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Research Interests

 Machine learning:

 Machine learning for non-stationary environments.
e (Class imbalance learning.
* Ensembles of learning machines.

* Machine learning for software engineering:

e Software effort estimation.
* Prediction of defect-inducing software changes.

* Search-based software engineering:

e Software project scheduling.
e Software architecture optimisation.
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Software Engineering Data

Software engineering processes and products have been
generating a wealth of data.
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Increase on Data Science for
Software Engineering Research

PROMISE MSR

Number of Research Paper Submissions

2004 2006 2008 2010 2012 2014 2016 2018
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N this talk...

Discussion of:

e important points to consider when working with data science for
software engineering, and

» typical setbacks resulting from overlooking them.

Focus: predictive analytics.

« BasedonatrainingsetDe Xx Y, learnf: X—>Y.
e X are input features (a.k.a., input attributes, independent variables).

e Y are output features (a.k.a., output attributes, dependent
variables).
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Example: Software Defect
Prediction

Components from previous versions

X4 X2 X3 \%

(LOC) (Halstead) (Cyclomatic) (defective?)

1000 80 70 Yes Machine Learﬂiﬂg
700 30 40 No — Algorlthm

800 35 30 No

e
A=

Predictive Model

New component x

of new version — Defective?

X1 X2 X3
(LOC) (Halstead) (Cyclomatic)
1000 80 70
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Data Science Involves
Several Steps
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Data Science Involves
Several Interdependent Steps

1. Problem formulation —» 2. Data collection \
\ —" 3. Feature engineering
= Updatmg the model
( ) 5 Choice of / /

machlne learning
algorithm

\_/
8. Testing the model 4. Preliminary data analysis

\7 Running / (hyper)

6 Data Preprocessing

parameter choice

Leandro L. Minku www.cs.bham.ac.uk/minkull Data Science for SE: Important Considerations and Typical Setbacks 9



http://www.cs.bham.ac.uk/minkull

Data Science Involves
Several Interdependent Steps

1. Problem formulation —» 2. Data collection \
\ —" 3. Feature engineering
= Updatmg the model
( ) 5 Choice of / /

machlne learning
algorithm

\_/
8. Testing the model 4. Preliminary data analysis

\7 Running / (hyper)

6 Data Preprocessing

parameter choice

Leandro L. Minku www.cs.bham.ac.uk/minkull Data Science for SE: Important Considerations and Typical Setbacks 10



http://www.cs.bham.ac.uk/minkull

High Level Consideration

Reflect upon each of these steps in detall!
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Four Considerations

 Problem relevance.
* Multi-source and temporal data.
* (Class imbalance.

* Parameter tuning.
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Four Considerations

Problem relevance.
* Multi-source and temporal data.
* (Class imbalance.

* Parameter tuning.
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Data Science Involves
Several Interdependent Steps

\ —" 3. Feature engineering
= Updatlng the model
( ) 5 Choice of / /

maohlne learning
algorithm

'\-/ 4. Preliminary data analysis

8. Testing the model W

6 Data Preprocessing

/. Running / (hyper)
parameter choice

Leandro L. Minku www.cs.bham.ac.uk/minkull Data Science for SE: Important Considerations and Typical Setbacks 14



http://www.cs.bham.ac.uk/minkull

What Is The Problem?

File x
of a version of —
the software

— #defects
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What Is The Problem?

File x
of a version of —
the software

Hetive?
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What Is The Problem?

ranking of
files based on
defect-proneness

Version of
the software x
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What Is The Problem?

X<10

s A
Sl %,

Y<0 Y<0

e x 7NN

of a version of — — defective?

the software / \ / \

W>0
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Typical Setback

To adopt a problem that is not really useful for your targeted
practitioners.

w:

2N
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Related Setback

Overlook potential variations of the problem, which may be
easier to solve and be equally valuable for the targeted
practitioners.

ranking” #defects”
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Avoiding Setback

Talk with the targeted practitioners!

Investigate alternative problem formulations.
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What Is the Problem?

ranking of
— files based on
defect-proneness

Version of
the software x
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Why |s It Relevant?

 The company develops business software.
e Several versions of the software are typically rolled out.

