
The Art and Science of  
Analyzing Software Data

Leandro Minku: University of
Birmingham, UK
Fayola Peters: Lero, University of
Limerick, Ireland

http://www.cs.bham.ac.uk/~minkull/
publications/fse15-tutorial.pdf

FSE 2015

Who we are today…

2

Leandro L. Minku
University of Birmingham, UK

L.L.Minku@cs.bham.ac.uk

Fayola Peters
Lero, University of Limerick, Ireland

fayola.peters@lero.ie

mailto:L.L.Minku@cs.bham.ac.uk
mailto:fayola.peters@lero.ie

Who we are tomorrow…

Fayola Peters
Lero, University of Limerick, Ireland

fayola.peters@lero.ie

Leandro L. Minku
University of Leicester, UK

L.L.Minku@cs.bham.ac.uk
University of
Leicester

mailto:fayola.peters@lero.ie
mailto:L.L.Minku@cs.bham.ac.uk

1. Introduction 
2. Sharing data 
3. Privacy and sharing 
4. Sharing models 
5. Summary

 4

1. Introduction 
2. Sharing data 
3. Privacy and sharing 
4. Sharing models 
5. Summary
1a. Analyzing software data: why?
1b. The PROMISE project
1c. Analyzing software data: how? 5

1a. Analyzing software data: why?
In the 21st century, too much data

 6

And a dozen other open-source repositories:
• E.g. see next page
• E.g Feb 2015

• Mozilla Firefox : 1.1 million bug reports,
• GitHub host 14+ million projects.

E.g. PROMISE repository
of SE data

• grown to 200+ standard
projects

• 250,000+ spreadsheets

 7

1a. Analyzing software data: why?

Impossible to browse all software project data!

 8

1a. Analyzing software data: why?

With the right tools, we can gain useful insights from software data!

Example: Software Defect
Prediction

Software code is composed of several components.

 9

Testing all these components can be very expensive.

 10

Example: Software Defect
Prediction

If we know which components are likely to be defective,
we can increase testing cost-effectiveness.

 11

Example: Software Defect
Prediction

 12

Learning
Machine

Data describing
software modules and
whether they contain

defects
Predictive

Model

Predictive
Model

Train

Test

Example: Software Defect
Prediction

Example: Software Effort
Estimation
Estimation of the effort required to develop a
software project.

• Effort is measured in person-hours, person-
months, etc.

• Influenced by attributes such as required
reliability, programming language,
development type, team expertise, etc.

• Main factor influencing project cost.
• Overestimation vs underestimation. 13

 14Nasa cancelled its incomplete Check-out Launch Control Software project
after the initial $200M estimate was exceeded by another $200M.

Picture: http://www.boeing.com/defense-space/

Example: Software Effort
Estimation

 15

Learning
Machine

Data describing
software projects and
their actual required

efforts Predictive
Model

Predictive
Model

Train

Test

Example: Software Effort
Estimation

Effort

• Other examples of insights:
• What team expertise to assign to a project so

that it is more cost-efficient
• How the productivity of a company changes

over time
• How to improve productivity
• What commits are most likely to induce

crashes
• What developer to assign to what bug
• What method has a bad smell
• ...

 16

1a. Analyzing software data: why?

The PROMISE repo

openscience.us/repo

#storingYourResearchData

• URL
• openscience.us/repo
• Data from 100s of projects
• E.g. EUSE:

• 250,000+ spreadsheets  

• Oldest continuous  
repository of SE data
• Version 0: 2002
• For other repos, see 

Table 1 of goo.gl/UFZgnd 17

Serve all our data, on-line

1b. The PROMISE Project

• "Research has deserted the individual
and entered the group. The individual
worker find the problem too large, not
too difficult. (They) must learn to work
with others."
• Theobald Smith  

American pathologist and microbiologist  
1859 -- 1934

 18

1b. The PROMISE Project

 19

1b. The PROMISE Project

CALL FOR PAPERS

PROMISE is an annual forum for researchers and practitioners to present, discuss and exchange ideas,
results, expertise and experiences in construction and/or application of predictive models and data analytics
in software engineering. Such models and analyses could be targeted at: planning, design, implementation,
testing, maintenance, quality assurance, evaluation, process improvement, management, decision making,
and risk assessment in software and systems development. PROMISE is distinguished from similar forums
with its public data repository and focus on methodological details, providing a unique interdisciplinary venue
for software engineering and data mining communities, and seeking for verifiable and repeatable
experiments that are useful in practice.

Topics of Interest

Topics of interest include, but are not limited to:

Application oriented:
• using predictive models and software data analytics in policy and decision-making;

• predicting for cost, effort, quality, defects, business value;

• quantification and prediction of other intermediate or final properties of interest in software

development regarding people, process or product aspects;
• using predictive models and data analytics in different settings, e.g. lean/agile, waterfall, distributed,

community-based software development;
• dealing with changing environments in software engineering tasks;

• dealing with multiple-objectives in software engineering tasks.

Theory oriented:
• model construction, evaluation, sharing and reusability;

• interdisciplinary and novel approaches to predictive modelling and data analytics that contribute to

the theoretical body of knowledge in software engineering;
• verifying/refuting/challenging previous theory and results;

• combinations of predictive models and search-based software engineering;

• the effectiveness of human experts vs. automated models in predictions.

Data oriented:
• contributions to the repository;

• data quality, sharing, and privacy;

• ethical issues related to data collection;

• metrics;

• tools and frameworks to support researchers and practitioners to collect data and construct models

to share/repeat experiments and results.

*** Student Poster Competition ***

This year we will also have a student poster competition open to short papers whose lead author is a
student. The papers may have co-authors, but the student must be the lead author and present the poster at
the conference. Students can be either undergrad or postgrad students. No distinction will be made between
undergrad and postgrad students in the judging process. A letter confirming the enrolment of the student in a
university will be required upon paper acceptance. Posters will be judged by a panel during the conference.

