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Overview

General idea underlying statistical hypothesis tests.
Statistical hypotheses.

Choosing a significance level.

Choosing a statistical hypothesis test.

Interpreting test results.

Criticism over statistical hypothesis tests.
Confidence intervals.

Effect size.

Box plots.



Comparison of Experimental
Results

e Computer science research studies may involve the
comparison of different algorithms, configurations of an
algorithm, methods or approaches.

 What exactly you wish to compare depends on your research
guestions, which must be formulated before deciding whether
and what to compare.

 Comparisons are not always straightforward when our
algorithms or their inputs present stochastic behaviour.

* Evolutionary algorithms.
 Machine learning.



It different runs may give different results, how to
compare them?



Groups of Observations

You can treat the performance of your algorithm as a random variable, and
perform multiple runs to get an idea of its underlying distribution.

Runs

Performance for
A1

0.6015110151
0.2947677998
0.9636589224

0.251976978
0.3701006544
0.9940754515
0.4283523627
0.1904817054
0.7377491128
0.5392380701
0.4230920852
0.7221442924
0.8882444038
0.3186565207
0.5532666035
0.8306283304
0.4488794934
0.6386464711

0.703989767
0.1133421799
0.9693252021
0.4042517894
0.6884307214
0.1627650897
0.5280297005
0.6990777731

0.020703112

0.580238106
0.5673830342
0.2294966863

Performance for
A2

0.0633347888
1.0930402922
0.1792341981

1.207096969
1.0606484322
0.6473818857
0.8043431063

0.658958582
1.0576089397
0.7364416374
0.1942901434
0.5849134532
0.4971571929
0.2973731101
0.9801976669
0.1366545414

0.258875354
1.3587444717
1.0901669778
0.5101653608
0.6768334243
1.3479477059
1.1339212937

1.154985441
1.0054153791
1.0128717172
0.5093192254
1.3938111293

0.790654944
1.3811101009

In statistics, each of the cells is
referred to as an observation, and
each column is called a group or
sample, the performance metric
being monitored is the response,
and the algorithms are treatments.

How to compare the random variables
based on their corresponding groups
of observations?



Statistical Hypothesis Tests

Statistical hypothesis: assertion or conjecture about
the distribution of one or more random variables.

Statistical hypothesis test: rule or procedure to
decide whether to reject a hypothesis.

A.M. Mood, R.A. Graybill and D.C. Boes. Introduction to the Theory of Statistics. Third edition.
Chapter 9 — Test of Hypotheses. McGraw-Hill, 1974.



General ldea — Z Test for Two
Population Means, Variance Known

Formulate Hypotheses:
e HO:p1l=p2—>pul1-pu2=0
e Hl:puyl=p2—>pul1-p2=0

Level of significance a = 0.05 (probability of Type | error).

Test statistic Z =

M1 — M?2

o/VN

Theoretical sampling distribution of the test statistic assuming HO is
true: normal distribution.

ofthe total area

under the curve.

I his left area shaded
dark blue is 025

This right area shaded
datk blueis .025
of the total area
under the curve.

T
-1.96

0
Mormal Probability

T
1.96

Probability of observing test statistic
values < -1.96 or > 1.96 assuming
that HO Is true is a = 0.05.

=1/2 level of
significance of 0.05

=1/2 level of
significance of 0.05



General |[dea — Z Test for Two

Population Means, Variance Known

Formulate Hypotheses:

e HO:p1l=p2—>pul1-pu2=0

e HT:ul=zp2——>pul1-p2=0

Level of significance a = 0.05 (probability of Type | error).
M1 — M2

Test statistic Z = v

Theoretical sampling distribution of the test statistic assuming HO is
true: normal distribution.

It the test statistic falls in this region,
we will reject HO.

=1/2 level of

significance of 0.05

=1/2 level of
significance of 0.05




General ldea — Z Test for Two
Population Means, Variance Known

Formulate Hypotheses:
e HO:p1l=p2—>pul1-p2=20
e HT:ul=zp2——>pul1-p2=0

Level of significance a = 0.05 (probability of Type | error).