* Once a given version is implemented, each of its source code
files passes through a testing phase in a watertall style.

* TJesting resources are limited. The company want tools to help
them allocating testing resources to make testing more cost-
effective.
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Why |s It Relevant?

The company develops business software.

 The company can afford some software components to be
more well tested than others.

e Several versions of the software are typically rolled out.

* Once a given version is implemented, each of its source code
files passes through a testing phase in a watertall style.

* Jesting resources are limited. The company want tools to help
them allocating testing resources to make testing more cost-
effective.
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Why |s It Relevant?

 The company develops business software.
Several versions of the software are typically rolled out.

* |tisreasonable to use knowledge from past versions to
learn how to rank.

* Once a given version is implemented, each of its source code
files passes through a testing phase in a watertall style.

* Jesting resources are limited. The company want tools to help
them allocating testing resources to make testing more cost-
effective.
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Why |s It Relevant?

* The company develops business software.
e Several versions of the software are typically rolled out.

Once a given version is implemented, each of its source
code files passes through a testing phase in a waterfall
style.

 Ranking is produced after the whole new version of the
software is developed.

* TJesting resources are limited. The company want tools to help
them allocating testing resources to make testing more cost-
effective.
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Why |s It Relevant?

« The company develops business software.
« Several versions of the software are typically rolled out.

 (Once a given version is implemented, each of its source code files
passes through a testing phase in a waterfall style.

Testing resources are limited. The company want tools to help
them allocating testing resources to make testing more cost-
effective.

* Ranking could enable to allocate more test resources to the top
ranked files, until the resources (almost) finish.

 The company favours predictive performance over model
readability.
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Four Considerations

e Problem formulation.
Multi-source and temporal data.
e (Class imbalance.

* Parameter tuning.
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Data Science Involves
Several Interdependent Steps

_ﬁ_\

\\ —" 3. Feature engineering
-

*~— 4. Preliminary data analysis

. 7%>
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Multl-Source Data

<X, Y> <X,?>

Source Project Target Project

Leandro L. Minku www.cs.bham.ac.uk/minkull Data Science for SE: Important Considerations and Typical Setbacks 30



http://www.cs.bham.ac.uk/minkull

Multl-Source Data

<X, Y> <X,?>

+

Source Project Target Project
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Multl-Source Data

<X, Y> <X, 7>
®_&
@B O_0
® ®

O eoe i oCo®
O®e
o O

Source Project Target Project
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Temporal Data

<X, Y> <X,?>

+

Project t-1 Project t

L. Minku and X. Yao. "How to Make Best Use of Cross-company Data in Software Effort Estimation?", ICSE 2014.

Leandro L. Minku www.cs.bham.ac.uk/minkull Data Science for SE: Important Considerations and Typical Setbacks 33



http://www.cs.bham.ac.uk/minkull

Typical Setback

lgnore the potentially different data distributions, by adopting
techniques not prepared for such differences.

 Models initially perform well, but then become poor.

* Models perform poorly straight away.
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Example: Software Detect
Prediction

Out of 622 source-target project combinations, only 21
had precision, recall, and accuracy larger than 75%;
a success rate of 3.4%.

T. Zimmermann, M. Nagappan, N. Gall, E. Giger, B. Murphy. Cross-project defect prediction: a large scale experiment on data vs. domain vs.
process, FSE 20009.
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Avoiding Setback

Adopt approaches that are prepared for
multi-source or temporal data.
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Transfer Learning — Data
Transtormation

®_&
B O_0
® ®
O eoe i oCo®
O®e
O O
Source Project Target Project

e

%

@
®
o

J. Nam, S.J. Pan and S. Kim. Transfer Defect Learning, ICSE 2013.
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Transfer Learning —
Filtering

@
® B®_&
O_0
O e @ ®
O i OOO.
®
Source Project Target Project

B. Turhan, T. Menzies, A. Bener, J. Distefano. “On the Relative Value of Cross-Company and Within-Company Data for Defect Prediction”, EMSE 2009.
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Transfer Learning —
Filtering

