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1a. Analyzing software data: why?
In the 21st century, too much data

 6

And a dozen other open-source repositories: 
• E.g. see next page 
• E.g Feb  2015  

• Mozilla Firefox : 1.1 million bug reports,  
• GitHub host  14+ million projects.

E.g. PROMISE repository 
of SE data  

• grown to 200+ standard 
projects 

• 250,000+ spreadsheets
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1a. Analyzing software data: why?

Impossible to browse all software project data!
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1a. Analyzing software data: why?

With the right tools, we can gain useful insights from software data!



Example: Software Defect 
Prediction

Software code is composed of several components.

 9



Testing all these components can be very expensive.
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Example: Software Defect 
Prediction



If we know which components are likely to be defective, 
we can increase testing cost-effectiveness.
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Example: Software Defect 
Prediction
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Data describing 
software modules and 
whether they contain 

defects
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Model

Predictive 
Model

Train

Test

Example: Software Defect 
Prediction



Example: Software Effort 
Estimation
Estimation of the effort required to develop a 
software project. 

• Effort is measured in person-hours, person-
months, etc. 

• Influenced by attributes such as required 
reliability, programming language, 
development type, team expertise, etc. 

• Main factor influencing project cost. 
• Overestimation vs underestimation.  13



 14Nasa cancelled its incomplete Check-out Launch Control Software project 
after the initial $200M estimate was exceeded by another $200M.

Picture: http://www.boeing.com/defense-space/

Example: Software Effort 
Estimation
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Learning 
Machine

Data describing 
software projects and 
their actual required 

efforts Predictive 
Model

Predictive 
Model

Train

Test

Example: Software Effort 
Estimation

Effort



• Other examples of insights: 
• What team expertise to assign to a project so 

that it is more cost-efficient 
• How the productivity of a company changes 

over time 
• How to improve productivity 
• What commits are most likely to induce 

crashes 
• What developer to assign to what bug 
• What method has a bad smell 
• ...

 16

1a. Analyzing software data: why?



The PROMISE repo 

openscience.us/repo

#storingYourResearchData  

• URL 
• openscience.us/repo 
• Data from 100s of projects 
• E.g. EUSE: 

• 250,000+ spreadsheets  

• Oldest continuous  
repository of SE data 
• Version 0: 2002 
• For other repos, see 

Table 1 of goo.gl/UFZgnd  17

Serve all our data, on-line

1b. The PROMISE Project



• "Research has deserted the individual 
and entered the group. The individual 
worker find the problem too large, not 
too difficult. (They) must learn to work 
with others."  
• Theobald Smith  

American pathologist and microbiologist  
1859 -- 1934

 18

1b. The PROMISE Project
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1b. The PROMISE Project

CALL FOR PAPERS

PROMISE is an annual forum for researchers and practitioners to present, discuss and exchange ideas, 
results, expertise and experiences in construction and/or application of predictive models and data analytics 
in software engineering. Such models and analyses could be targeted at: planning, design, implementation, 
testing, maintenance, quality assurance, evaluation, process improvement, management, decision making, 
and risk assessment in software and systems development. PROMISE is distinguished from similar forums 
with its public data repository and focus on methodological details, providing a unique interdisciplinary venue
for software engineering and data mining communities, and seeking for verifiable and repeatable 
experiments that are useful in practice. 

Topics of Interest

Topics of interest include, but are not limited to:

Application oriented: 
• using predictive models and software data analytics in policy and decision-making;

• predicting for cost, effort, quality, defects, business value;

• quantification and prediction of other intermediate or final properties of interest in software 

development regarding people, process or product aspects;  
• using predictive models and data analytics in different settings, e.g. lean/agile, waterfall, distributed, 

community-based software development;
• dealing with changing environments in software engineering tasks;

• dealing with multiple-objectives in software engineering tasks.

Theory oriented: 
• model construction, evaluation, sharing and reusability;

• interdisciplinary and novel approaches to predictive modelling and data analytics that contribute to 

the theoretical body of knowledge in software engineering; 
• verifying/refuting/challenging previous theory and results; 

• combinations of predictive models and search-based software engineering;

• the effectiveness of human experts vs. automated models in predictions.

Data oriented: 
• contributions to the repository; 

• data quality, sharing, and privacy;

• ethical issues related to data collection; 

• metrics; 

• tools and frameworks to support researchers and practitioners to collect data and construct models 

to share/repeat experiments and results.

*** Student Poster Competition ***

This year we will also have a student poster competition open to short papers whose lead author is a 
student. The papers may have co-authors, but the student must be the lead author and present the poster at 
the conference. Students can be either undergrad or postgrad students. No distinction will be made between 
undergrad and postgrad students in the judging process. A letter confirming the enrolment of the student in a
university will be required upon paper acceptance. Posters will be judged by a panel during the conference. 

The 11th International Conference on Predictive
Models and Data Analytics in Software Engineering

October 21, 2015, Beijing, China
Co-located with ESEM 2015 - 9th International Symposium on
Empirical Software Engineering and Measurement
http://promisedata.org/2015/ 

Sponsored by:



If it works, try to make it better

• “The following is my valiant 
attempt to capture the 
difference (between PROMISE 
and MSR)” 

• “To misquote George Box, I 
hope my model is more useful 
than it is wrong:  
• For the most part, the MSR 

community was mostly 
concerned with the initial 
collection of data sets from 
software projects.  

• Meanwhile, the PROMISE 
community emphasized the 
analysis of the data after it was 
collected.” 

• “The PROMISE people 
routinely posted all their 
data on a public repository  
• their new papers would re-

analyze old data, in an attempt 
to improve that analysis.  