Test statistic Z =

M1 — M?2

o/VN

Theoretical sampling distribution of the test statistic assuming HO is
true: normal distribution.

ofthe total area

under the curve.

I his left area shaded
dark blue is 025

This right area shaded
datk blueis .025
of the total area
under the curve.

T
-1.96

0
Mormal Probability

T
1.96

Critical region is the set of test
statistic values that would lead to
rejecting HO.

=1/2 level of

significance of 0.05

=1/2 level of
significance of 0.05



General |[dea — Z Test for Two

Population Means, Variance Known

Formulate Hypotheses:

e HO:p1l=p2—>pul1-pu2=0

e HT:ul=zp2——>pul1-p2=0

Level of significance a = 0.05 (probability of Type | error).
M1 — M2

Test statistic Z = v

Theoretical sampling distribution of the test statistic assuming HO is
true: normal distribution.

Critical values are the “boundary”
values of the critical region.
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General ldea — Z Test for Two
Population Means, Variance Known

 Formulate Hypotheses:
e HO:p1l=p2—>pul1-p2=20
e Hl:puyl=p2—>pul1-p2=0

* [evel of significance a = 0.05 (probability of Type | error).

. M1 — M?2
e Jest statistic Z = v

* Theoretical sampling distribution of the test statistic assuming HO is
true: normal distribution.

/  P-value: probability of observing test
statistic value at least as extreme as the
value z, assuming HO, is the AUC of the

- M/ o region starting at z and -z.
A ofthe total ares \ f.’éiféft't“;“l}if-:’) ° |f p_va|ue <qQ, rejec’[ |—|O
‘J/ N TOT \ * Otherwise, do not reject HO
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General ldea — Z Test for Two
Population Means, Variance Known

Formulate Hypotheses:

HO: p1=p2 —>pu1-u2=0
Hi:p1lz2p2 —>pu1-p220

M1 — M?2

Test statistic Z =
Theoretical sampling distribution of the test statistic assuming HO is

o/VN

true: normal distribution.

y

Level of significance a = 0.05 (probability of Type | error).

P-value: probability of observing test
statistic value at least as extreme as the
value z, assuming HO, is the AUC of the
region starting at z and -z.

If p-value < q, reject HO.
Otherwise, do not reject HO

12



Statistical Hypotheses for Two
Groups — Two-Tailed Tests

e Jwo-tailed (two-sided) test, e.g.:
b HO: gl = p2 —> pl - py2 =0 HOis the hypothesis being tested.

aee™e — HT1: pl1 =p2 —> pul1 -p2 =0 H1is usually the desirable outcome,

rypotn®s that would lead to an action being taken.

The statistical hypothesis test will check if there is enough evidence
to reject HO in favour of H1.

13



Two-Talled Tests

Level of significance a = 0.05

Distribution of the test statistic

I his left area shaded
dark blue is 025

ofthe total area
under the curve.

This right area shaded
dark blue is .025
of the total area
under the curve.

=1/2 level of
significance

=1/2 level of
significance

-1.96 0 1.96
Mormal Probability

Extreme values of the test statistic may occur both in the left and in
the right side/tail of the sampling distribution. 14



Why HO (and not H1)
Contains Equality”

e |n other words, why Is the hypothesis being tested HO and
not H17
e HO:pul=py2—>pul-p2=0
e Hl:ul=p2—>pul-p2+0

We will check the probability of observing a test statistic equal to or more
extreme than z, assuming that HO is true. For that, we can check how far z is

from the mean of the sampling distribution for u1 - u2 = 0.

15



Why HO (and not H1)
Contains Equality”

e |n other words, why Is the hypothesis being tested HO and
not H17
e HO:pul=py2—>pul-p2=0
e Hl:ul=p2—>pul-p2+0

It we were testing H1 instead, we would need to check how far z is from the
mean of the sampling distribution for y1 - p2 = X, where X is unknown!