@
® B®_&
O_0
O @ B
O F | oo°
Source Project Target Project

B. Turhan, T. Menzies, A. Bener, J. Distefano. “On the Relative Value of Cross-Company and Within-Company Data for Defect Prediction”, EMSE 2009.
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Transfer Learning —
Mapping Predictions

oOe

D . e

o0 i 5 o,

O
Source Project Target Project

$ Train

Source

Model

L. Minku and X. Yao. "How to Make Best Use of Cross-company Data in Software Effort Estimation?", ICSE 2014.
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Machine Learning for Non-
Stationary Environments

8 CC 8
Mapped Mapped o Mapped
Model 1 Model 2 Model M

Within-company (WC)
incoming training
data (completed projects
arriving with time)

L. Minku and X. Yao. "How to Make Best Use of Cross-company Data in Software Effort Estimation?", ICSE 2014.
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Example: Software Effort

Database Approach MAE
RT 2441.0241
KitchenMax | Dycom-RT | 2208.6522 |
Pvalue _|N8i82ESII
RT 319.4572
CocNasaCoc81] Dycom-R1 | 161.7917
Pvalue |\ 4.04E-06| Dycom managed to
RT 2753.3726 | obtain reduce the need
ISBSG2000 [ Dycom-RT | 2494.6639 .
o B for target training
RT 3621.0508 examples by 90%!
ISBSG2001 | Dycom-RT | 2543.9495 |
P-value
RT 3253.9349
ISBSG Dycom-RT | 3122.6603 |
P-value 5.56E-02 |

L. Minku and X. Yao. "How to Make Best Use of Cross-company Data in Software Effort Estimation?", ICSE 2014.
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Four Considerations

 Problem relevance.
* Multi-source and temporal data.
Class imbalance.

* Parameter tuning.
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Data Science Involves
Several Interdependent Steps

1. Problem formulation —» 2. Data collection \
/ v\\ —" 3. Feature engineering

o
g >//X/>

and Typical Setbacks 44
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Preliminary Data Analysis

Class imbalance

Leandro L. Minku www.cs.bham.ac.uk/minkull Data Science for SE: Important Considerations and Typical Setbacks 45
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Example of Class Imbalance in
Software Defect Prediction

TABLE I
PROMISE DATA SETS, SORTED IN ORDER OF THE IMBALANCE RATE
(DEFECT%: THE PERCENTAGE OF DEFECTIVE MODULES)

data | language | examples | attributes | defect%
mc2 C++ 161 39 32.29
kc2 C++ 522 21 20.49
jml C 10885 21 19.35
kel C++ 2109 21 15.45
pcé C 1458 37 12.20
pc3 C 1563 37 10.23
cml C 498 21 9.83
kc3 Java 458 39 9.38
mw | C 403 37 7.69
pcl C 1109 21 6.94

Source: S. Wang and X. Yao. Using Class Imbalance Learning for Software Defect Prediction, IEEE TR 62(2):434-443

Leandro Minku  http://www.cs.le.ac.uk/people/lim11/
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Typical Setback

Use inadequate performance metrics to evaluate the predictive models.
You may think the approach works well when in fact it doesn't!

TABLE I

PROMISE DATA SETS, SORTED IN ORDER OF THE IMBALANCE RATE

(DEFECT%: THE PERCENTAGE OF DEFECTIVE MODULES)

data | language | examples | attributes | defect%
mc2 C++ 161 39 32.29
kc2 C++ 522 21 20.49
jml C 10885 21 19.35
kel C++ 2109 21 15.45
pcd C 1458 37 12.20
pc3 C 1563 37 10.23
cml C 498 21 9.83
kc3 Java 458 39 9.38
mw | C 403 37 7.69
pcl C 1109 21 6.94

E.g., an algorithm
predicting all
examples as non-
defective would
have 93.06%
accuracy.