• In fact, I used to joke 
“PROMISE. Australian for 
repeatability” (apologies to the 
Fosters Brewing company). “

 20

Dr. Prem Devanbu 
UC Davis 
General chair, MSR’14 

1b. The PROMISE Project



• Initial, naïve, view: 
• Collect enough data … 
• … and the truth will emerge  

• Reality: 
• The more data we collected … 
• … the more variance we observed 
• It's like the microscope zoomed in 

• to smash the slide 

• Conclusion instability  

• So now we routinely slice the data 
• Find local lessons in local regions.   21

1b. The PROMISE Project
Challenges



1c. Analyzing software data: how?
• Software engineering is so diverse 
• What works there may not work here 
• Need cost effective methods for finding best local 

lessons 
• Every development team needs a data scientist

 22
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1c. Analyzing software data: how?

http://www.amazon.co.uk/Sharing-Data-Models-Software-Engineering/dp/0124172954

http://www.amazon.co.uk/Sharing-Data-Models-Software-Engineering/dp/0124172954


1. Introduction 
2. Sharing data 
3. Privacy and Sharing 
4. Sharing models 
5. Summary 
Step 1: Throw most of it away 
Step 2: Learn from the rest

 24



From Turkish Washing Machines  to  
NASA Space Ships

 25

Burak Turhan, Tim Menzies, Ayşe B. Bener, and Justin Di Stefano. 2009. On the relative value of cross-
company and within-company data for defect prediction. Empirical Softw. Eng. 14, 5 (October 2009),



Q: How to transfer data between projects? 
A: Be very cruel to the data

• Ignore most of the data 
• relevancy filtering: Turhan ESEj’09; Peters TSE’13, ICSE’15 
• variance filtering:  Kocaguneli  TSE’12,TSE’13 
• popularity filtering:  Kocaguneli PROMISE'12  

• Contort the data 
• spectral learning (working in PCA  

space or some other rotation):  
Menzies TSE’13; Nam ICSE’13  

• Build a bickering committee of 
 models of the data 

• Ensembles Minku ICSE'14,  
   PROMISE’12        26



Ignoring Data -- Data Format

 27

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...



Data Format
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Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...
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Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...

Input / Independent Attributes

O
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/ 

ex
am

pl
es

Data Format
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Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...

Input / Independent Attributes
Output / Dependent  

Attribute

O
bs
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ti
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s 
/ 

ex
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pl
es

Data Format
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Size Number of 

operators

... Bug/ 

No bug

Component 

1

10 3 ... No

Component 

2

20 6 ... No

Component 

3

100 10 ... Yes

... ... ... ... ...

Input / Independent Attributes
Output / Dependent  

Attribute

O
bs

er
va

ti
on

s 
/ 

ex
am

pl
es

Example for Software Defect Prediction
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Software 

Size

Team 

Expertise

... Effort

Project 

1

1000 high ... 60

Project 

2

200 medium ... 50

Project 

3

150 low ... 50

...

Input / Independent Attributes
Output / Dependent  

Attribute

O
bs

er
va

ti
on

s 
/ 

ex
am

pl
es

Example for Software Effort Estimation



Different Ways to Ignore Data
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How to ignore data?

Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...



Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...

Different Ways to Ignore Data

 34
Prune columns



Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...

Different Ways to Ignore Data

 35

Prune rows



Att1 Att2 ... AttN

Ex1 1 high ... Yes

Ex2 2 medium ... No 

Ex3 1.5 low ... Yes

... ... ... ... ...

Different Ways to Ignore Data

 36

Prune ranges



But Why Prune at All? 
Why not use all the data?

• Outliers may confuse data analysis. 
• Irrelevant features may make data analysis more 

difficult.

 37



But Why Prune When Sharing Data? 
Why not use all the data?

The original vision  

of PROMISE

• With enough data, our 
knowledge will stabilize 

• But the more data we 
collected … 
• … the more variance we 

observed 

• Its like the microscope 
zoomed in 
• to smash the slide

Software projects  

are different

• They change from place 
to place 

• They change from time to 
time 

• My lessons may not apply 
to you 

• Your lessons may not 
even apply to you 
(tomorrow) 

• Locality, locality, locality  38



Ignoring Data

• irrelevancy removal 
e.g. correlation-based 
feature selection 

• better predictions

• contrast 
• goals 

 39

• outliers 
• cross-company 

learning 
• handling missing 

values 
• privacy 
• anomaly detection 
• incremental learning

Column  
pruning

Range  
pruning

Row  
pruning

[Demo]



Ignoring Data

• irrelevancy removal 
• better predictions 

remove columns if 
that would lead to 
better predictions

 40

Column  
pruning

• outliers 
• cross-company 

learning 
• handling missing 

values 
• privacy 
• anomaly detection 
• incremental learning

Range  
pruning

Row  
pruning

• contrast 
• goals 



Ignoring Data

• irrelevancy removal 
• better predictions

 41

Column  
pruning

• outliers 
• cross-company 

learning 
• handling missing 

values 
NN-filtering, TEAK, 
popularity-based 
filtering 

• privacy 
• anomaly detection 
• incremental learning

Range  
pruning

Row  
pruning

• contrast 
• goals 



Nearest Neighbor (NN) Filtering
• Idea: 

• Step 1: Find the relevant data  
• Step 2: Build a predictor based on the relevant data

 42
B. Turhan, T. Menzies, A. Bener, J. Distefano "On the Relative Value of Cross-Company and Within-
Company Data for Defect Prediction", Empirical Software Engineering, 2009.



NN Filtering - Step 1
• Step 1: Find the relevant data

 43

Training data



• Step 1: Find the relevant data

 44

Training and test data

NN Filtering - Step 1



• Step 1: Find the relevant data
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Find training data closest to test data

k-nearest 
neighbors 

Euclidean  
distance based  
on input features

NN Filtering - Step 1

If you are dealing with prediction tasks, do not use the 
output attribute for this step!