16



Statistical Hypotheses for Two
Groups — One-Tailed Tests

 One-tailed (one-sided) test:
it HO: 1 <p2—>pul-pu2<0

Hypotnes'®
AternatVe H1: U1 > U2 —>ul-u2>0
Hypothest®
w&u@%‘s Orplz2p2—>p1-p220
Neress . M1 p1 < p2 —>p1 -pe2 <0




One-Tailed Tests

For one-tailed tests, deviations on only one side of a benchmark value
are considered; Assumes that rare cases only occur to one side,
completely disregarding the possibility of deviations on the other side.

HO: u1 > p2 —> HO: uy1 -pu2 =0
H1: ul <py2—>H1: 1 -p2<0

Distribution of the test statistic

Assumes that any
occurrence of

ul > p2is purely by
chance.

M his lett area shaded
dark blue is .05
ofthe total area
under the curve.

= level of
significance

_—

-1.645 0
MNormal Probahility




= level of

" . . F
significance

One-Tailed Tests

For one-tailed tests, deviations on only one side of a benchmark value
are considered; Assumes that rare cases only occur to one side,

completely disregarding the possibility of deviations on the other side.

HO: u1 < py2 —> HO: p1 -pu2<0
H1: uyl >p2 —>H1: p1 -pu2>0

Distribution of the test statistic

This right area shaded

datk blueis .05
of the total area
under the curve.

P

0
Test statistic

T
1645

Assumes that any
occurrence of

ul < p2 is purely by
chance.

One-Tailed test
IS rarely used.

19



Concluding The Direction of the
Ditference When Using Two-Tailed Test

* |tis still ok to reach a conclusion regarding the direction of
the difference when using two-tailed test.

e This IS because the two-talled test can also be seen as two
one-tailed tests, with level of significance of a/2 each.

 And it is impossible for both one-tailed tests to be significant
simultaneously.

* S0, you can use the position (left or right) of the test statistic
to reach a conclusion on the direction of the difference.

20



Statistical Hypotheses For
N Groups

* Jwo-tailed (two-sided) test, e.g.:

M\:)U&‘\es\s HO: p1 =p2 = ... = uN
leteee | H1: (1 = p2 = ... = pN)

21



General ldea — Z Test for Two
Population Means, Variance Known

 Formulate Hypotheses:
e HO:p1l=p2—>pul1-p2=20
e Hl:puyl=p2—>pul1-p2=0

Level of significance a = 0.05 (probability of Type | error).

. M1 — M?2
e Jest statistic Z = v

* Theoretical sampling distribution of the test statistic assuming HO is
true: normal distribution.

AT . .
/  P-value: probability of observing test
{ . .
statistic value at least as extreme as the
value z, assuming HO, is the AUC of the
- d_d/ \ o region starting at z and -z.
ofthe ot ares \ ofthe loal e o |f p_va|ue <qQ, rejec’[ HO.

/4 S \ * Otherwise, do not reject HO
Z | Z
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|_evel of Significance (a)

* Q= probability of Type | error.

* Type | error: reject HO when HO is true.

 Usually, a = 0.05 is used.

* For more critical applications, a = 0.01 is typically used.

e Criticism tells us that the level of significance is chosen arbitrarily.

 Never choose a larger a just to force the null hypothesis to be
rejected.

* |deally, choose a before running the tests.

23



General ldea — Z Test for Two
Population Means, Variance Known

 Formulate Hypotheses:
e HO:p1l=p2—>pul1-p2=20
e Hl:puyl=p2—>pul1-p2=0

* [evel of significance a = 0.05 (probability of Type | error).

. gm M1 — M2
Test statistic Z = VN

Theoretical sampling distribution of the test statistic assuming HO
is true: normal distribution.

statistic value at least as extreme as the
value z, assuming HO, is the AUC of the

, / \ _ _ region starting at z and -z.
% |, || Sitesdaiires . If p-value < q, reject HO.

//\\ -+ P-value: probability of observing test

/4 S \ * Otherwise, do not reject HO
-/ / 24



Computing The Test Statistic
and P-Value

* We don't normally need to compute them by ourselves.