Source: S. Wang and X. Yao. Using Class Imbalance Learning for Software Defect Prediction, IEEE TR 62(2):434-443
ML for SE and SE for ML — A Two Way Path? 47
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Avoiding Setback

Adopt performance metrics appropriate for
class imbalance.
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Evaluating Classitiers for
Class Imbalanced Data

 Accuracy Is iInadequate.
e (TP+ 1IN)/(P+ N)

* Recall on each class separately is not sensitive to the
imbalance status.

e TP/Pand IN/N.

e (3-mean is not sensitive to the imbalance status.
e« /TP/PxTN/N

« ROC Curve is adeqguate.
 Recall on positive class (TP /P)vs False Alarms (FP/N)

Leandro Minku  http://www.cs.le.ac.uk/people/lim11/ ML for SE and SE for ML — A Two Way Path? 49
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Related Setback

Adoption of inadequate machine learning algorithm.
 Most machine learning algorithms give the same
importance to each separate training example.

e This can result in poor predictive performance for class
imbalanced problems.
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Avoiding Setback

Adopt resampling strategies or
cost-sensitive machine learning algorithms.

S. Wang and X. Yao. Using Class Imbalance Learning for Software Defect Prediction, IEEE TR 2013.
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Four Considerations

 Problem relevance.
* Multi-source and temporal data.
* (Class imbalance.

Parameter tuning.
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Data Science Involves
Several Interdependent Steps

1. Problem formulation —» 2. Data collection \
/ \ — 3. Feature engineering
9. Updating the model
( ) '\ 5. Choice of / /

machine learning
algorithm

'\-/ 4. Preliminary data analysis

8. Testing the model W
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The Impact of
(Hyper)Parameters

Example: Multilayer Perceptron for Software Effort Estimation

MAE across time steps | Kitchenham Maxwell SingleISBSG
Best PS MAE 2046.35 5358.02 2754.78
std. 2868.96 1979.71 1006.01
MAE 2474.78 7893.26 3682.47
DEIaut =S std. 2846.06 3629.54 1254.03
MAE 7.42E+138 1.19E+4155 1.07E+153
Yvorst £ std. 4.71E+140 Inf Inf

Cohen’s d effect size and Wilcoxon Sign-Rank’s p-values
Effect Size Kitchenham Maxwell SingleISBSG

best vs. worst

6.77E-21)+
0.149
(2.66E-22)+ | (6.15E-10)+ | (3.51E-11)+

6.15E-10)+

3.51E-11)+

best vs. default

L. Song, L. Minku, X. Yao. The Impact of Parameter Tuning on Software Effort Estimation Using Learning Machines, PROMISE 2013.
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The Impact of
(Hyper)Parameters

What are good values”

Best values are data-dependent.
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Typical Setback

Use of default (hyper)parameter values, or values that did well
for other data.
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Avoiding Setback

Tune (hyper)parameters for the data in hands.
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Tuning (Hyper)Parameter
Values

Grid search: investigate all combinations of a 0
pre-defined set of values.

* Cross-validation A 05
* |eave-one-out cross-validation

* Repeated Holdout

* Qut-of-sample bootstrap 1

Tantithamthavorn, C., MclIntosh, S., Hassan, A.E., Matsumoto, K. Automated parameter optimization of classification techniques for defect prediction
models, ICSE 2016.

Tantithamthavorn, C., MclIntosh, S., Hassan, A.E., Matsumoto, K. An empirical comparison of model validation techniques for defect prediction models,
IEEE TSE 2017.
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Tuning (Hyper)Parameter
Values

 Automated tuning: does not require to specity specific values
to try out, only the ranges of each hyperparameter.

e E.g.: differential evolution.

W. Fu, T. Menzies. Easy over hard: a case study on deep learning, FSE 2017.
A. Agrawal, T. Menzies. Is “better” data better than “better” data miners"? ICSE 2018.
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Related Setback

Uneven parameter tuning, leading to untair comparisons and
wrong conclusions.

PS: depending on the purpose of the experiment, the use of default
parameters is ok. However, it needs to be very well justified.
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Conclusions

1. Problem formulation — 2. Data collection \
/ \ —* 3. Feature engineering
9. Updating the model
< ) 5 Choice of /

machme learning
algorithm

\/ 4. Preliminary data analysis

8. Testing the model W

7. Running / (hyper) / 6. Data Preprocessing
parameter choice
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Conclusions

Four important considerations:

 Problem relevance.
* Multi-source and temporal data.
e (Class imbalance.

* Parameter tuning.
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Conclusions

Overlooking these considerations may lead to:

 Useless problem.
e Poor performing predictive models.
* Wrong conclusions.
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