• Step 1: Find the relevant data

 46

Relevant training data

NN Filtering - Step 1



• Step 2: Build a predictor based on the relevant data
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Relevant training data

NN Filtering - Step 2



• Step 2: Build a predictor based on the relevant data
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Take random sample of 90% of relevant training data

NN Filtering - Step 2



• Step 2: Build a predictor based on the relevant data

 49

Build predictor, e.g., naive bayes

NN Filtering - Step 2



NN-Filtering Sample Result -- 
Software Defect Prediction
• CM1 software defect prediction when using data from 

other projects: 
• False positive: 91% 
• True positive: 98% 

• When using NN-filtering with data from other projects: 
• False positive: 44% 
• True positive: 82% 

• When using data from within a given project: 
• False positive: 33% 
• True positive: 80%

 50



Why NN Filtering? When?
Why? 
• NN filtering finds local regions that are relevant to a given 

context. 
• It can transfer data between projects. 

When? 
• Helpful as an alternative when there is not much data from 

within a given environment. 
• E.g., defect predictor for first version of a software. 

• Adequate when the number of neighbours is large enough 
to create an accurate model. 
• E.g., in software defect prediction. 

Test Essential Assumption Knowledge (TEAK) is a relevancy 
filter that may be more adequate for smaller data sets.

 51



Test Essential Assumption 
Knowledge (TEAK)
• Learning algorithms are based on assumptions. 

• E.g., linear regression assumes linearity, k-nearest 
neighbour assumes that locality implies homogeneity.

 52

E. Kocaguneli, T. Menzies, E. Mendes "Transfer Learning in Effort Estimation", Empirical Software 
Engineering Journal, 2014.

E. Kocaguneli, T. Menzies, A. Bener, J. Keung "Exploiting the Essential Assumptions of Analogy-Based 
Effort Estimation", IEEE Transactions on Software Engineering, 2012.



Assumptions are not always satisfied -- outliers!

Test Essential Assumption 
Knowledge (TEAK)
• Learning algorithms are based on assumptions. 

• E.g., linear regression assumes linearity, k-nearest 
neighbour assumes that locality implies homogeneity.

 53

Figure from: http://nicodewet.com/2011/10/02/java-exception-rule-book/

http://nicodewet.com/2011/10/02/java-exception-rule-book/


TEAK - Eliminating Confusing 
Situations

 54

Outliers can confuse algorithms, hindering their 
performance.

1,253 1,440 1,562 5,727

var = 1.75e4

var = 4.65e6

var = 8.67e6

Linear regression Greedy Agglomerative Clustering (GAC) 
K-Nearest Neighbors



How TEAK Works

• Step 1: Select a prediction system 
• Step 2: Identify its essential assumptions 
• Step 3: Identify assumption violation 
• Step 4: Remove violations 
• Step 5: Execute the modified system

 55
E. Kocaguneli, T. Menzies, A. Bener, J. Keung "Exploiting the Essential Assumptions of Analogy-Based 
Effort Estimation", IEEE Transactions on Software Engineering, 2012.



How TEAK Works
• Step 1: Select a prediction system 

• GAC k-NN 
• Step 2: Identify its essential assumptions 
• Step 3: Identify assumption violation 
• Step 4: Remove violations 
• Step 5: Execute the modified system

 56



How TEAK Works
• Step 1: Select a prediction system 

• GAC k-NN 
• Step 2: Identify its essential assumptions 

• Locality leads to homogeneity  
• Step 3: Identify assumption violation 
• Step 4: Remove violations 
• Step 5: Execute the modified system

 57



How TEAK Works
• Step 1: Select a prediction system 

• GAC k-NN 
• Step 2: Identify its essential assumptions 

• Locality leads to homogeneity  
• Step 3: Identify assumption violation 
• Step 4: Remove violations 
• Step 5: Execute the modified system

 58



Identifying Assumption Violation 
for k-NN
• Create a tree by using GAC  

• For predictive tasks you would check 
the input attributes of the examples

 59

a b c d



Identifying Assumption Violation 
for k-NN
• Create a tree by using GAC  

• For predictive tasks you would check 
the input attributes of the examples

 60

Group two 
closest pairs 
together based 
on input 
attributes

a b c d



Identifying Assumption Violation 
for k-NN
• Create a tree by using GAC 

• For predictive tasks you would check 
the input attributes of the examples

 61

b c d

Group two 
closest pairs 
together based 
on input 
attributes

a

median(a,b) median(c,d)



Identifying Assumption Violation 
for k-NN
• Create a tree by using GAC  
• Traverse the tree to find increases in variance 

• For predictive tasks, this variance should be 
checked based on the output attribute

 62

1,253 1,440 1,562 5,727

var = 1.75e4 var = 8.67e6

var = 4.65e6



How TEAK Works
• Step 1: Select a prediction system 

• k-NN 
• Step 2: Identify its essential assumptions 

• Locality leads to homogeneity  
• Step 3: Identify assumption violation 
• Step 4: Remove violations 

• Prune subtree that violates assumption 
• Step 5: Execute the modified system

 63



How TEAK Works
• Step 1: Select a prediction system 

• k-NN 
• Step 2: Identify its essential assumptions 

• Locality leads to homogeneity  
• Step 3: Identify assumption violation 
• Step 4: Remove violations 

• Prune subtrees that violates assumption 
• Step 5: Execute the modified system 

• Create a new GAC tree  64



Why TEAK? When?
Why? 
• TEAK eliminates examples that cause confusion 

and increase uncertainty of predictions 
• It helps to improve models' predictive 

performance 
• TEAK GAC k-NN can be used to remove not only 

confusing examples from within a given source, 
but also confusing examples from different sources 
• TEAK can thus be used for transfer learning 

When? 
• It is expected to be particularly useful when we don't have 

much data, i.e., when few outliers can cause great damage 
• E.g., software effort estimation

 65



• Eliminate training examples that are unpopular, i.e., 
that are less often neighbors of other training examples. 