The 11th International Conference on Predictive
Models and Data Analytics in Software Engineering

October 21, 2015, Beijing, China
Co-located with ESEM 2015 - 9th International Symposium on
Empirical Software Engineering and Measurement
http://promisedata.org/2015/

Sponsored by:

If it works, try to make it better

• “The following is my valiant
attempt to capture the
difference (between PROMISE
and MSR)”

• “To misquote George Box, I
hope my model is more useful
than it is wrong:
• For the most part, the MSR

community was mostly
concerned with the initial
collection of data sets from
software projects.

• Meanwhile, the PROMISE
community emphasized the
analysis of the data after it was
collected.”

• “The PROMISE people
routinely posted all their
data on a public repository
• their new papers would re-

analyze old data, in an attempt
to improve that analysis.

• In fact, I used to joke
“PROMISE. Australian for
repeatability” (apologies to the
Fosters Brewing company). “

 20

Dr. Prem Devanbu
UC Davis
General chair, MSR’14

1b. The PROMISE Project

• Initial, naïve, view:
• Collect enough data …
• … and the truth will emerge  

• Reality:
• The more data we collected …
• … the more variance we observed
• It's like the microscope zoomed in

• to smash the slide

• Conclusion instability  

• So now we routinely slice the data
• Find local lessons in local regions.  21

1b. The PROMISE Project
Challenges

1c. Analyzing software data: how?
• Software engineering is so diverse
• What works there may not work here
• Need cost effective methods for finding best local

lessons
• Every development team needs a data scientist

 22

 23

1c. Analyzing software data: how?

http://www.amazon.co.uk/Sharing-Data-Models-Software-Engineering/dp/0124172954

http://www.amazon.co.uk/Sharing-Data-Models-Software-Engineering/dp/0124172954

1. Introduction 
2. Sharing data 
3. Privacy and Sharing 
4. Sharing models 
5. Summary
Step 1: Throw most of it away
Step 2: Learn from the rest

 24

From Turkish Washing Machines to
NASA Space Ships

 25

Burak Turhan, Tim Menzies, Ayşe B. Bener, and Justin Di Stefano. 2009. On the relative value of cross-
company and within-company data for defect prediction. Empirical Softw. Eng. 14, 5 (October 2009),

Q: How to transfer data between projects? 
A: Be very cruel to the data

• Ignore most of the data
• relevancy filtering: Turhan ESEj’09; Peters TSE’13, ICSE’15
• variance filtering: Kocaguneli TSE’12,TSE’13
• popularity filtering: Kocaguneli PROMISE'12  

• Contort the data
• spectral learning (working in PCA  

space or some other rotation):  
Menzies TSE’13; Nam ICSE’13  

• Build a bickering committee of
 models of the data

• Ensembles Minku ICSE'14,
 PROMISE’12 26

Ignoring Data -- Data Format

 27

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

Data Format

 28

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

O
bs

er
va

ti
on

s
/

ex
am

pl
es

 29

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

Input / Independent Attributes

O
bs

er
va

ti
on

s
/

ex
am

pl
es

Data Format

 30

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

Input / Independent Attributes
Output / Dependent

Attribute

O
bs

er
va

ti
on

s
/

ex
am

pl
es

Data Format

 31

Size Number of

operators

... Bug/

No bug

Component

1

10 3 ... No

Component

2

20 6 ... No

Component

3

100 10 ... Yes

...

Input / Independent Attributes
Output / Dependent

Attribute

O
bs

er
va

ti
on

s
/

ex
am

pl
es

Example for Software Defect Prediction

 32

Software

Size

Team

Expertise

... Effort

Project

1

1000 high ... 60

Project

2

200 medium ... 50

Project

3

150 low ... 50

...

Input / Independent Attributes
Output / Dependent

Attribute

O
bs

er
va

ti
on

s
/

ex
am

pl
es

Example for Software Effort Estimation

Different Ways to Ignore Data

 33

How to ignore data?

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

Different Ways to Ignore Data

 34
Prune columns

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

Different Ways to Ignore Data

 35

Prune rows

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No

Ex3 1.5 low ... Yes

...

Different Ways to Ignore Data

 36

Prune ranges

But Why Prune at All? 
Why not use all the data?

• Outliers may confuse data analysis.
• Irrelevant features may make data analysis more

difficult.

 37

But Why Prune When Sharing Data? 
Why not use all the data?

The original vision

of PROMISE

• With enough data, our
knowledge will stabilize

• But the more data we
collected …
• … the more variance we

observed

• Its like the microscope
zoomed in
• to smash the slide

Software projects

are different

• They change from place
to place

• They change from time to
time

• My lessons may not apply
to you

• Your lessons may not
even apply to you
(tomorrow)

• Locality, locality, locality 38

Ignoring Data

• irrelevancy removal
e.g. correlation-based
feature selection

• better predictions

• contrast
• goals

 39

• outliers
• cross-company

learning
• handling missing

values
• privacy
• anomaly detection
• incremental learning

Column
pruning

Range
pruning

Row
pruning

[Demo]

Ignoring Data

• irrelevancy removal
• better predictions

remove columns if
that would lead to
better predictions

 40

Column
pruning

• outliers
• cross-company

learning
• handling missing

values
• privacy
• anomaly detection
• incremental learning

Range
pruning

Row
pruning

• contrast
• goals

Ignoring Data

• irrelevancy removal
• better predictions

 41

Column
pruning

• outliers
• cross-company

learning
• handling missing

values
NN-filtering, TEAK,
popularity-based
filtering

• privacy
• anomaly detection
• incremental learning

Range
pruning

Row
pruning

• contrast
• goals

Nearest Neighbor (NN) Filtering
• Idea:

• Step 1: Find the relevant data
• Step 2: Build a predictor based on the relevant data

 42
B. Turhan, T. Menzies, A. Bener, J. Distefano "On the Relative Value of Cross-Company and Within-
Company Data for Defect Prediction", Empirical Software Engineering, 2009.