* There are statistical tools that can be used to compute them
for us.

e R.
* Matlab.
e SPSS.

* Or, online resources can also compute them for you.
* E.g.: https://www.graphpad.com/quickcalcs/PValuel.cim

25


https://www.graphpad.com/quickcalcs/PValue1.cfm

Choosing Statistical Tests

e Different statistical hypothesis tests use different test statistics, which make
different assumptions about the population underlying the collected observations
(and consequently about the sampling distribution of the test statistic).

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test ANOVA

Parametric
(normality) .
Paired Paired t-test ANOVA
(related)
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Kruskal-Wallis test

Non-parametric
(no normality)

Paired

(related) Wilcoxon signed-rank test Friedman test

20



Which Test to Use?

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired |
i ANOVA
(related) Paired t-test O
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Kruskal-Walls test

Non-parametric
(no normality)

Paired

Wil ' -rank Friedman test
(related) ilcoxon signed-rank test |

27



Which Test to Use?

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired .
(related) Paired t-test ANOVA
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test NS s

Non-parametric
(no normality)

Paired

(related) Wilcoxon signed-rank test Friedman test

28



Comparison of N Groups

We may wish to compare
A1 vs A2 vs AS.

or
A1 vs A2 vs A3 vs A4,

or
A1 vs A2 vs ... vs AN.

Result A1

0.8036808732
0.1546026852
0.1507085019
0.9751186599
0.4602321477
0.0132238786
0.0175114877
0.9041741739
0.8697700955

0.676352134
0.5182328166
0.0516411681
0.5426649651
0.4973629257
0.4866079125
0.2187455767
0.8438274211
0.2644009485

0.256434446
0.0791214858
0.2856093827
0.3797759169
0.5978962695
0.0860532501
0.2860286001
0.2772790031
0.7289846656
0.3812438862

0.114495351
0.7128328204

Result A2

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616

Result A3

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616

Result A4

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616
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Pairwise Comparisons for N

Potential way to compare
A1 vs A2 vs A3:

A1 vs A2
A1 vs A3
A2 vs A3

Groups

Result A1

0.8036808732
0.1546026852
0.1507085019
0.9751186599
0.4602321477
0.0132238786
0.0175114877
0.9041741739
0.8697700955

0.676352134
0.5182328166
0.0516411681
0.5426649651
0.4973629257
0.4866079125
0.2187455767
0.8438274211
0.2644009485

0.256434446
0.0791214858
0.2856093827
0.3797759169
0.5978962695
0.0860532501
0.2860286001
0.2772790031
0.7289846656
0.3812438862

0.114495351
0.7128328204

Result A2

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616

Result A3

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616
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Palrwise

Potential way to compare
A1 vs A2 vs A3 vs A4:

A-
A-

A-

vs A2
vsS A3
vs A4

A2 vs A3
A2 vs A4
A3 vs A4

Problem: multiple
comparisons

Groups

Result A1

0.8036808732
0.1546026852
0.1507085019
0.9751186599
0.4602321477
0.0132238786
0.0175114877
0.9041741739
0.8697700955

0.676352134
0.5182328166
0.0516411681
0.5426649651
0.4973629257
0.4866079125
0.2187455767
0.8438274211
0.2644009485

0.256434446
0.0791214858
0.2856093827
0.3797759169
0.5978962695
0.0860532501
0.2860286001
0.2772790031
0.7289846656
0.3812438862

0.114495351
0.7128328204

Result A2

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616

Result A3

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616

Comparisons for N

Result A4

0.9442552933
0.7277129425
0.4319811615
0.9379836847

0.786503003
0.8191139316
0.9236880897
0.8155635942
0.7694358404
0.3217702059
0.9849161406
0.2586409871
0.7945434749
0.8179485709
0.4132167082
0.5915588229
0.5936746635
0.4386923753

0.743990941
0.7951068189
0.3314508633
0.9218094004
0.7508496968
0.1372954398
0.1251753599
0.7858294814
0.4592977329
0.1583327209
0.4037452065
0.8074019616
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https://xkcd.com/882/

The Problem of Multiple
Comparisons

e Statistical tests have some probability of presenting a Type
1 error. Let’s say this probability is a = 0.05.