• This has been shown to help overcoming problems with 
missing values.

Popularity-Based Filtering

 66

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On 
the Value of Software Size Features for Effort Estimation

k-nearest 
neighbors 

Euclidean  
distance based  
on input features

Training data



• Eliminate training examples that are unpopular, i.e., 
that are less often neighbors of other training examples. 

• This has been shown to help overcoming problems with 
missing values.

Popularity-Based Filtering
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Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On 
the Value of Software Size Features for Effort Estimation

k-nearest 
neighbors 

Euclidean  
distance based  
on input features

Training data



• Eliminate training examples that are unpopular, i.e., 
that are less often neighbors of other training examples. 

• This has been shown to help overcoming problems with 
missing values.

Popularity-Based Filtering
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Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On 
the Value of Software Size Features for Effort Estimation

k-nearest 
neighbors 

Euclidean  
distance based  
on input features

Training data



• Eliminate training examples that are unpopular, i.e., 
that are less often neighbors of other training examples. 

• This has been shown to help overcoming problems with 
missing values.

Popularity-Based Filtering
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Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On 
the Value of Software Size Features for Effort Estimation

k-nearest 
neighbors 

Euclidean  
distance based  
on input features

Training data



• Eliminate training examples that are unpopular, i.e., 
that are less often neighbors of other training examples. 

• This has been shown to help overcoming problems with 
missing values.

Popularity-Based Filtering
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Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On 
the Value of Software Size Features for Effort Estimation

k-nearest 
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on input features
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• Eliminate training examples that are unpopular, i.e., 
that are less often neighbors of other training examples. 

• This has been shown to help overcoming problems with 
missing values.

Popularity-Based Filtering
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the Value of Software Size Features for Effort Estimation

k-nearest 
neighbors 

Euclidean  
distance based  
on input features

Training data

0

0

1
3



• Eliminate training examples that are unpopular, i.e., 
that are less often neighbors of other training examples. 

• This has been shown to help overcoming problems with 
missing values.

Popularity-Based Filtering

 72

Ekrem Kocaguneli, Tim Menzies, Jairus Hihn and Byeong Ho Kang. Size Doesn’t Matter? On 
the Value of Software Size Features for Effort Estimation

Add most popular 
examples that lead to 
considerable 
decreases in error

Relevant data



Ignoring Data

• irrelevancy removal 
• better predictions

 73

Column  
pruning

• outliers 
• cross-company 

learning 
• handling missing 

values 
• privacy 
• anomaly detection 
• incremental learning

Range  
pruning

Row  
pruning

• contrast 
• goals 



And What About Range Pruning?
• Classes x,y

• Fx, Fy 
• frequency of 

discretized ranges in 
x,y  

• Log Odds Ratio
• log(Fx/Fy )
• Is zero  if no difference 

in x,y  

• E.g. Data from Norman 
Fenton’s Bayes nets discussing 
software defects = yes, no 

• Do most ranges contribute to 
determination of defects? no

• Restrict discussion to just most 
powerful ranges

�74



Range Pruning

 75

Contrast pruning Goal pruning

• prune away ranges that 
do not contribute to 
differences within the 
data.  

• prune away ranges that 
do not effect final 
decisions. 



Learning from  
“powerful” ranges

Contrast Pruning Example

• Generate tiny models
• Sort all ranges by their power  

• WHICH
1. Select any pair (favouring those with 

most power)
2. Combine pair, compute its power
3. Sort back into the ranges
4. Goto 1

• Initially:
• stack contains single ranges

• Subsequently
•  stack sets of ranges

Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, Ayse Basar Bener:  Defect prediction from static code 
features: current results, limitations, new approaches. Autom. Softw. Eng. 17(4): 375-407 (2010)

Decision tree 
learning on 
14 features and 
506 houses

WHICH
�76



Learning from  
“powerful” ranges

Goal Pruning Example

• Report only summary of data 
that affects a decision
• Sort all ranges by their power
• Find minority of ranges and 

columns that distinguish between 
groups. 

• Question?
1. What predicts for higher house 

cost?

Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, Ayse Basar Bener:  Defect prediction from static code 
features: current results, limitations, new approaches. Autom. Softw. Eng. 17(4): 375-407 (2010)

�77

Decision tree 
learning on 
14 features and 
506 houses

WHICH



Advantage of Range Pruning
Reasoning via analogy

• Any nearest 
neighbour method 
runs faster with row/
column pruning
• Fewer rows to search
• Fewer columns to 

compare

�78

Learning defect 
predictors

• If you just explore 
the ranges that 
survive row and 
column pruning,
• is inference 

faster?

Associated rule 
learning

• Mine only matching 
rules on demand: 

• E.g. ROSE, 
Zimmermann et al., 
TSE04.  

• Constraints on 
antecedent. Mine only 
rules which are related 
to the antecedent. 

Zimmermann, Thomas, et al. "Mining version histories to guide software changes." In 26th International Conference on 
Software Engineering (ICSE) 2004.



Ignoring Data

• irrelevancy removal 
• better predictions

 79

Column  
pruning

• outliers 
• cross-company 

learning 
• handling missing 

values 
• privacy 
• anomaly detection 
• incremental learning 

LACE

Range  
pruning

Row  
pruning

• contrast 
• goals 



1. Introduction 
2. Sharing data 
3. Privacy and sharing 
4. Sharing models 
5. Summary 
Step 1: Throw most of it away 
Step 2: Share the rest

 80



Balancing Usefulness & Privacy

S. Elbaum, A. Mclaughlin, and J. Penix, “The google dataset of testing results,” June 2014. 
[Online]. 
Available: https://code.google.com/p/google-shared-dataset-of-
test-suite-results

�81

Sharing industrial datasets 
with the research community 
is extremely valuable, but 
also extremely challenging as 
it needs to balance the 
usefulness of the dataset with 
the industry’s concerns for 
privacy and competition.

https://code.google.com/p/google-shared-dataset-of-test-suite-results


Challenge Accepted

�82

ICSE 2012  
Data Obfuscation 

(MORPH)

TSE 2013  
Data 

Minimization 
(CLIFF)

ICSE 2015  
Data 

Sharing 
(LACE2)

F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International 
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software 
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

(LACE1)



What We Want…

Features Solution 
(LACE2)Privacy Low sensitive attribute 

disclosure.
?