NN Filtering - Step 1
• Step 1: Find the relevant data

 43

Training data

• Step 1: Find the relevant data

 44

Training and test data

NN Filtering - Step 1

• Step 1: Find the relevant data

 45

Find training data closest to test data

k-nearest
neighbors

Euclidean
distance based
on input features

NN Filtering - Step 1

If you are dealing with prediction tasks, do not use the
output attribute for this step!

• Step 1: Find the relevant data

 46

Relevant training data

NN Filtering - Step 1

• Step 2: Build a predictor based on the relevant data

 47

Relevant training data

NN Filtering - Step 2

• Step 2: Build a predictor based on the relevant data

 48

Take random sample of 90% of relevant training data

NN Filtering - Step 2

• Step 2: Build a predictor based on the relevant data

 49

Build predictor, e.g., naive bayes

NN Filtering - Step 2

NN-Filtering Sample Result --
Software Defect Prediction
• CM1 software defect prediction when using data from

other projects:
• False positive: 91%
• True positive: 98%

• When using NN-filtering with data from other projects:
• False positive: 44%
• True positive: 82%

• When using data from within a given project:
• False positive: 33%
• True positive: 80%

 50

Why NN Filtering? When?
Why?
• NN filtering finds local regions that are relevant to a given

context.
• It can transfer data between projects.

When?
• Helpful as an alternative when there is not much data from

within a given environment.
• E.g., defect predictor for first version of a software.

• Adequate when the number of neighbours is large enough
to create an accurate model.
• E.g., in software defect prediction.

Test Essential Assumption Knowledge (TEAK) is a relevancy
filter that may be more adequate for smaller data sets.

 51

Test Essential Assumption
Knowledge (TEAK)
• Learning algorithms are based on assumptions.

• E.g., linear regression assumes linearity, k-nearest
neighbour assumes that locality implies homogeneity.

 52

E. Kocaguneli, T. Menzies, E. Mendes "Transfer Learning in Effort Estimation", Empirical Software
Engineering Journal, 2014.

E. Kocaguneli, T. Menzies, A. Bener, J. Keung "Exploiting the Essential Assumptions of Analogy-Based
Effort Estimation", IEEE Transactions on Software Engineering, 2012.

Assumptions are not always satisfied -- outliers!

Test Essential Assumption
Knowledge (TEAK)
• Learning algorithms are based on assumptions.

• E.g., linear regression assumes linearity, k-nearest
neighbour assumes that locality implies homogeneity.

 53

Figure from: http://nicodewet.com/2011/10/02/java-exception-rule-book/

http://nicodewet.com/2011/10/02/java-exception-rule-book/

TEAK - Eliminating Confusing
Situations

 54

Outliers can confuse algorithms, hindering their
performance.

1,253 1,440 1,562 5,727

var = 1.75e4

var = 4.65e6

var = 8.67e6

Linear regression Greedy Agglomerative Clustering (GAC)
K-Nearest Neighbors

How TEAK Works

• Step 1: Select a prediction system
• Step 2: Identify its essential assumptions
• Step 3: Identify assumption violation
• Step 4: Remove violations
• Step 5: Execute the modified system

 55
E. Kocaguneli, T. Menzies, A. Bener, J. Keung "Exploiting the Essential Assumptions of Analogy-Based
Effort Estimation", IEEE Transactions on Software Engineering, 2012.

How TEAK Works
• Step 1: Select a prediction system

• GAC k-NN
• Step 2: Identify its essential assumptions
• Step 3: Identify assumption violation
• Step 4: Remove violations
• Step 5: Execute the modified system

 56

How TEAK Works
• Step 1: Select a prediction system

• GAC k-NN
• Step 2: Identify its essential assumptions

• Locality leads to homogeneity
• Step 3: Identify assumption violation
• Step 4: Remove violations
• Step 5: Execute the modified system

 57

How TEAK Works
• Step 1: Select a prediction system

• GAC k-NN
• Step 2: Identify its essential assumptions

• Locality leads to homogeneity
• Step 3: Identify assumption violation
• Step 4: Remove violations
• Step 5: Execute the modified system

 58

Identifying Assumption Violation
for k-NN
• Create a tree by using GAC

• For predictive tasks you would check
the input attributes of the examples

 59

a b c d

Identifying Assumption Violation
for k-NN
• Create a tree by using GAC

• For predictive tasks you would check
the input attributes of the examples

 60

Group two
closest pairs
together based
on input
attributes

a b c d

Identifying Assumption Violation
for k-NN
• Create a tree by using GAC

• For predictive tasks you would check
the input attributes of the examples

 61

b c d

Group two
closest pairs
together based
on input
attributes

a

median(a,b) median(c,d)

Identifying Assumption Violation
for k-NN
• Create a tree by using GAC
• Traverse the tree to find increases in variance

• For predictive tasks, this variance should be
checked based on the output attribute

 62

1,253 1,440 1,562 5,727

var = 1.75e4 var = 8.67e6

var = 4.65e6

How TEAK Works
• Step 1: Select a prediction system

• k-NN
• Step 2: Identify its essential assumptions

• Locality leads to homogeneity
• Step 3: Identify assumption violation
• Step 4: Remove violations

• Prune subtree that violates assumption
• Step 5: Execute the modified system

 63

How TEAK Works
• Step 1: Select a prediction system

• k-NN
• Step 2: Identify its essential assumptions

• Locality leads to homogeneity
• Step 3: Identify assumption violation
• Step 4: Remove violations

• Prune subtrees that violates assumption
• Step 5: Execute the modified system

• Create a new GAC tree 64

Why TEAK? When?
Why?
• TEAK eliminates examples that cause confusion

and increase uncertainty of predictions
• It helps to improve models' predictive

performance
• TEAK GAC k-NN can be used to remove not only

confusing examples from within a given source,
but also confusing examples from different sources
• TEAK can thus be used for transfer learning

When?
• It is expected to be particularly useful when we don't have

much data, i.e., when few outliers can cause great damage
• E.g., software effort estimation

 65

• Eliminate training examples that are unpopular, i.e.,
that are less often neighbors of other training examples.