Number of Probability of Getting At

Tests Least One Type 1 Error
Probability of getting at
1 0.05 |
east one type 1 error =
2 1-(0.952) = 0.0975 1 - probability of getting
3 1-(0.95%) = 0.1426 o error
100 1-(0.95100) = 0.9941

It we run multiple tests, we have increased chances of getting at least one Type 1 error.
33



Dealing with Multiple
Comparisons

* We can correct the level of significance (or p-value).
* |f p-value < adjusted level of significance, reject HO.

e Bonferroni corrections:

* Divide level of significance by number of comparisons.

Example:
* Level of significance = 0.05.
 Number of comparisons = 10.

* Adjusted level of significance
= 0.005.

* |f p-value < adjusted level of significance, reject HO.

Problem: very weak, I.e., likely to miss
significant differences.
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Dealing with Multiple
Comparisons

e Holm-Bonferroni corrections:

 Example: level of signiticance = 0.05, number of
comparisons = 4.

Adjusted Significance

i p-value; 0.05/i Reject HO?
4 0.0010 0.0125 Yes
3 0.0020 0.0167 Yes
2 0.0400 0.0250 No
1 0.0410 0.0500 No

Holm-Bonferroni corrections can still be weak, even though not so weak as Bonferroni.



Statistical Tests For N
Groups

Tests for N groups are stronger than pairwise comparisons with corrections,
l.e., more likely to detect significant differences when they exist.

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired .
(related) Paired t-test ANOVA
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Kruskal-Wallis test

Non-parametric
(no normality)

Paired

| | -rank Friedman
(related) Wilcoxon signed-rank test iedman test
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Statistical Tests For N
Groups

 HO: all y are equal
 H1: at least one pair of p is different

e Problem:

* Require post-hoc tests to find which pair of random
variables is different.

* Post-hoc tests are typically weaker than the tests for N
groups.
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Scott-Knott

Scott-Knott with non-parametric Bootstrap Sampling test can
be used to cluster groups and then rank these clusters.

May be stronger, as it avoids unnecessary comparisons.

Not widely used in evolutionary computation or machine
learning literature yet.

Recently highly recommended by the software analytics
iterature.

N. Mittas and L. Angelis, Ranking and clustering software cost estimation models
through a multiple comparisons algorithm, IEEE TSE, 39(4):537-551, 2013.

T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn, Negative results for software
effort estimation, EMSE, 22(5):2658-2683, 2017.

Code at: https://github.com/txt/ase16/blob/master/doc/stats.md

38


https://github.com/txt/ase16/blob/master/doc/stats.md

POst-nocC lests

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality) Py
Paired . ) &z
(related) Paired t-test ANOVA \@y/
Unpaired Wilcoxon rank-sum test = wattic 122l
(independent) Mann-Whitney U test Kruskal-Wallis tew
Non-parametric
(no normality) _ Y
Pairec Wilcoxon signed-rank test Friedman tes 8/77@
(related) OJ//.
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Which Test to Use?

Parametric tests make strong assumptions about the population being sampled,
e.g., normality.

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired :
(related) Paired t-test ANOVA
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Kruskal-Walls test

Non-parametric
(no normality)

Paired

Wil | -rank Friedman
(related) lcoxon signed-rank test iedman test

The parametric tests above compare means of the underlying distributions. 4,



Which Test to Use?

Parametric tests are more powerful (better at detecting differences), than non-
parametric ones, but can be highly affected by violations of assumptions.

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired :
(related) Paired t-test ANOVA
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Kruskal-Walls test

Non-parametric
(no normality)

Paired

Wil | -rank Friedman test
(related) Ilcoxon signed-rank test |
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Which Test to Use?

Factorial or split-plot ANOVA can be used to analyse the interaction between
different factors used to create the groups, €.g., interaction between different
parameters of an algorithm. No non-parametric tests are available for that.