Utility Strong defect predictors. ?

Cost
Low memory requirements. ?
Fast runtime. ?

�83



Sound Bites
LACE2 works

• because of the idea of software code re-
use
• In a set of programs, 32% were comprised of 

reused code (not including libraries). [Selby 
2005]  

• and one simple rule
• don’t share what others have already shared;

�84

R. Selby, “Enabling reuse-based software development of large-scale systems,” Software Engineering, IEEE 
Transactions on, vol. 31, no. 6, pp. 495–510, June 2005.



Research Questions
1. Does LACE2 offer more privacy than 

LACE1?  

2. Does LACE2 offer more useful defect 
predictors than LACE1?  

3. Are system costs of LACE2 (memory & 
runtime) worse than LACE1?

�85
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Sensitive Attribute Disclosure
• A privacy threat.
• Occurs when a target is associated with information about their 

sensitive attributes 
• e.g. software code complexity or actual software development times.

• 100 % = zero sensitive attribute disclosure
• 0% = total sensitive attribute disclosure

J. Brickell and V. Shmatikov, “The cost of privacy: destruction of data-mining utility in anonymized data publishing,” in Proceeding of 
the 14th    ACM SIGKDD international conference on Knowledge discovery and data mining, ser. KDD ’08.
F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International 
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software 
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

Queries Original Obfuscated Breach
Q1 0 0 yes
Q2 0 1 no
Q3 1 1 yes

no=1/3
no=33%
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Cross Project Defect Prediction
• For improving inspection 

efficiency 

• But wait! I don’t have enough 
data.  

• Local data not always available 
[Zimmermann et al. 2009]
• companies too small;
• product in first release, no past 

data;
• no time for data collection;

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction: a large scale 
experiment on data vs. domain vs. process.” in ESEC/SIGSOFT FSE’09, 2009, pp. 91–100.
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Cross Project Defect Prediction
• Use of data from other 

sources to build defect 
predictors for target data. 

• Initial results (Zimmermann 
et al. 2009).

644 Cross 
Defect 

Prediction 
Experiments

Strong (3.4%)
Weak (96.6%)

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction: a large scale 
experiment on data vs. domain vs. process.” in ESEC/SIGSOFT FSE’09, 2009, pp. 91–100.
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Cross Project Defect Prediction
• Use of data from other sources to build defect predictors 

for target data. 

• Promising results when data from other sources are made 
similar to test data  (Turhan et al. 2009, He et al. 
2012,2013, Nam et al. 2013).
• This raises privacy concerns;
• Data must be shared.

J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE’13. IEEE Press Piscataway, NJ, USA, 2013, pp. 802–
811.
B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value of cross-company and within-company data 
for defect prediction,” Empirical Software Engineering, vol. 14, pp. 540–578, 2009.
He, Zhimin, et al. "An investigation on the feasibility of cross-project defect prediction." Automated Software Engineering 
19.2 (2012): 167-199.
He, Zhimin, et al. "Learning from open-source projects: An empirical study on defect prediction." Empirical Software 
Engineering and Measurement, 2013 ACM/IEEE International Symposium on. IEEE, 2013.

�92



Roadmap
1. Privacy Threat (Sensitive Attribute 

Disclosure)
2. Cross Project Defect Prediction
3. LACE1 & LACE2
4. Experiments & Results
5. Why LACE?

�93



�94Flowchart for  
LACE1 and LACE2



�95Flowchart for  
LACE1 and LACE2



�96Flowchart for  
LACE1 and LACE2



�97Flowchart for  
LACE1 and LACE2



�98Flowchart for  
LACE1 and LACE2

Data 
Minimization with 

CLIFF 



Data Minimization
CLIFF: "a=r1" is powerful for 
selection for class=yes, i.e. more 
common in "yes" than "no".

• P(yes|r1) = 
           
          like(yes|r1)2

like(yes|r1) + like(no|r1)

• Step 1: For each class find 
ranks of all values;

• Step 2: Multiply ranks of each 
row;

• Step 3: Select the most 
powerful rows of each class 
(top 20%).

F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International 
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software 
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.

a b c d class

r1 r1 r1 r2 yes

r1 r2 r3 r2 yes

r1 r3 r3 r3 yes

r4 r4 r4 r4 no

r1 r5 r5 r2 no

r6 r6 r6 r2 no
�99



�100Flowchart for  
LACE1 and LACE2

Obfuscation with 
MORPH 



Data Obfuscation
MORPH: Mutate the survivors 
no more than half the distance 
to their nearest unlike neighbor.

• x is original instance;
• z is nearest unlike neighbor of 

x;
• y resulting MORPHed 

instance;
• r is random.

F. Peters and T. Menzies, “Privacy and utility for defect prediction: Experiments with morph,” in Proceedings of the 2012 International 
Conference on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 189–199.
F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” Software 
Engineering, IEEE Transactions on, vol. 39, no. 8, pp. 1054–1068, Aug 2013.
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�102Flowchart for  
LACE1 and LACE2

Don’t share what 
others have 

shared technique 
used for LACE2.  
Done with LeaF 



Don’t Share What Others Share

• LACE2 : Learn from N software projects
• from multiple data owners

• As you learn, play “pass the parcel”
• The cache of reduced data

• Each data owner only adds its “leaders” to the passed cache
• Morphing as they go

• Each data owner determines “leader” according to median 
distance
• 100 random instances chosen
• Find distance of nearest unlike neighbor for each
• Get median distance

Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. John Wiley & Sons, 2012.
R. Selby, “Enabling reuse-based software development of large-scale systems,” Software Engineering, IEEE Transactions on, vol. 
31, no. 6, pp. 495–510, June 2005.
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�104Flowchart for  
LACE1 and LACE2

Measure of 
privacy based on 

Sensitive 
Attribute 

Disclosure
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Data

�106



Experiment Design: RQ1

• 7 data owners follow LACE1 then LACE2 sharing 
techniques. 

