Class Imbalance Evolution and
Verification Latency in Just-in-
Time Software Defect Prediction

George Cabral'2, Leandro Minku!, Emad Shihabs3, Suhaib Mujahids

T University of Birmingham, UK
2 Federal Rural University of Pernambuco, Brazil
3 Concordia University, Canada

EPSRC SPDISC

Just-In-Time Software Defect
Prediction (JIT-SDP)

Your change is likely to
induce defects.

Please inspect it further
before commit.

IR
B EEER

Versioning Repository

Implementing a change

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 2

http://www.cs.bham.ac.uk/~minkull

Machine Learning for

JIT-SDP

o
\SZZ/

algorithm

x1: X2: 3 x4: y:
#modified #LOC o developer Defect- I
subsystems added fix experience inducing? M aC h | n e
25 15 No
No

: e - Learning

3 true

4 20 false 100 No Algoﬂthm

5 40 false 5 Yes

3 35 false 45 Yes

2 25 false 30 Yes . .

1 3 false 20 No Predictive Model
4 100 true 20 Yes

In realistic scenarios, additional training data is produced over
time, and should be used to avoid models becoming obsolete.

8. Moverssh dAndiMrrementientixdindatatg cMargatochnges iadise Axesdithdhialose study
#faoutiiattahe Al dlrgephsdisibnipitcH $8EIp@fgust-in-Time Quality Assurance”, TSE 2013.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 3

http://www.cs.bham.ac.uk/~minkull

Class Imbalance Evolution

» JIT-SDP is known to be a class imbalanced learning problem.

« When considering realistic learning scenarios, the imbalance status of the problem
may vary over time, i.e., there may be class imbalance evolution.

e Proportion of defect-inducing and clean examples may vary over time.

e E.g., the nature of a new release may increase / reduce the proportion of
defects.

 Even though class imbalance has been studied, class imbalance evolution has not

been studied in JIT-SDP, and it could potentially be detrimental to predictive
performance.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 4

http://www.cs.bham.ac.uk/~minkull

Am 1:

To provide the first investigation of whether class imbalance
evolution occurs and negatively affects predictive performance
in JIT-SDP.

Aim 2:

To propose a novel approach able to tackle class imbalance
evolution in JIT-SDP.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 5

http://www.cs.bham.ac.uk/~minkull

Verification Latency

e Labels of training examples arrive with a delay.
 We propose a framework that considers three cases.

e (Case 1: no defect found during waiting time.

Clean training example

Change creation (x) (x,0) creation & learning
— Y ————¢ —
Time
waiting time

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 6

http://www.cs.bham.ac.uk/~minkull

Verification Latency

e Labels of training examples arrive with a delay.
 We propose a framework that considers three cases.
e (Case 1: no defect found during waiting time.

 (Case 2: defect found during waiting time.

Defect-inducing
training example

. (x,1) creation
Change creation (x) & learning

_——
— Time

waiting time

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 7

http://www.cs.bham.ac.uk/~minkull

Verification Latency

e Labels of training examples arrive with a delay.
 We propose a framework that considers three cases.
e (Case 1: no defect found during waiting time.
 (Case 2: defect found during waiting time.

* (Case 3: defect found after waiting time.

Clean training Defect-inducing
example training example
(x,0) creation (x,1) creation

Change creation (x) & learning & learning
W .
Time
waiting time

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 8

http://www.cs.bham.ac.uk/~minkull

Data Sets - Ten Open
Source Projects from GitHub

Dataset #commits | %defect- Period Language
inducing
Fabric8 13,004 20% 12/2011 - 12/2017 Java
JGroups 18,317 17% 09/2003 - 12/2017 Java
Camel 30,517 20% 03/2007 - 12/2017 Java
Tomcat 18,877 28% 03/2006 - 12/2017 Java
Brackets 17,311 23% 12/2011 - 12/2017 | JavaScript
Neutron 19,451 24% 12/2010 - 12/2017 Python
Spring-integration 8,692 2'7% 1172007 - 0172018 Java
Broadleaf 14911 17% 11/2008 - 12/2017 Java
Nova 48,938 25% 08/2010 - 01/2018 Python
NPM 7,893 18% 09/2009 - 11/2017 | JavaScript

Leandro Minku www.cs.bham.ac.uk/~minkull

SPDISC Project

Rich history (#commits); good ratio of defect-inducing changes (~20% overall); > 5 years duration.