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired :
(related) Paired t-test ANOVA
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Kruskal-Walls test

Non-parametric
(no normality)

Paired

Wil i _rank =
(related) lcoxon signed-rank test riedman test

MINKU, L. L.; WHITE, A. P.; YAQO, X. The Impact of Diversity on On-line Ensemble Learning in the Presence of Concept Drift,

IEEE TKDE, 22(5):730-742, 2010 42



Which Test to Use”

Non-parametric tests do not make strong assumptions about the population
distribution, but are weaker than parametric tests when the assumptions are met.

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired .
- VA
(related) Paired t-test ANO
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Rrtiskal-vvalls test

Non-parametric
(no normality)

Paired

Wil N signed-rank test Friedman test
(related) ilcoxon signe

The non-parametric tests above compare medians of the underlying distributions. 43



Normality lests

E.g., Anderson-Darling test, D'Agostino-Pearson test, Kolmogorov-
Smirnov test, Shapiro-Wilk test, Jargue—Bera test, etc.

Should we use normality tests to decide whether to use parametric tests?

o Controversy.
« Small number of observations, too weak: more likely not to reject
normality hypothesis.
e YOU May use parametric tests when you shouldn't.
 Parametric tests are usually more sensitive to violations when the
number of observations is small!
* [arge number of observations: very likely to reject normality
hypothesis.
* You may opt for non-parametric tests exactly in the cases where
the parametric tests are more robust to violations, i.e., when the
number of observations is large.
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Should We Use Normality Tests to Decide
Whether to Use Parametric Tests”

Looking at histograms of the groups may be more informative
than performing normality tests.

 Problem: may not sound very "scientific’.

One may opt for using parametric tests when sample size is
large.

 Problem: some may argue that the test will still be affected.

Many researchers opt for directly using non-parametric tests.
e Problem: you may loose a bit of power.

It you need to analyse the interactions between factors using
factorial or split-plot ANOVA, p-value corrections can be
applied to deal with certain violations of key assumptions.
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Which Test to Use?

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired .
(related) Paired t-test ANOVA
Unpaired Wilcoxon rank-sum test =

(independent) Mann-Whitney U test Kruskal-Wallis test

Non-parametric
(no normality)

Paired

(related) Wilcoxon signed-rank test Friedman test
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Which Test to Use?

Example: using the same initial conditions to both groups (e.g.,
same initial weights or initial population).

Data Distribution - N groups (N>2)

Group 1

Group 2

0.8036808732 > 0.9442552933
Unpaired 0.1546026852 ™  0.7277129425 ANOVA

Parametric (independent) 0.1507085019 — »  0.4319811615
(normality) 0.9751186599 >  0.9379836847
Paired 0.4602321477 —%  0.786503003
(related) 0.0132238786 —» 0.8191139316 ANOVA
0.0175114877 >  0.9236880897
0.9041741739 > 0.8155635942
_ lOJInpalrgd . 0.8697700955 — »  0.7694358404 Kruskal-Wallis test
. (independent) 0.676352134 > 0.3217702059
Non-parametric
. 0.5182328166 > 0.9849161406
(no normality)
Paired 0.0516411681 — >  0.2586409871 _
(related) 0.5426649651 —» 0.7945434749 Friedman test

0.4973629257 > 0.8179485709
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Which Test to Use?

Paired tests use more information, being more powerful (i.e., better
at detecting significant differences if such differences exist).

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired :
(related) Paired t-test ANOVA
. IR Wilcoxon rank-sum test Kruskal-Wallis test
(independent)
Non-parametric
(no normality) _
e Wilcoxon signed-rank test Friedman test

(related)



Which Test to Use?

Data Distribution 2 groups N groups (N>2)

Unpaired

(independent) Unpaired t-test

Parametric
(normality)
Paired :
- ANOVA
(related) Paired t-test O
: ST[RENTE Wilcoxon rank-sum test Kruskal-Wallis test
(independent)
Non-parametric
(no normality) _
Fellize Wilcoxon signed-rank test Friedman test

(related)
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Which Test to Use?

Example: using different random seeds or number of runs.