• Calculates the privacy level until privacy criterion 
(65%) is met.

�107

Does LACE2 offer more privacy than LACE1?



Results: Privacy

RQ1: Does LACE2 offer more privacy than LACE1?

Privacy for LACE1 and LACE2
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ac
y 
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Proprietary Data
p1-v192 p43-v512 p4-v362 p3-v318

LACE1
LACE2
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Result Summary
Features LACE

1
LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. ?

Cost
Low memory requirements. ?
Fast runtime. ?

�109RQ1: Does LACE2 offer more privacy than LACE1?



Experiment Design: RQ2

• Cross project defect prediction experiment. 

• Predictors built with k-nearest neighbour algorithm 
and private cache.

�110

Does LACE2 offer more useful defect predictors than 
LACE1?



Performance Measures
• TP (True Positive): defect-

prone classes that are 
classified correctly;

 
• FN (False Negative): defect-

prone classes that are 
wrongly classified to be 
defect-free;

• TN (True Negative): defect-
free classes that are 
classified correctly;

• FP (False Positive): defect-
free classes that are wrongly 
classified to be defect-prone.

�111



Results: Defect Prediction
Pds for LACE1 and LACE2
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RQ2: Does LACE2 offer more useful defect predictors than LACE1?
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Results: Defect Prediction

RQ2: Does LACE2 offer more useful defect predictors than LACE1?

�113

Pds for LACE1 and LACE2
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Results: Defect Prediction
• Higher pfs (lower is best) than LACE1.

Pfs for LACE1 and LACE2
Data LACE1 LACE2
jEdit-4.1 23.4 41.7
ivy-2.0 31.9 46.3
xerces-1.3 27.1 33.7
ant-1.7 34.3 36.8
camel-1.6 28.2 37.6
lucene-2.4 24.0 31.1
xalan-2.6 28.1 27.3
velocity-1.6.1 22.7 30.3
synapse-1.2 40.2 55.7
poi-3.0 16.4 23.8
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Results: Defect Prediction
• G-measures

• No statistical difference between LACE1 and LACE2.

G-measures for LACE1 and LACE2
Data LACE1 LACE2
jEdit-4.1 72.7 58.2
ivy-2.0 71.8 64.9
xerces-1.3 65.5 59.1
ant-1.7 67.6 64.9
camel-1.6 61.2 50.0
lucene-2.4 58.9 53.1
xalan-2.6 57.6 56.7
velocity-1.6.1 57.0 58.5
synapse-1.2 59.6 54.0
poi-3.0 57.0 63.9
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Result Summary

�116

Features LACE
1

LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. good ~good

Cost
Low memory requirements. ?
Fast runtime. ?

RQ2: Does LACE2 offer more useful defect predictors than LACE1?



Experiment Design: RQ3

• Memory = Calculated the percent of data 
each data owner contributes to the private 
cache. 

• Runtime = Reported the time in seconds for 
creating each private cache for LACE1 and 
LACE2. �117

Are system costs of LACE2 (memory & runtime) worse 
than LACE1?



Results: Memory

RQ3: Are system costs of LACE2 (memory) worse than LACE1?

Memory Cost for LACE1 and 
LACE2
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Data #
p5-v185 3260
p43-v512 2265

p3-v318 2440

p2-v276 2472

p4-v362 2865

p1-v192 3692

p42-v454 295



Result Summary
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Features LACE
1

LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. good ~good

Cost
Low memory requirements. good better
Fast runtime. ? ?

RQ3: Are system costs of LACE2 (memory) worse than LACE1?



Results: Runtime

RQ3: Are system costs of LACE2 (runtime) worse than LACE1?

Median Runtime Cost for LACE1 and 
LACE2
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Result Summary
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Features LACE
1

LACE
2Privacy Low sensitive attribute disclosure. good better

Utility Strong defect predictors. good ~good

Cost
Low memory requirements. good better
Fast runtime. good good

RQ3: Are system costs of LACE2 (runtime) worse than LACE1?
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1. Privacy Threat (Sensitive Attribute 

Disclosure)
2. Cross Project Defect Prediction
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Why LACE2?
• By using LACE2, you will be able to share 

a version of your data that is useful and 
satisfies your privacy criterion. 

• LACE2 provides more privacy than 
LACE1.
• Less data used. 

• Don’t share what others have shared. 
 

• Comparable predictive efficacy to LACE1. 

• LACE2’s sharing method, does not take 
more resources than LACE1. �123



Data from the Users Perspective

 124

Privacy is the ability to 
understand, choose, 

and control what 
personal information 
an individual shares, 
with whom, and for 

how long.

K. Shilton, “Four billion little brothers?: Privacy, mobile phones, and ubiquitous data collection,” Commun. ACM, vol. 52,  
no. 11, pp. 48–53, Nov. 2009. [Online]. Available: http://doi.acm.org/10.1145/1592761.1592778  



Some applications require 
personal data.

 125

Attacker with access can 
breach user privacy.



The Conflict

 126
I. Krontiris, M. Langheinrich, and K. Shilton, “Trust and privacy in mobile experience sharing: future challenges and 
avenues for research,” Communications Magazine, IEEE, vol. 52, no. 8, pp. 50–55, Aug 2014.  