• This has been shown to help overcoming problems with
missing values.

Popularity-Based Filtering

 66

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On
the Value of Software Size Features for Effort Estimation

k-nearest
neighbors

Euclidean
distance based
on input features

Training data

• Eliminate training examples that are unpopular, i.e.,
that are less often neighbors of other training examples.

• This has been shown to help overcoming problems with
missing values.

Popularity-Based Filtering

 67

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On
the Value of Software Size Features for Effort Estimation

k-nearest
neighbors

Euclidean
distance based
on input features

Training data

• Eliminate training examples that are unpopular, i.e.,
that are less often neighbors of other training examples.

• This has been shown to help overcoming problems with
missing values.

Popularity-Based Filtering

 68

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On
the Value of Software Size Features for Effort Estimation

k-nearest
neighbors

Euclidean
distance based
on input features

Training data

• Eliminate training examples that are unpopular, i.e.,
that are less often neighbors of other training examples.

• This has been shown to help overcoming problems with
missing values.

Popularity-Based Filtering

 69

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On
the Value of Software Size Features for Effort Estimation

k-nearest
neighbors

Euclidean
distance based
on input features

Training data

• Eliminate training examples that are unpopular, i.e.,
that are less often neighbors of other training examples.

• This has been shown to help overcoming problems with
missing values.

Popularity-Based Filtering

 70

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On
the Value of Software Size Features for Effort Estimation

k-nearest
neighbors

Euclidean
distance based
on input features

Training data

0

0

1
3

• Eliminate training examples that are unpopular, i.e.,
that are less often neighbors of other training examples.

• This has been shown to help overcoming problems with
missing values.

Popularity-Based Filtering

 71

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On
the Value of Software Size Features for Effort Estimation

k-nearest
neighbors

Euclidean
distance based
on input features

Training data

0

0

1
3

• Eliminate training examples that are unpopular, i.e.,
that are less often neighbors of other training examples.

• This has been shown to help overcoming problems with
missing values.

Popularity-Based Filtering

 72

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On
the Value of Software Size Features for Effort Estimation

Add most popular
examples that lead to
considerable
decreases in error

Relevant data

Ignoring Data

• irrelevancy removal
• better predictions

 73

Column
pruning

• outliers
• cross-company

learning
• handling missing

values
• privacy
• anomaly detection
• incremental learning

Range
pruning

Row
pruning

• contrast
• goals

And What About Range Pruning?
• Classes x,y

• Fx, Fy
• frequency of

discretized ranges in
x,y  

• Log Odds Ratio
• log(Fx/Fy)
• Is zero if no difference

in x,y  

• E.g. Data from Norman
Fenton’s Bayes nets discussing
software defects = yes, no 

• Do most ranges contribute to
determination of defects? no

• Restrict discussion to just most
powerful ranges

�74

Range Pruning

 75

Contrast pruning Goal pruning

• prune away ranges that
do not contribute to
differences within the
data.  

• prune away ranges that
do not effect final
decisions.

Learning from  
“powerful” ranges

Contrast Pruning Example

• Generate tiny models
• Sort all ranges by their power  

• WHICH
1. Select any pair (favouring those with

most power)
2. Combine pair, compute its power
3. Sort back into the ranges
4. Goto 1

• Initially:
• stack contains single ranges

• Subsequently
• stack sets of ranges

Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, Ayse Basar Bener: Defect prediction from static code
features: current results, limitations, new approaches. Autom. Softw. Eng. 17(4): 375-407 (2010)

Decision tree
learning on
14 features and
506 houses

WHICH
�76

Learning from  
“powerful” ranges

Goal Pruning Example

• Report only summary of data
that affects a decision
• Sort all ranges by their power
• Find minority of ranges and

columns that distinguish between
groups. 

• Question?
1. What predicts for higher house

cost?

Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, Ayse Basar Bener: Defect prediction from static code
features: current results, limitations, new approaches. Autom. Softw. Eng. 17(4): 375-407 (2010)

�77

Decision tree
learning on
14 features and
506 houses

WHICH

Advantage of Range Pruning
Reasoning via analogy

• Any nearest
neighbour method
runs faster with row/
column pruning
• Fewer rows to search
• Fewer columns to

compare

�78

Learning defect
predictors

• If you just explore
the ranges that
survive row and
column pruning,
• is inference

faster?

Associated rule
learning

• Mine only matching
rules on demand:

• E.g. ROSE,
Zimmermann et al.,
TSE04.

• Constraints on
antecedent. Mine only
rules which are related
to the antecedent.

Zimmermann, Thomas, et al. "Mining version histories to guide software changes." In 26th International Conference on
Software Engineering (ICSE) 2004.

Ignoring Data

• irrelevancy removal
• better predictions

 79

Column
pruning

• outliers
• cross-company

learning
• handling missing

values
• privacy
• anomaly detection
• incremental learning

LACE

Range
pruning

Row
pruning

• contrast
• goals

1. Introduction 
2. Sharing data 
3. Privacy and sharing 
4. Sharing models 
5. Summary
Step 1: Throw most of it away
Step 2: Share the rest

 80

Balancing Usefulness & Privacy

S. Elbaum, A. Mclaughlin, and J. Penix, “The google dataset of testing results,” June 2014.
[Online].
Available: https://code.google.com/p/google-shared-dataset-of-
test-suite-results

�81

Sharing industrial datasets
with the research community
is extremely valuable, but
also extremely challenging as
it needs to balance the
usefulness of the dataset with
the industry’s concerns for
privacy and competition.

https://code.google.com/p/google-shared-dataset-of-test-suite-results

Challenge Accepted

�82

ICSE 2012  
Data Obfuscation 

(MORPH)

TSE 2013  
Data

Minimization 
(CLIFF)

ICSE 2015  
Data

Sharing 
(LACE2)

F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

(LACE1)

What We Want…

Features Solution
(LACE2)Privacy Low sensitive attribute

disclosure.
?

