 3. The circuit simulation result of the memristor state variable x under the
pulse stimulus. (a) Input pulse; (b) Forgetting memristor model state variable
x; (c) HP memristor model state variable x.

f(x) =

(sign(v) + 1)(sign(1− x) + 1) + (sign(−v) + 1)(sign(x) + 1)

4
(9)

V. PRELIMINARY EXPERIMENTS TO OUR PROPOSED

PREPROCESSING STEPS

This section presents preliminary experiments to our pro-
posed prepossessing steps, where the result comparisons of
removing and applying our proposed preprocessing steps are
listed in Table III. According to the results shown in Table III,
our proposed preprocessing steps are required and play an
important role to the reservoir performance.

When this preprocessing step is removed, a performance
comparison table is listed in Table III. As we can see, if
there is no preprocessing step that transforms from one signal
of one dimension into multi-signal, the performance of the
reservoir will degrade, which indicates that this preprocessing
step plays an important role in the reservoir regarding as the
input masking operation.

VI. THE PARAMETER SETTING OF SOTA MODELS

In order to make a fair comparison with SOTA models,
we have applied the different optimization methods to the
parameter selection of SOTA models, the specific parameter
settings of the SOTA models are given in Table IV and
Table V.

The global parameters of the baseline models will be opti-
mized, such as the input scaling factor IS, reservoir scaling
factor RS, leaky rate LR, spectral radius ρ, connectivity C

for ESN with random topology, D and β for ESN with small-
world topology, where C denotes the connection probability
of a random reservoir, D denotes the number of the closest
neighboring nodes, β denotes the probability of adding new
connection to each connection. As for the vanilla RNN, there
are also several parameters that will be optimized, including
the sparseness of the connection p, the spectral scaling factor
g, and the leaky rate LR. As for the vanilla LSTM, win size

will be optimized. Regarding the improved variants of RNN
and LSTM, mRNN and mLSTM, there is one more memory
parameter, k, which is needed to be optimized. Table IV
gives the parameter setting of the ESN with random topology
and ESN with small-world topology, and the corresponding
comparison with our proposed method. Table V gives the
parameter setting of vanilla RNN, vanilla LSTM, mRNN
and mLSTM, and their corresponding comparison with our
proposed method.
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TABLE III
PERFORMANCE (RMSE) COMPARISONS WITH AND WITHOUT PREPROCESSING

Our proposed memrsitve reservoir Wave Narma-10 DJI Audio Tree ring ARF Santa
Without preprocessing 0.1283 0.0925 0.1765 0.1298 0.0933 0.1981 0.1546

With preprocessing 0.0099 0.0239 0.0657 0.0493 0.0641 0.0743 0.0582

TABLE IV
COMPARISONS BETWEEN OUR PROPOSED METHOD AND OTHER OPTIMIZATION METHOD TO BASIC ESN

Optimization methods Description Task
Topology

RMSE with fixed
evaluation number (4000)