Users have the opportunity to set privacy preferences but  
do not act on them in practice.



Privacy Zones Approach

• Proactive not Reactive. 
• Privacy as the default setting. 

• Set default privacy to only share privacy zone data. 
• In the zone = user’s habits (clusters) 
• Not in the zone = user’s irregular activities 

• User decides what to do with not in the zone data. 
• Ignore (Always share) 
• React (Obfuscate -> Success -> Share) 
• Prevent (Obfuscate -> No Success -> Do Not Share) 
• Terminate (End use of the application) 

 127

Privacy by 
Design 

Principles



1. Introduction 
2. Sharing data 
3. Privacy and sharing 
4. Sharing models 
5. Summary 
4a. Bagging 
4b. Comba 
4c. Multi-objective ensembles  
4d. DCL  
4e. Dycom  128



 Ensembles and Wisdom of the Crowd

Committees of artificially generated experts with 
different views on how to solve a problem.

 129

[Video -- BBC The Code -- Wisdom of the Crowd]  
https://youtu.be/iOucwX7Z1HU 

https://youtu.be/iOucwX7Z1HU


 Ensembles
Sets of learning machines grouped together with the aim 

of improving predictive performance.

 130

estimation1 estimation2 estimationN

Base learners

E.g.: ensemble estimation = Σ wi 
estimationi

B1 B2 BN

T. Dietterich. Ensemble Methods in Machine Learning. Proceedings of the First 
International Workshop in Multiple Classifier Systems. 2000.



 Ensemble Diversity

One of the keys: diversity, i.e., different base learners 
make different mistakes on the same instances.

 131



 Ensemble Versatility
Diversity can be used to address different issues when 

estimating software data.

 132

Models of the 
same 

environment

Models with 
different 

goals

Models of 
different 

environments



 Ensemble Versatility
Diversity can be used to increase stability across data sets.

 133

Models of the 
same 

environment

Models with 
different 

goals

Models of 
different 

environments



Conclusion Instability
• Different predictive models perform differently on 

different data sets. 

• Predictive models (e.g., RTs and MLPs) can be unstable 
when trained on different samples. 

• Ensembles can help increasing conclusion stability across 
data sets. 
• Facilitates model choice.

 134



Bagging Ensembles of Regression 
Trees

 135

L. Breiman. Bagging Predictors. Machine Learning 24(2):123-140, 1996.

Training data 
(completed projects)

RT1 RT2 RTN ...
Sample 

uniformly with 
replacement

Regression Trees (RTs): 
● Local methods. 
● Divide projects 

according to attribute 
value. 

● Most impactful 
attributes are in higher 
levels. 

● Attributes with 
insignificant impact are 
not used. 

● E.g., REPTrees.



WEKA
●Weka: classifiers – meta – bagging 
●classifiers –  trees – REPTree

 136



Increasing Performance Rank Stability 
Across Data Sets
− Study with 13 data sets from PROMISE and 

ISBSG repositories. 
− Bag+RTs:  

● Obtained the highest rank across data set in terms 
of Mean Absolute Error (MAE). 

● Rarely performed considerably worse (>0.1SA, SA = 
1 – MAE / MAErguess) than the best approach:

 137

L. Minku, X. Yao. Ensembles and Locality: Insight on Improving Software Effort Estimation. 
Information and Software Technology 55(8):1512-1528, 2013.



Comba

 138

Kocaguneli, E., Menzies, T. and Keung, J. On the Value of Ensemble Effort 
Estimation. IEEE Transactions on Software Engineering, 8(6):1403 – 1416, 2012.

Solo-methods: preprocessing + learning algorithm

Training data 
(completed projects) SNS1 S2

training

SzSa Sb Sc

SxSc Sa Sk

Rank solo-methods based on 
win, loss, win-loss

Select top ranked models with few rank 
changes

And sort according to losses

...

...

...



Increasing Rank Stability Across Data Sets

 139

Combine top 2,4,8,13 solo-methods 
via mean, median and IRWM

Re-rank solo and multi-methods 
together according to #losses

The first ranked multi-method had very low rank-changes.



 Ensemble Versatility
Diversity can be used to create models that perform well 

on different goals.

 140

Models of the 
same 

environment

Models with 
different 

goals

Models of 
different 

environments



Multi-Objective Ensemble
• We may be interested in creating models that do 

well in terms of different objectives. 
• E.g., in software effort estimation, different 

performance measures capture different 
quality features.

 141

• There is no agreed 
single measure. 

• A model doing well 
for a certain 
measure may not do 
so well for another.



Multi-Objective Ensembles

− We can view such problems (e.g., software effort 
estimation) as a multi-objective learning 
problems. 

− A multi-objective approach (e.g. Multi-Objective 
Evolutionary Algorithm (MOEA)) can be used to: 
● Create models that do well for different objectives, 

in particular for larger data sets (>=60). 
● Better understand the relationship among 

objectives.

 142

L. Minku, X. Yao. Software Effort Estimation as a Multi-objective Learning Problem. 
ACM Transactions on Software Engineering and Methodology, 22(4):35, 2013.

[Video - https://youtu.be/sEEiGM9em8s]

https://youtu.be/sEEiGM9em8s


Multi-Objective Ensembles

 143

Training data 
(completed projects)

Ensemble

B1 B2 B3

Multi-objective evolutionary 
algorithm creates nondominated 
models with several different 
trade-offs.

The model with the best 
performance in terms of each 
particular measure can be picked to 
form an ensemble with a good 
trade-off.

L. Minku, X. Yao. Software Effort Estimation as a Multi-objective Learning Problem. 
ACM Transactions on Software Engineering and Methodology, 22(4):35, 2013.



Improving Performance on Different 
Measures

● Sample result: Pareto ensemble of MLPs (ISBSG): 

● Important: 
−Using performance measures that behave differently from 
each other (low correlation) provide better results than 
using performance measures that are highly correlated. 