Utility Strong defect predictors. ?

Cost
Low memory requirements. ?
Fast runtime. ?

�83

Sound Bites
LACE2 works

• because of the idea of software code re-
use
• In a set of programs, 32% were comprised of

reused code (not including libraries). [Selby
2005]  

• and one simple rule
• don’t share what others have already shared;

�84

R. Selby, “Enabling reuse-based software development of large-scale systems,” Software Engineering, IEEE
Transactions on, vol. 31, no. 6, pp. 495–510, June 2005.

Research Questions
1. Does LACE2 offer more privacy than

LACE1?  

2. Does LACE2 offer more useful defect
predictors than LACE1?  

3. Are system costs of LACE2 (memory &
runtime) worse than LACE1?

�85

Roadmap
1. Privacy Threat (Sensitive Attribute

Disclosure)
2. Cross Project Defect Prediction
3. LACE1 & LACE2
4. Experiments & Results
5. Why LACE?

�86

Roadmap
1. Privacy Threat (Sensitive Attribute

Disclosure)
2. Cross Project Defect Prediction
3. LACE1 & LACE2
4. Experiments & Results
5. Why LACE?

�87

Sensitive Attribute Disclosure
• A privacy threat.
• Occurs when a target is associated with information about their

sensitive attributes
• e.g. software code complexity or actual software development times.

• 100 % = zero sensitive attribute disclosure
• 0% = total sensitive attribute disclosure

J. Brickell and V. Shmatikov, “The cost of privacy: destruction of data-mining utility in anonymized data publishing,” in Proceeding of
the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, ser. KDD ’08.
F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

Queries Original Obfuscated Breach
Q1 0 0 yes
Q2 0 1 no
Q3 1 1 yes

no=1/3
no=33%

�88

Roadmap
1. Privacy Threat (Sensitive Attribute

Disclosure)
2. Cross Project Defect Prediction
3. LACE1 & LACE2
4. Experiments & Results
5. Why LACE?

�89

Cross Project Defect Prediction
• For improving inspection

efficiency 

• But wait! I don’t have enough
data.  

• Local data not always available
[Zimmermann et al. 2009]
• companies too small;
• product in first release, no past

data;
• no time for data collection;

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process.” in ESEC/SIGSOFT FSE’09, 2009, pp. 91–100.

�90

Cross Project Defect Prediction
• Use of data from other

sources to build defect
predictors for target data. 

• Initial results (Zimmermann
et al. 2009).

644 Cross
Defect

Prediction
Experiments

Strong (3.4%)
Weak (96.6%)

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process.” in ESEC/SIGSOFT FSE’09, 2009, pp. 91–100.

�91

Cross Project Defect Prediction
• Use of data from other sources to build defect predictors

for target data. 

• Promising results when data from other sources are made
similar to test data (Turhan et al. 2009, He et al.
2012,2013, Nam et al. 2013).
• This raises privacy concerns;
• Data must be shared.

J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE’13. IEEE Press Piscataway, NJ, USA, 2013, pp. 802–
811.
B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value of cross-company and within-company data
for defect prediction,” Empirical Software Engineering, vol. 14, pp. 540–578, 2009.
He, Zhimin, et al. "An investigation on the feasibility of cross-project defect prediction." Automated Software Engineering
19.2 (2012): 167-199.
He, Zhimin, et al. "Learning from open-source projects: An empirical study on defect prediction." Empirical Software
Engineering and Measurement, 2013 ACM/IEEE International Symposium on. IEEE, 2013.

�92

Roadmap
1. Privacy Threat (Sensitive Attribute

Disclosure)
2. Cross Project Defect Prediction
3. LACE1 & LACE2
4. Experiments & Results
5. Why LACE?

�93

�94Flowchart for  
LACE1 and LACE2

�95Flowchart for  
LACE1 and LACE2

�96Flowchart for  
LACE1 and LACE2

�97Flowchart for  
LACE1 and LACE2

�98Flowchart for  
LACE1 and LACE2

Data
Minimization with

CLIFF

Data Minimization
CLIFF: "a=r1" is powerful for
selection for class=yes, i.e. more
common in "yes" than "no".

• P(yes|r1) =
  
 like(yes|r1)2

like(yes|r1) + like(no|r1)

• Step 1: For each class find
ranks of all values;

• Step 2: Multiply ranks of each
row;

• Step 3: Select the most
powerful rows of each class
(top 20%).

F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

a b c d class

r1 r1 r1 r2 yes

r1 r2 r3 r2 yes

r1 r3 r3 r3 yes

r4 r4 r4 r4 no

r1 r5 r5 r2 no

r6 r6 r6 r2 no
�99

�100Flowchart for  
LACE1 and LACE2

Obfuscation with
MORPH

Data Obfuscation
MORPH: Mutate the survivors
no more than half the distance
to their nearest unlike neighbor.

• x is original instance;
• z is nearest unlike neighbor of

x;
• y resulting MORPHed

instance;
• r is random.

F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

�101

�102Flowchart for  
LACE1 and LACE2

Don’t share what
others have

shared technique
used for LACE2.  
Done with LeaF

Don’t Share What Others Share

• LACE2 : Learn from N software projects
• from multiple data owners

• As you learn, play “pass the parcel”
• The cache of reduced data

• Each data owner only adds its “leaders” to the passed cache
• Morphing as they go

• Each data owner determines “leader” according to median
distance
• 100 random instances chosen
• Find distance of nearest unlike neighbor for each
• Get median distance

Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. John Wiley & Sons, 2012.
R. Selby, “Enabling reuse-based software development of large-scale systems,” Software Engineering, IEEE Transactions on, vol.
31, no. 6, pp. 495–510, June 2005.