Data Distribution N groups (N>2)

Group 2

Group 1

0.8036808732 0.9442552933
_ Unpalred 0.1546026852 aired i 0.7277129425 ANOVA
. (Independent) 0.1507085019 0.4319811615
Parametric
. 0.9751186599 0.9379836847
(normality)
Paired 0.4602321477 | 0.786503003
red t-1 ANOVA
(re'ated) 0.0132238786 0.8191139316
0.0175114877 0.9236880897
0.9041741739 0.8155635942
: Unpalred 0.8697700955 rar_]k_s 0.7694358404 KrUSka|-Wa”iS teSt
- (Independent) 0.676352134 ’Vhltﬂ@ 0.3217702059
Non-parametric
- 0.5182328166
(no normality)
Paired 0.0516411681 _
(related) 0.5426649651 signed-rank test Friedman test
0.4973629257
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General ldea — Z Test for Two
Population Means, Variance Known

 Formulate Hypotheses:
e HO:p1l=p2—>pul1-p2=20
e Hl:puyl=p2—>pul1-p2=0

* [evel of significance a = 0.05 (probability of Type | error).

. M1 — M?2
e Jest statistic Z = v

* Theoretical sampling distribution of the test statistic assuming HO is
true: normal distribution.

/  P-value: probability of observing test
statistic value at least as extreme as the
value z, assuming HO, is the AUC of the

- M/ o region starting at z and -z.
[ o ol res \| ctie ol e . If p-value = a, reject HO.

/,;6 \ - Otherwise, do not reject HO.
Z | Z
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Test Output

e Jest statistic.

e Used to reach the conclusion of whether or not to reject HO.
« (Conclusion is reached by comparing it to the critical values, which
depend on:

* the theoretical sampling distribution,
e the number of tails (1 or 2), and
» the desired level of significance.

e P-Value.

e Used to reach the conclusion of whether or not to reject HO.
e (Conclusion is reached by comparing it to the level of significance.

 Whether or not HO is rejected, given a level of significance.
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lerminology

e Fortwo tailed test (HO: uy1 = p2, H1: p1 = p2):

* Not rejecting HO: no statistically significant difference has been found
between p1 and p2 at the level of significance of a = 0.05 (p-value of ...).

e |t doesn’t mean that we accept HO, it just means that we have not found
enough evidence to reject it.

G.K. Kanji. 100 Statistical Tests.
Chapter “Introduction to Statistical Testing”. SAGE Publications, 1993.

e Note that if the data are consistent with a given null hypothesis, they are
also consistent with other similar hypotheses! So, we can'’t accept this

specific hypothesis.

* Rejecting HO: statistically significant difference between p1 and py2 has been
found at the level of significance of a = 0.05 (p-value of ...).

 Once we know they are significantly different, we can look at the direction of
the differences to gain an insight into which of the algorithms is better.

« ulis significantly larger than p2.
e p1lis significantly smaller than p2.
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s The Magic Number 30
Good Enough?

The idea that we should create groups of size 30 is argued to be inspired by the
Central Limit Theorem.

The Central Limit Theorem states that the distribution of sample means
approaches a normal distribution as the sample size approaches infinity.

The idea of 30 comes from computer simulation experiments presented in
introductory textbooks taking idealised computer samples from a normal,
sometimes a skewed, distribution.

e |t showed that 30 was enough for the sampling distribution to be an
approximation of the normal distribution.

In reality, less normal samples may need to be larger. Samples that were not
drawn perfectly randomly (i.e., biased samples) will also need to be larger. The
sample size will also depend on the level of significance, power of the study,
effect size, variability and desired precision.

Chuck Chakrapani. Statistical Reasoning vs. Magical Thinking. Vue 2011.

Sitanshu Sekhar Kar, Archana Ramalingam. Is 30 the Magic Number? Issues in Sample Size Estimation.
National Journal of Community Medicine 4(1):175-179, 2013.
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Criticism Over Statistical
Hypothesis lests

 HO means that there is no difference. However, it is virtually
impossible for two populations in the real world to be identical.