9

http://www.cs.bham.ac.uk/~minkull

RQ1: To what extent verification latency occurs in JIT-SDP?
What are reasonable waiting times to use for creating training
examples”?

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 10

http://www.cs.bham.ac.uk/~minkull

Defect Discovery Delay

skep 08| < _|Y skep 06

S

.......... 9
o '
5 20 & -
Al o) 1"
]
R -]
5]]
To) Ko o -
™ Q! o Y
Al ()
]]
(])
S) VR N \
]]
o 5.) o) T} ~—
(o)} o0 ! <
(QV Al)
]]
F---- _._w t I e I 4
§ Q R
5 o 2 R A
™ A < ()
]]
Fo-----] I]---------- 1
9 | |
)
5 Nioo -
Al Ny ™
]]
R N | -
pu
S @ 2 -
Al _Wlu. N
]]
F----- I sttt 9
o —)
o N o ! - ~—
(q\] -—
< @ R
]]
Fommmmmm- o - 4
6 L] L)
O)
3 ST N -
™ L)
]]
b------ r 1 1
]]
y Ql N
o o t T
]]
] 1
ho---- e r J---- 1
o 5. o
— 8. T ale -
A ~—
]]
_ I I [_
S 88 83 29 -
-
o o —
Lo ~—

(shep) Aejop Alanoosip bng

NdAN

BAON

Jes|peo.g

uone.ibaul
-bulidg

uoJineN

sjeyoe.iq

1eowo]|

lowe)

sdnoJipp

golqe

Delays varied from 1 day to 11.5 years.

11

ject

SPDISC Proj

Leandro Minku www.cs.bham.ac.uk/~minkull

http://www.cs.bham.ac.uk/~minkull

Defect Discovery Delay

skep 08| < _|Y skep 06

S

)
]
]
]
]
[RS :
o '
5 20 & -
Al o) 1"
]
_- lllllll _— llllllllll ._
To)]]
To) Ko o -
™ Q! o Y
Al ()
]]
(]]
Foooee (B - - - - - \
]]
o 5.) o) T} ~—
(o)} o0 ! <
(QV Al)
]]
F---- _._w t I e I 4
§ Q v
5 o 2 R A
™ A < ()
]]
Fo-----] I]----------- 1
9 | |
N ™
5 Nioo -
Al Ny ™
]]
R N I - 4
1
S F- F N
Al _Wlu. N
]]
b----- I @+ }------- 1
o — +)
o N o ! - ~—
(q\] -—
< @ R
]]
R TR =
6 L] L)
O)
3 ST N -
™]]
]]
b------ B T EEEEEEE 1
]]
y Ql N
o o t T
]]
] [
ho---- | [T - - - - 1
o 5.. o
— 8. T ale -
A ~—
]]
_ I I [_
S 88 83 29 -
-
o o —
Lo ~—

(shep) Aejop Alanoosip bng

NdAN

BAON

Jes|peo.g

uone.ibaul
-bulidg

uoJineN

sjeyoe.iq

1eowo]|

lowe)

sdnoJipp

golqe

A waiting time of 90 days could be considered as a good trade-off

between correct labelling and obsolescence.

12

ject

SPDISC Proj

Leandro Minku www.cs.bham.ac.uk/~minkull

http://www.cs.bham.ac.uk/~minkull

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 13

http://www.cs.bham.ac.uk/~minkull

Proportion of Training Examples
of Each Class Over Time

Fabric8

* The defect-inducing
rate varies over time.

e Some increases even
cause the clean class
to become a minority.

tlme step 10(3)

Major refactoring Major refactoring

0.8
| I

class ratio
0.4

0.0
I

Orange/lime: proportion of defect-inducing/clean changes.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 14

http://www.cs.bham.ac.uk/~minkull

Proportion of Training Examples
of Each Class Over Time

Spring-integration

0.8

class ratio
0.4

0.0

0.0 2.0 4.0 6.0 8.0
time step 1 0>

Extreme class imbalance

Orange/lime: proportion of defect-inducing/clean changes.

Leandro Minku www.cs.bham.ac.uk/~minkull

10.0

e There was one case

where the ratio of
defect-inducing
examples became less
than 0.001%.