�103

�104Flowchart for  
LACE1 and LACE2

Measure of
privacy based on

Sensitive
Attribute

Disclosure

Roadmap
1. Privacy Threat (Sensitive Attribute

Disclosure)
2. Cross Project Defect Prediction
3. LACE1 & LACE2
4. Experiments & Results
5. Why LACE?

�105

Data

�106

Experiment Design: RQ1

• 7 data owners follow LACE1 then LACE2 sharing
techniques. 

• Calculates the privacy level until privacy criterion
(65%) is met.

�107

Does LACE2 offer more privacy than LACE1?

Results: Privacy

RQ1: Does LACE2 offer more privacy than LACE1?

Privacy for LACE1 and LACE2

Pr
iv

ac
y

(%
)

60

68

75

83

90

Proprietary Data
p1-v192 p43-v512 p4-v362 p3-v318

LACE1
LACE2

�108

Result Summary
Features LACE

1
LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. ?

Cost
Low memory requirements. ?
Fast runtime. ?

�109RQ1: Does LACE2 offer more privacy than LACE1?

Experiment Design: RQ2

• Cross project defect prediction experiment. 

• Predictors built with k-nearest neighbour algorithm
and private cache.

�110

Does LACE2 offer more useful defect predictors than
LACE1?

Performance Measures
• TP (True Positive): defect-

prone classes that are
classified correctly;

• FN (False Negative): defect-

prone classes that are
wrongly classified to be
defect-free;

• TN (True Negative): defect-
free classes that are
classified correctly;

• FP (False Positive): defect-
free classes that are wrongly
classified to be defect-prone.

�111

Results: Defect Prediction
Pds for LACE1 and LACE2

pd
 (%

)

0

23

45

68

90

Test Defect Data Sets

xalan-2.6

velocity
-1.6.1

poi-3.0
ant-1.7

syn
apse-1.2

ivy-
2.0

LACE1
LACE2

RQ2: Does LACE2 offer more useful defect predictors than LACE1?

�112

Results: Defect Prediction

RQ2: Does LACE2 offer more useful defect predictors than LACE1?

�113

Pds for LACE1 and LACE2
pd

 (%
)

0

20

40

60

80

Test Defect Data Sets
lucene-2.4 camel-1.6 xerces-1.3 jEdit-4.1

LACE1
LACE2

Results: Defect Prediction
• Higher pfs (lower is best) than LACE1.

Pfs for LACE1 and LACE2
Data LACE1 LACE2
jEdit-4.1 23.4 41.7
ivy-2.0 31.9 46.3
xerces-1.3 27.1 33.7
ant-1.7 34.3 36.8
camel-1.6 28.2 37.6
lucene-2.4 24.0 31.1
xalan-2.6 28.1 27.3
velocity-1.6.1 22.7 30.3
synapse-1.2 40.2 55.7
poi-3.0 16.4 23.8

�114

Results: Defect Prediction
• G-measures

• No statistical difference between LACE1 and LACE2.

G-measures for LACE1 and LACE2
Data LACE1 LACE2
jEdit-4.1 72.7 58.2
ivy-2.0 71.8 64.9
xerces-1.3 65.5 59.1
ant-1.7 67.6 64.9
camel-1.6 61.2 50.0
lucene-2.4 58.9 53.1
xalan-2.6 57.6 56.7
velocity-1.6.1 57.0 58.5
synapse-1.2 59.6 54.0
poi-3.0 57.0 63.9

�115

Result Summary

�116

Features LACE
1

LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. good ~good

Cost
Low memory requirements. ?
Fast runtime. ?

RQ2: Does LACE2 offer more useful defect predictors than LACE1?

Experiment Design: RQ3

• Memory = Calculated the percent of data
each data owner contributes to the private
cache. 

• Runtime = Reported the time in seconds for
creating each private cache for LACE1 and
LACE2. �117

Are system costs of LACE2 (memory & runtime) worse
than LACE1?

Results: Memory

RQ3: Are system costs of LACE2 (memory) worse than LACE1?

Memory Cost for LACE1 and
LACE2

%
 D

at
a

in
 p

riv
at

e
ca

ch
e

0

5

10

15

20

Proprietary Data
p5-v185 p3-v318 p4-v362 p42-v454

LACE1
LACE2

�118

Data #
p5-v185 3260
p43-v512 2265

p3-v318 2440

p2-v276 2472

p4-v362 2865

p1-v192 3692

p42-v454 295

Result Summary

�119

Features LACE
1

LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. good ~good

Cost
Low memory requirements. good better
Fast runtime. ? ?

RQ3: Are system costs of LACE2 (memory) worse than LACE1?

Results: Runtime

RQ3: Are system costs of LACE2 (runtime) worse than LACE1?

Median Runtime Cost for LACE1 and
LACE2

Sh
ar

in
g

M
et

ho
ds LACE2

LACE1

Time (seconds)

2000 2075 2150 2225 2300

2205

2059

�120

Result Summary

�121

Features LACE
1

LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. good ~good

Cost
Low memory requirements. good better
Fast runtime. good good

RQ3: Are system costs of LACE2 (runtime) worse than LACE1?

Roadmap
1. Privacy Threat (Sensitive Attribute

Disclosure)
2. Cross Project Defect Prediction
3. LACE1 & LACE2
4. Experiments & Results
5. Why LACE?

�122

Why LACE2?
• By using LACE2, you will be able to share

a version of your data that is useful and
satisfies your privacy criterion. 

• LACE2 provides more privacy than
LACE1.
• Less data used. 

• Don’t share what others have shared. 

• Comparable predictive efficacy to LACE1. 

• LACE2’s sharing method, does not take
more resources than LACE1. �123

Data from the Users Perspective

 124

Privacy is the ability to
understand, choose,

and control what
personal information
an individual shares,
with whom, and for

how long.