S.L. Chow. Statistical Significance: Rationale, Validity and Utility.
Chapter 1 (A Litany of Criticisms of NHSTP). SAGE Publications, 1996.

* [n fact, the more data we collect the more likely it is for us to
find a difference.

* People could use this to manipulate conclusions.
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Example — Sampling

Distribution of

the Mean

* The spread of the sampling distribution of the mean
decreases as the sample size increases.

e Standard error of the mean reduces — we are estimating

the true mean more confidently.

 Many more possible values of the test statistic would fall

within the critical region.

* Therefore, it becomes easier to detect a significant
difference with larger sample sizes.

-4 -3 -2 -1 0 1

A test statistic here may reject HO when

N=8, and not when N=4 or 2.
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Fifect Size

 Measures of eftect size can be used to check how large the
effect of the differences in performance are, independent of

the sample size.
 E.g., based on difference between means: Glass eftect
size (parametric) (meani - mean? )/ stdl.

* Problem: assumption of normal distribution.

« E.g.: A12 (non-parametric).
* Problem: effect size of the difference in ranks. Large
differences in ranks don’'t mean that they are practically

large.

* Do not use the p-value as an indication of eftect size!

A12 effect size: Vargha and Delaney. A Critigue and Improvement of the CL Common Language Effect Size Statistics of McGraw and
Wong. Journal of Educational and Behavioral Statistics Summer 2000, Vol. 25, No. 2. pp. 101-132
of



Criticism Over Statistical
Hypothesis lests

* We can't conclude that we accept HO, and many people don't

realise that.

G.K. Kanji. 100 Statistical Tests.
Chapter “Introduction to Statistical Testing”. SAGE Publications, 1993.

* |nfact, many books use the term “accept HO” to say that we
do not have enough evidence to reject it. This can be

misleading.

 And what to do if we actually want to reach a conclusion
about two algorithms performing similarly, i.e., accepting HO?
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Confidence Intervals

Range of values computed in such a way that it contains the estimated
parameter of the population with high probability.

E.g., a 95% confidence interval could be 0.1 < p1 - p2 <0.3.

 This means that there is a 95% chance that the interval contains the true
value of p1 - p2.

Relationship with statistical tests:

e a=1-confidence level.

 The confidence interval should contain zero if there is no evidence to
reject HO: p1 - u2 = 0.

« But the confidence interval will also contain several other possible values.

S0, confidence intervals may be more informative when we wish to analyse a
specific scenario.

Statistical hypothesis tests could still be more helpful when there is a need for
summarising results across several scenarios.
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Criticism Over Statistical
Hypothesis lests

* When we fall to reject HO, there is still some chance that H1
was actually true, and people often ignore that.

* This can lead to rejecting new algorithms that may in fact
be quite useful.
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Boxplot

Max value within 1.5 IQR of the 3rd quartile,
where IQR = 3rd quartile - 1st quartile

3rd Quartile

Median (2nd Quartile)

1st Quartile

Min value within 1.5 |QR of the 1st quartile,
where IQR = 3rd quartile - 1st quartile

Outlier

AN
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.
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/
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Boxplot




summary

o Statistical hypothesis tests can be used to check if there is enough
evidence to reject HO in favour of H1.

e Several statistical tests are available.

 Each test has ditferent strengths and limitations.

* You need to decide which of these is more appropriate for your
analysis.

* Possibly, make the decision of test before designing your
experiments, as the decision may influence the experimental
design (e.qg., paired samples)

e« (iven a choice of statistical test:

 Decide hypotheses to be tested.
 Decide level of significance a.
 Compute test statistic (and p-value).
 Decide whether to reject HO.
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summary

Criticism over statistical tests argues that, among others:

e Statistical tests cannot accept HO.

HO Is very unlikely to be true in the real world.
Results are influenced by sample size.

H1 may still be true, even if HO is not rejected.

Confidence intervals can be used it HO is the hypothesis of
interest.

Effect size can be used to check the size of the effect of the
differences.

Box plots can be very useful tools to compare random variables.
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