SPDISC Project 15

http://www.cs.bham.ac.uk/~minkull

Proportion of Training Examples
of Each Class Over Time

0.8

* |n several cases the
problem became more
imbalanced over time.

class ratio
0.4

0.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0
time step 103

Increasing/decreasing trend

Orange/lime: proportion of defect-inducing/clean changes.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 16

http://www.cs.bham.ac.uk/~minkull

RQ3: Does class imbalance evolution negatively affect JIT-SDP’s
predictive performance?

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 17

http://www.cs.bham.ac.uk/~minkull

Predictive Performance of Existing JIT-SDP
Vs. Class Imbalance Evolution Approaches

Overall predictive performance across data sets

Classifier Ro R4 |Ro - R1| G-Mean
OOB - 57.35 [3] (9.51) 73.14 [1] (13.32) 33.21 [2] (9.61) 60.69 [2] (10.53)
UOB 57.23 13] (10.91) | 71.13 [1] (16.60) 37.24 |3] (6.71) 59.21 [2] (8.93)

OOB(FixedIR) 70.26 |2] (18.67) | 46.53 [4] (22.79) 55.34 [5] (20.48) | 45.01 [4] (12.57)
OOB(FixedIR)* 84.82 [1] (9.97) 36.89 [5] (23.77) 53.45|5] (27.78) | 45.89 [4] (23.70)
OOB-SW 66.75 |2] (11.32) | 60.05 [3] (20.75) 45.69 [4] (15.16) | 54.84 [3] (12.76)

o All approaches use Online Bagging of Hoeffding Trees as learners.
e Values in [] are ranks produced by Scott-Knott with Bootstrap sampling and A12 effect size.

e Values in () are standard deviations.

» Effect sizes of differences in performance were usually large when considering each data
set separately.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project

18

http://www.cs.bham.ac.uk/~minkull

Predictive Performance of Existing JIT-SDP
Vs. Class Imbalance Evolution Approaches

Overall predictive performance across data sets

Classifier Ro R1 |Ro - R1| G-Mean
OOB 57351031 (9.51) | 73.14 [1] (13.32) 33.21 [2] (9.61) 60.69 [2] (10.53)
UOB 57.23 13] (10.91) | 71.13 [1] (16.60) 37.24 |3] (6.71) 59.21 [2] (8.93)

OOB(FixedIR) 70.26 [2] (18.67)
OOB(FixedIR)* 84.82 [1] (9.97)
OOB-SW 6675 2] (11:52)

55.34 [5] (20.48) | 45.01 [4] (12.57)
53.45 [5] (27.78) | 45.89 [4] (23.70)
45.69 [4] (15.16) | 54.84 [3] (12.76)

o All approaches use Online Bagging of Hoeffding Trees as learners.

e Values in [] are ranks produced by Scott-Knott with Bootstrap sampling and A12 effect size.
e Values in () are standard deviations.

» Effect sizes of differences in performance were usually large when considering each data
set separately.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 19

http://www.cs.bham.ac.uk/~minkull

Predictive Performance of Existing JIT-SDP
Vs. Class Imbalance Evolution Approaches

Overall predictive performance across data sets

Classifier Ro R4 |Ro - R1| G-Mean
OOB ©57.35[3] 9.51) | 73.14 [1] (13.32) 33.21 [2] (9.61) | 60.69 [2] (10.53)
UOB 57.23 [3] (10.91) | 71.13 [1] (16.60) 37.24 [3] (6.71) 59.21 [2] (8.93)

OOB(FixedIR) 70.26 [2] (18.67) | 46.53 [4] (22.79) 55.34 |5] (20.48) | 45.01 [4] (12.57)
OOB(FixedIR)* 84.82 [1] (9.97) 36.89 [5] (23.77) 53.45 [5] (27.78) | 45.89 [4] (23.70)
OOB-SW 66.75 2] (11.32) | 60.05 [3] (20.75) 45.69 [4] (15.16) | 54.84 [3] (12.76)

e OOB and UOB achieved the top G-Means.

e Do not assume fixed level of imbalance and do not waste
past knowledge.

* However, all approaches’ |Ro- R1| was very high.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 20

http://www.cs.bham.ac.uk/~minkull

Problems of a High |Ro-R1

* |Impact of higher Ry at the cost of a low Ro:

* Practitioners will have to carefully inspect many clean
changes, and will loose trust in the approach.