K. Shilton, “Four billion little brothers?: Privacy, mobile phones, and ubiquitous data collection,” Commun. ACM, vol. 52,  
no. 11, pp. 48–53, Nov. 2009. [Online]. Available: http://doi.acm.org/10.1145/1592761.1592778

Some applications require
personal data.

 125

Attacker with access can
breach user privacy.

The Conflict

 126
I. Krontiris, M. Langheinrich, and K. Shilton, “Trust and privacy in mobile experience sharing: future challenges and
avenues for research,” Communications Magazine, IEEE, vol. 52, no. 8, pp. 50–55, Aug 2014.

Users have the opportunity to set privacy preferences but  
do not act on them in practice.

Privacy Zones Approach

• Proactive not Reactive.
• Privacy as the default setting.

• Set default privacy to only share privacy zone data.
• In the zone = user’s habits (clusters)
• Not in the zone = user’s irregular activities

• User decides what to do with not in the zone data.
• Ignore (Always share)
• React (Obfuscate -> Success -> Share)
• Prevent (Obfuscate -> No Success -> Do Not Share)
• Terminate (End use of the application) 

 127

Privacy by
Design

Principles

1. Introduction 
2. Sharing data 
3. Privacy and sharing 
4. Sharing models 
5. Summary
4a. Bagging
4b. Comba
4c. Multi-objective ensembles
4d. DCL
4e. Dycom 128

 Ensembles and Wisdom of the Crowd

Committees of artificially generated experts with
different views on how to solve a problem.

 129

[Video -- BBC The Code -- Wisdom of the Crowd]
https://youtu.be/iOucwX7Z1HU

https://youtu.be/iOucwX7Z1HU

 Ensembles
Sets of learning machines grouped together with the aim

of improving predictive performance.

 130

estimation1 estimation2 estimationN

Base learners

E.g.: ensemble estimation = Σ wi
estimationi

B1 B2 BN

T. Dietterich. Ensemble Methods in Machine Learning. Proceedings of the First
International Workshop in Multiple Classifier Systems. 2000.

 Ensemble Diversity

One of the keys: diversity, i.e., different base learners
make different mistakes on the same instances.

 131

 Ensemble Versatility
Diversity can be used to address different issues when

estimating software data.

 132

Models of the
same

environment

Models with
different

goals

Models of
different

environments

 Ensemble Versatility
Diversity can be used to increase stability across data sets.

 133

Models of the
same

environment

Models with
different

goals

Models of
different

environments

Conclusion Instability
• Different predictive models perform differently on

different data sets.

• Predictive models (e.g., RTs and MLPs) can be unstable
when trained on different samples.

• Ensembles can help increasing conclusion stability across
data sets.
• Facilitates model choice.

 134

Bagging Ensembles of Regression
Trees

 135

L. Breiman. Bagging Predictors. Machine Learning 24(2):123-140, 1996.

Training data
(completed projects)

RT1 RT2 RTN ...
Sample

uniformly with
replacement

Regression Trees (RTs):
● Local methods.
● Divide projects

according to attribute
value.

● Most impactful
attributes are in higher
levels.

● Attributes with
insignificant impact are
not used.

● E.g., REPTrees.

WEKA
●Weka: classifiers – meta – bagging
●classifiers – trees – REPTree

 136

Increasing Performance Rank Stability
Across Data Sets
− Study with 13 data sets from PROMISE and

ISBSG repositories.
− Bag+RTs:

● Obtained the highest rank across data set in terms
of Mean Absolute Error (MAE).

● Rarely performed considerably worse (>0.1SA, SA =
1 – MAE / MAErguess) than the best approach:

 137

L. Minku, X. Yao. Ensembles and Locality: Insight on Improving Software Effort Estimation.
Information and Software Technology 55(8):1512-1528, 2013.

Comba

 138

Kocaguneli, E., Menzies, T. and Keung, J. On the Value of Ensemble Effort
Estimation. IEEE Transactions on Software Engineering, 8(6):1403 – 1416, 2012.

Solo-methods: preprocessing + learning algorithm

Training data
(completed projects) SNS1 S2

training

SzSa Sb Sc

SxSc Sa Sk

Rank solo-methods based on
win, loss, win-loss

Select top ranked models with few rank
changes

And sort according to losses

...

...

...

Increasing Rank Stability Across Data Sets

 139

Combine top 2,4,8,13 solo-methods
via mean, median and IRWM

Re-rank solo and multi-methods
together according to #losses

The first ranked multi-method had very low rank-changes.

 Ensemble Versatility
Diversity can be used to create models that perform well

on different goals.

 140

Models of the
same

environment

Models with
different

goals

Models of
different

environments

Multi-Objective Ensemble
• We may be interested in creating models that do

well in terms of different objectives.
• E.g., in software effort estimation, different

performance measures capture different
quality features.

 141

• There is no agreed
single measure.

• A model doing well
for a certain
measure may not do
so well for another.

Multi-Objective Ensembles

− We can view such problems (e.g., software effort
estimation) as a multi-objective learning
problems.

− A multi-objective approach (e.g. Multi-Objective
Evolutionary Algorithm (MOEA)) can be used to:
● Create models that do well for different objectives,

in particular for larger data sets (>=60).
● Better understand the relationship among

objectives.

 142

L. Minku, X. Yao. Software Effort Estimation as a Multi-objective Learning Problem.
ACM Transactions on Software Engineering and Methodology, 22(4):35, 2013.

[Video - https://youtu.be/sEEiGM9em8s]

https://youtu.be/sEEiGM9em8s

Multi-Objective Ensembles

 143

Training data
(completed projects)

Ensemble

B1 B2 B3

Multi-objective evolutionary
algorithm creates nondominated
models with several different
trade-offs.

The model with the best
performance in terms of each
particular measure can be picked to
form an ensemble with a good
trade-off.

L. Minku, X. Yao. Software Effort Estimation as a Multi-objective Learning Problem.
ACM Transactions on Software Engineering and Methodology, 22(4):35, 2013.