−More diversity. 

−This can even improve results in terms of other measures 
not used for training.  144

L. Minku, X. Yao. An Analysis of Multi-objective Evolutionary Algorithms for Training Ensemble Models 
Based on Different Performance Measures in Software Effort Estimation. PROMISE, 10p, 2013.



 Ensemble Versatility
Diversity can be used to deal with changes and transfer 

knowledge.

 145

Models of the 
same 

environment

Models with 
different 

goals

Models of 
different 

environments



Companies’ Changing Environments
Companies are not static entities – they can change 
with time (concept drift).

 146

Software data analytics should consider temporal 
information!



Companies’ Changing Environments
Companies are not static entities – they can change 
with time (concept drift). 

E.g., change in management strategy, development of new 
types of products, key employees leaving the company, etc.

 147



Companies’ Changing Environments
Companies are not static entities – they can change 
with time (concept drift).

 148

Software data analytics should consider temporal 
information!

Changes may affect how well a given model 
describes the current situation of a company.



Companies’ Changing Environments
Companies are not static entities – they can change 
with time (concept drift).

 149

Software data analytics should consider temporal 
information!

Software data analytics should consider temporal 
information!



Companies’ Changing Environments
Companies are not static entities – they can change 
with time (concept drift).

 150
How to know when a 
model reflects well 

the current situation 
of a company?

How to update 
models throughout 

time?

Software data analytics should consider temporal 
information!



Dynamic Cross-Company Learning 
(DCL)

 151

WC Model

Within-company 
(WC) 

incoming training 
data (completed 
projects arriving 

with time)

CC Model 
1

CC Model 
2

CC Model 
M...

w

DCL learns a weight to reflect the suitability of CC 
models.

For each new training 
project 
• If model is not a 

winner, multiply its 
weight by β (0 < β < 1)

 L. Minku, X. Yao. Can Cross-company Data Improve Performance in Software Effort 
Estimation? PROMISE, p. 69-78, 2012. 

w1 w2 wM



Improving Performance Throughout Time
• DCL can identify which model best represents our current situation. 
• DCL adapts to changes by using CC models. 
• DCL manages to use CC models to improve performance over WC 

models.

 152

Predicting effort for a single company from ISBSG based on its projects and other companies' projects.

Sample Result



Why DCL? When?
Why? 
• DCL is able to identify which model (CC or WC) best 

represents the current situation of a company. 
• It can be used for transfer learning. 
• It can deal with changes. 
• It can improve performance over WC models when CC 

models are useful. 

When? 
• When one wishes to use CC data to improve predictive 

performance. 
• When environments are likely to suffer changes. 

If none of the CC models is useful, DCL will not be able to 
benefit from them.

 153



Dynamic Cross-Company Mapped Model 
Learning (Dycom)

 154

WC Model

Within-company 
(WC) 

incoming training 
data (completed 
projects arriving 

with time)

CC 
Model 

1

CC 
Model 

2

CC 
Model 

M...

w1 w2 wM

w

How to use CC models even when they are not directly 
helpful?

Dycom learns 
functions to map CC 
models to the WC 
context.

 L. Minku, X. Yao. How to Make Best Use of Cross-Company Data in Software Effort 
Estimation? ICSE, p. 446-456, 2014. 

Map 
1

Map 
2

Map 
M



Learning Mapping Function

 155
where lr is a smoothing factor that allows tuning the emphasis on 
more recent examples.

 L. Minku, X. Yao. How to Make Best Use of Cross-Company Data in Software Effort 
Estimation? ICSE, p. 446-456, 2014. 

train



Reducing the Number of Required WC 
Training Examples

 156
Dycom can achieve similar / better performance while 

using only 10% of WC data.

Sample 
Result



Why Dycom? When?
Why? 
• Dycom is able to map models representing different 

contexts to the context we are interested in. 
• It can be used for transfer learning. 
• It can deal with changes. 
• It can reduce the number of required WC training 

examples. 

When? 
• Dycom is particularly useful when collection of WC 

training examples is expensive. 
• When used for software effort estimation, Dycom can 

also provide insights into the productivity of a 
company over time.

 157



• Relationship 
between effort of 
different companies 
for the same 
projects. 

• Initially, our 
company needs 
initially 2x effort 
than company red. 

• Later, it needs only 
1.2x effort.

Dycom Insights on Productivity

 158



Dycom Insights on Productivity

 159

• Our company needs 
2x effort than 
company red. 

• How to improve our 
company?



Analysing Project Data
Number of projects with each feature value for the 20 CC 
projects from the medium productivity CC section and the 

first 20 WC projects:

 160Both the company and the medium CC section frequently use 
employees with high programming language experience.



Analysing Project Data

 161

Number of projects with each feature value for the 20 CC 
projects from the medium productivity CC section and the first 

20 WC projects:

Medium CC section uses more employees with high virtual machine 
experience. So, this is more likely to be a problem for the company. 
Sensitivity analysis and project manager knowledge could help to confirm 
that.



 Ensemble Versatility
Diversity can be used to address different issues when 

estimating software data.

 162

Increase stability across 
data sets.

Deal with changes and transfer knowledge.

Increase performance on 
different measures.

Models of the 
same 

environment

Models with 
different 

goals

Models of 
different 

environments
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The past

• Models for individual 
data owners. 

• Conclusion instability.

 164



The present
• Reducing problems caused by conclusion instability. 
• Finding local lessons from global data.  

• Accomplished for individual data owners as well as data 
owners who want to share data collaboratively. 

• Results are promising.
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The future

• Model-based reasoning 
• Gaining more insights from models. 
• Considering temporal aspects of software data. 
• Taking goals into account in decision-support tools.
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• Privacy 
• Next step : focus on end user 

privacy  
• when using software apps that 

need personal info to function.
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End of our tale