Circuit feasibility
& scalability

ESN-random ESN-small world ESN-random ESN-small world

Software

Reservoir

Optimization

Grid search
Optimizing

global
parameters

Narma10

IS=0.0563,
RS=0.5838,
LR=0.4133,
ρ=0.8039
C=0.6532

IS=0.7930,
RS=0.6759,
LR=0.3912,
ρ=0.2495

D=57,β=0.3425

0.0778 0.0723

No

Audio

IS=0.8498,
RS=0.5283,
LR=0.5247,
ρ=0.3635
C=0.7365

IS=0.5380,
RS=0.5453,
LR=0.5849,
ρ=0.4113

D=77,β=0.4535

0.1321 0.1321

DJI

IS=0.6382,
RS=0.2706,
LR=0.6522,
ρ=0.4954
C=0.7242

IS=0.6405,
RS=0.4043,
LR=0.6197,
ρ=0.1685

D=55,β=0.4323

0.1357 0.1353

DGR

IS=0.9543,
RS=0.6312,
LR=0.8320,
ρ=0.7643
C=0.6452

IS=0.8974,
RS=0.5439,
LR=0.5898,
ρ=0.2334

D=65,β=0.6115

0.8213 0.8300

ARF

IS=0.7925,
RS=0.3953,
LR=0.5048,
ρ=0.7036
C=0.4406

IS=0.7538,
RS=0.4588,
LR=0.5165,
ρ=0.7381

D=76,β=0.4234

1.5527 1.5120

Differential
evolution

Optimizing
global

parameters

Narma10

IS=0.5050,
RS=0.4058,
LR=0.7927,
ρ=0.9332
C=0.6873

IS=0.6239,
RS=0.2648,
LR=0.4944,
ρ=0.53145

D=79,β=0.3950

0.0415 0.0413

No

Audio

IS=0.8180,
RS=0.5286,
LR=0.5251,
ρ=0.9997
C=0.1947

IS=0.5204,
RS=0.5452,
LR=0.5868,
ρ=0.9996

D=46,β=0.5868

0.0725 0.0725

DJI

IS=0.8180,
RS=0.5286,
LR=0.5251,
ρ=0.9997
C=0.1947

IS=0.7021,
RS=0.1572,
LR=0.3977,
ρ=0.2834

D=53,β=0.4321

0.1234 0.1219

DGR

IS=0.8011
RS=0.3915,
LR=0.9434,
ρ=0.6732
C=0.8964

IS=0.7891,
RS=0.5645,
LR=0.7881,
ρ=0.5433

D=71,β=0.8362

0.8420 0.8433

ARF

IS=0.9231,
RS=0.4896,
LR=0.4832,
ρ=0.7856
C=0.5535

IS=0.3827,
RS=0.5294,
LR=0.5209,
ρ=0.7290

D=58,β=0.8171

1.3950 1.3978

Physical

Reservoir

Optimization

Manual
optimization

Optimizing
the physical
reservoir by

experts

The parameter selection and performance are highly relied on the experts’ experience. Yes

Ours
Optimizing

configuration
signals

Narma10
Adaptive sparse topology based on

the reconfigurable architecture

0.0239

Yes
Audio 0.0493

DJI 0.0657
DGR 0.9892
ARF 0.0743



7

TABLE V
COMPARISONS BETWEEN OUR PROPOSED METHOD AND OTHER OPTIMIZATION METHODS TO VANILLA RNN AND LSTM, MRNN AND MLSTM

Optimization methods Description Task
Methods

RMSE with fixed
evaluation number (4000)

Circuit feasibility
& scalability

vanilla RNN vanilla LSTM vanilla RNN vanilla LSTM

Software

Reservoir

Optimization

Grid search
Optimizing

global
parameters

Narma10
p=0.8932,
g=0.7124,

LR=0.5892
win size=14 0.0448 0.0415

No

Audio
p=0.6291,
g=0.8968,

LR=0.9237
win size=26 0.0277 0.0393

DJI
p=0.9347,
g=0.7752,

LR=0.8454
win size=35 0.2605 0.2492

DGR
p=0.8966,
g=0.5698,

LR=0.7329
win size=52 0.9494 0.8566

ARF
p=0.8123,
g=0.9653,

LR=0.5736
win size=24 1.1620 1.1340

Differential
evolution

Optimizing
global

parameters

Narma10
p=0.8212,
g=0.7264,

LR=0.3426
win size=17 0.0325 0.0401

No

Audio
p=0.6823,
g=0.8234,

LR=0.9246
win size=33 0.0241 0.0373

DJI
p=0.6721,
g=0.7642,

LR=0.6764
win size=24 0.2256 0.2033

DGR
p=0.7709,
g=0.8521,

LR=0.9813
win size=35 0.9567 0.9066

ARF
p=0.3486,
g=0.67544,
LR=0.8867

win size=32 1.0781 1.1270

Optimization methods Description Task
Methods

RMSE with fixed
evaluation number (4000)

Circuit feasibility
& scalability

mRNN mLSTM mRNN mLSTM

Software

Reservoir

Optimization

Grid search
Optimizing

global
parameters

Narma10
p=0.5632,
g=0.6341,

LR=0.8722, k=11

win size=22,
k=12

0.0219 0.0506

No

Audio
p=0.9353,
g=0.8764,

LR=0.4655, k=25

win size=27,
k=33

0.0543 0.0231

DJI
p=0.9563,
g=0.9443,

LR=0.6901,k=77

win size=36,
k=25

0.2487 0.2531

DGR
p=0.8343,
g=0.7862,

LR=0.6841 k=55

win size=75,
k=65

0.9767 0.8466

ARF
p=0.7310,
g=0.9891,

LR=0.8702, k=58

win size=45,
k=47

1.0880 1.1490

Differential
evolution

Optimizing
global

parameters

Narma10
p=0.8211,
g=0.7409,

LR=0.5560, k=28

win size=14,
k=29

0.0273 0.0432

No

Audio
p=08810,
g=0.8891,

LR=0.7011, k=32

win size=0.4321,
k=25

0.0456 0.0211

DJI
p=0.7899,
g=0.6096,

LR=0.6711k=50

win size=28,
k=45

0.2234 0.2146

DGR
p=0.8012,
g=0.5652,

LR=0.7884,k=63

win size=76,
k=55

0.9833 0.8800

ARF
p=0.5021,
g=0.8930,

LR=0.7121, k=45

win size=35,
k=46

1.0249 1.0375

Physical

Reservoir

Optimization

Manual
optimization

Optimizing
the physical
reservoir by

experts

The parameter selection and performance are highly relied on the experts’ experience. Yes

Ours
Optimizing

configuration
signals

Narma10
Adaptive sparse topology based on

the reconfigurable architecture

0.0239

Yes
Audio 0.0493

DJI 0.0657
DGR 0.9892
ARF 0.0743