* |Impact of higher Ro at the cost of a low Rj:
* Many defect-inducing changes will be missed.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 21

http://www.cs.bham.ac.uk/~minkull

RQ4: How to improve JIT-SDP’s predictive performance, especially
IRo-R1|, in view of class imbalance evolution and verification latency?

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 22

http://www.cs.bham.ac.uk/~minkull

Proposed Approach Oversampling
Rate Boosting (ORB)

 We need to decide the resampling rate at the current point in time,
without knowing the proportion of defect-inducing changes
produced up to 90 (waiting time) days ago.

 Moving average of defect-inducing predictions (mat) gives an idea
of whether we need to further emphasise a given class.

13
11 |

It mat is high, we need to
further emphasise the
clean class.

(t)
ORB

o= W O
T 1

ma

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 23

http://www.cs.bham.ac.uk/~minkull

Proposed Approach Oversampling
Rate Boosting (ORB)

 We need to decide the resampling rate at the current point in time,
without knowing the proportion of defect-inducing changes
produced up to 90 (waiting time) days ago.

 Moving average of defect-inducing predictions (mat) gives an idea
of whether we need to further emphasise a given class.

13
11 |

If matis low, we need to
further emphasise the
defect-inducing class.

(t)
ORB

o= W O
‘ T 1

0.5 0.6 0.7 0.8 0.9 1
ma

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 24

http://www.cs.bham.ac.uk/~minkull

ORB Evaluation

Classifier Ro R1 |Ro - R1| G-Mean
OOB © 57.351[3] (9.51) | 73.14 [1] (13.32) 33.21 [2] (9.61) | 60.69 [2] (10.53)
UOB 57.23 [3] (10.91) | 71.13 [1] (16.60) 37.24 [3] (6.71) | 59.21 [2] (8.93)

OOB(FixedIR) 70.26 [2] (18.67) | 46.53 [4] (22.79) 55.34 [5] (20.48) | 45.01 [4] (12.57)
OOB(FixedIR)* 84.82 [1] (9.97) | 36.89 [5] (23.77) 53.45 [5] (27.78) | 45.89 [4] (23.70)

OOB-SW 66.75 [2] (11.32) | 60.05 [3] (20.75) 45.69 [4] (15.16) | 54.84 [3] (12.76)

ORB 65.12 [2] (8.22) | 67.35[2] (11.17) 23.00 [1] (8.63) | 63.02 [1] (8.70)

* ORB managed to improve |Ro- R1|, which was up to 45.38%
better than OOB’s and up to 63.59% better than UOB's.

 ORB also managed to achieve top G-Means, even though the
magnitude of the improvements in G-Mean w.r.t. OOB was not

large.

| eandro Minku www.cs.bham.ac.uk/~m

inkull

SPDISC Project

25

http://www.cs.bham.ac.uk/~minkull

Conclusions and Implications

« AimT: class imbalance evolution occurs and negative affects predictive
performance in JIT-SDP.

e |tis important for practitioners to apply online learning algorithms
able to tackle class imbalance evolution in JIT-SDP (RQ2 and RQ3).

e QOtherwise, there is a risk of missing a substantial amount of
defect-inducing software changes over time.

* Even the sliding window strategy recommended in the JIT-SDP
iterature was not enough to cope with class imbalance evolution

(RQ3).
* S0, simply rebuilding classifiers from scratch over time is not
enough to achieve good predictive performance.

e 0O0OB and UOB can treat class imbalance evolution to some extent.

« But |Ro-Ry|is still high, and can lead to a large number of false
alarms.

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 26

http://www.cs.bham.ac.uk/~minkull

Conclusions and Implications

« AImZ2: we proposed a novel approach ORB to improve
oredictive performance in JIT-SDP.

* Practitioners adopting ORB could potentially be less
overloaded by false alarms while not missing too many
defect-inducing software changes (RQ4).

e [uture studies in their company’s environment would be
necessary to check whether our findings generalise to
them.

 We further emphasise that it is important to take verification
latency into account in JIT-SDP studies (RQ1).

Leandro Minku www.cs.bham.ac.uk/~minkull SPDISC Project 27

http://www.cs.bham.ac.uk/~minkull