Improving Performance on Different
Measures

● Sample result: Pareto ensemble of MLPs (ISBSG):

● Important:
−Using performance measures that behave differently from
each other (low correlation) provide better results than
using performance measures that are highly correlated.

−More diversity.

−This can even improve results in terms of other measures
not used for training. 144

L. Minku, X. Yao. An Analysis of Multi-objective Evolutionary Algorithms for Training Ensemble Models
Based on Different Performance Measures in Software Effort Estimation. PROMISE, 10p, 2013.

 Ensemble Versatility
Diversity can be used to deal with changes and transfer

knowledge.

 145

Models of the
same

environment

Models with
different

goals

Models of
different

environments

Companies’ Changing Environments
Companies are not static entities – they can change
with time (concept drift).

 146

Software data analytics should consider temporal
information!

Companies’ Changing Environments
Companies are not static entities – they can change
with time (concept drift).

E.g., change in management strategy, development of new
types of products, key employees leaving the company, etc.

 147

Companies’ Changing Environments
Companies are not static entities – they can change
with time (concept drift).

 148

Software data analytics should consider temporal
information!

Changes may affect how well a given model
describes the current situation of a company.

Companies’ Changing Environments
Companies are not static entities – they can change
with time (concept drift).

 149

Software data analytics should consider temporal
information!

Software data analytics should consider temporal
information!

Companies’ Changing Environments
Companies are not static entities – they can change
with time (concept drift).

 150
How to know when a
model reflects well

the current situation
of a company?

How to update
models throughout

time?

Software data analytics should consider temporal
information!

Dynamic Cross-Company Learning
(DCL)

 151

WC Model

Within-company
(WC)

incoming training
data (completed
projects arriving

with time)

CC Model
1

CC Model
2

CC Model
M...

w

DCL learns a weight to reflect the suitability of CC
models.

For each new training
project
• If model is not a

winner, multiply its
weight by β (0 < β < 1)

 L. Minku, X. Yao. Can Cross-company Data Improve Performance in Software Effort
Estimation? PROMISE, p. 69-78, 2012.

w1 w2 wM

Improving Performance Throughout Time
• DCL can identify which model best represents our current situation.
• DCL adapts to changes by using CC models.
• DCL manages to use CC models to improve performance over WC

models.

 152

Predicting effort for a single company from ISBSG based on its projects and other companies' projects.

Sample Result

Why DCL? When?
Why?
• DCL is able to identify which model (CC or WC) best

represents the current situation of a company.
• It can be used for transfer learning.
• It can deal with changes.
• It can improve performance over WC models when CC

models are useful.

When?
• When one wishes to use CC data to improve predictive

performance.
• When environments are likely to suffer changes.

If none of the CC models is useful, DCL will not be able to
benefit from them.

 153

Dynamic Cross-Company Mapped Model
Learning (Dycom)

 154

WC Model

Within-company
(WC)

incoming training
data (completed
projects arriving

with time)

CC
Model

1

CC
Model

2

CC
Model

M...

w1 w2 wM

w

How to use CC models even when they are not directly
helpful?

Dycom learns
functions to map CC
models to the WC
context.

 L. Minku, X. Yao. How to Make Best Use of Cross-Company Data in Software Effort
Estimation? ICSE, p. 446-456, 2014.

Map
1

Map
2

Map
M

Learning Mapping Function

 155
where lr is a smoothing factor that allows tuning the emphasis on
more recent examples.

 L. Minku, X. Yao. How to Make Best Use of Cross-Company Data in Software Effort
Estimation? ICSE, p. 446-456, 2014.

train

Reducing the Number of Required WC
Training Examples

 156
Dycom can achieve similar / better performance while

using only 10% of WC data.

Sample
Result

Why Dycom? When?
Why?
• Dycom is able to map models representing different

contexts to the context we are interested in.
• It can be used for transfer learning.
• It can deal with changes.
• It can reduce the number of required WC training

examples.

When?
• Dycom is particularly useful when collection of WC

training examples is expensive.
• When used for software effort estimation, Dycom can

also provide insights into the productivity of a
company over time.

 157

• Relationship
between effort of
different companies
for the same
projects.

• Initially, our
company needs
initially 2x effort
than company red.

• Later, it needs only
1.2x effort.

Dycom Insights on Productivity

 158

Dycom Insights on Productivity

 159

• Our company needs
2x effort than
company red.

• How to improve our
company?

Analysing Project Data
Number of projects with each feature value for the 20 CC
projects from the medium productivity CC section and the

first 20 WC projects:

 160Both the company and the medium CC section frequently use
employees with high programming language experience.

Analysing Project Data

 161

Number of projects with each feature value for the 20 CC
projects from the medium productivity CC section and the first

20 WC projects:

Medium CC section uses more employees with high virtual machine
experience. So, this is more likely to be a problem for the company.
Sensitivity analysis and project manager knowledge could help to confirm
that.

 Ensemble Versatility
Diversity can be used to address different issues when

estimating software data.

 162

Increase stability across
data sets.

Deal with changes and transfer knowledge.

Increase performance on
different measures.

Models of the
same

environment

Models with
different

goals

Models of
different

environments

1. Introduction 
2. Sharing data 
3. Privacy and sharing 
4. Sharing models 
5. Summary
6a. The past
6b. The present
6c. The future 163

The past

• Models for individual
data owners.

• Conclusion instability.

 164

The present
• Reducing problems caused by conclusion instability.
• Finding local lessons from global data.

• Accomplished for individual data owners as well as data
owners who want to share data collaboratively.

• Results are promising.

 165

The future

• Model-based reasoning
• Gaining more insights from models.
• Considering temporal aspects of software data.
• Taking goals into account in decision-support tools.

 166

• Privacy
• Next step : focus on end user

privacy
• when using software apps that

need personal info to function.

 167

End of our tale

