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Abstract  50 

 51 

Objective 52 

Acute exacerbations contribute significantly to the morbidity of asthma. Recent studies have 53 

shown that early detection and treatment of asthma exacerbations leads to improved 54 

outcomes. We aimed to develop a machine learning algorithm to detect severe asthma 55 

exacerbations using easily available daily monitoring data. 56 

 57 

Methods 58 

We analysed daily peak expiratory flow and symptom scores recorded by participants in the 59 

SAKURA study (NCT00839800), an international multicentre randomised controlled trial 60 

comparing budesonide/formoterol as maintenance and reliever therapy versus 61 

budesonide/formoterol maintenance plus terbutaline as reliever, in adults with persistent 62 

asthma. The dataset consisted of 728,535 records of daily monitoring data in 2010 patients, 63 

with 576 severe exacerbation events. Data post-processing techniques included 64 

normalisation, standardisation, calculation of differences or slopes over time and the use of 65 

smoothing filters. Principal components analysis was used to reduce the large number of 66 

derived variables to a smaller number of linearly independent components. Logistic 67 

regression, decision tree, naïve Bayes, and perceptron algorithms were evaluated. Model 68 

accuracy was assessed using stratified cross-validation. The primary outcome was the 69 

detection of exacerbations on the same day or up to three days in the future. 70 

 71 

Results 72 

The best model used logistic regression with input variables derived from post-processed data 73 

using principal components analysis. This had an area under the receiver operating 74 



characteristic curve of 0.85, with a sensitivity of 90% and specificity of 83% for severe 75 

asthma exacerbations. 76 

 77 

Conclusion 78 

Asthma exacerbations may be detected using machine learning algorithms applied to daily 79 

self-monitoring of peak expiratory flow and asthma symptoms.  80 

 81 
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Introduction 100 

Acute exacerbations of asthma are episodes of deteriorating symptoms, often with 101 

concomitant reductions in lung function, requiring a change in treatment such as a short 102 

course of oral corticosteroids
1
. Acute exacerbations are an important cause of morbidity in 103 

patients with asthma, and can result in days off work or school, hospital admission, or even 104 

death. Preventing exacerbations is a key priority in the management of asthma
2
. Regular use 105 

of inhaled corticosteroids at an appropriate dose and with correct technique is the mainstay of 106 

preventative asthma treatment, but does not completely eliminate exacerbations
3
.  107 

 108 

The concept of detecting exacerbations at an early stage of development in order to intervene 109 

and avert them has recently gained ground. McKeever et al showed that a self-management 110 

plan which involved quadrupling the dose of inhaled corticosteroids at the first signs of an 111 

asthma exacerbation (increased symptoms and/or reduced peak expiratory flow [PEF]) 112 

reduced exacerbation rates compared to standard treatment
4
. The typical changes in peak 113 

expiratory flow and asthma symptom scores leading up to asthma exacerbations were initially 114 

described by Tattersfield et al
5
. These authors showed that PEF began to gradually fall 115 

approximately 10 days prior to an exacerbation, followed by a much steeper fall from 3 days 116 

prior to an exacerbation, culminating in a 15-20% fall from baseline on the day of 117 

exacerbation. Asthma symptom scores followed a very similar pattern, with a gradual rise 118 

starting from 10 days prior to an exacerbation, followed by a steeper rise from 3 days prior to 119 

an exacerbation. These results suggest that detecting asthma exacerbations up to three days in 120 

advance using daily monitoring of PEF and symptoms is potentially feasible. Since then, a 121 

number of researchers have investigated the sensitivity and specificity of algorithms based 122 

upon daily electronic monitoring of symptoms and PEF to detect impending asthma 123 

exacerbations
6,7

. These studies used fairly simple statistical cut-offs for PEF and symptom 124 



scores to detect exacerbation events, and moreover the datasets used were relatively small, 125 

thus precluding more complex analyses such as examining temporal trends. 126 

 127 

Machine learning is a branch of artificial intelligence in which statistical models are used to 128 

learn patterns from data in order to accomplish a specific task. Applications of machine 129 

learning within respiratory and other branches of medicine have grown significantly during 130 

the past five years
8
. The most common applications are those in which cases are classified 131 

into a small number of categories such as ‘low-risk’ and ‘high-risk’. Although machine 132 

learning models have the potential to be more accurate than simpler predictive tools, their 133 

complexity means that they require large training datasets of labelled cases for their 134 

development. 135 

 136 

The use of machine learning techniques to predict asthma exacerbations based on daily PEF 137 

and symptom monitoring has been investigated in one previous study by Finkelstein et al
9
. 138 

These authors utilised a moderately sized dataset of 7001 records submitted by adults with 139 

asthma using home telemonitoring software. They investigated the predictive value of three 140 

machine learning algorithms, namely naïve Bayesian classifier, adaptive Bayesian network, 141 

and support vector machine. However, it should be noted that exacerbations in this study 142 

were not defined as clinician-diagnosed events requiring treatment, but were instead based on 143 

‘alert levels’ defined using the home telemonitoring data itself.  144 

 145 

We hypothesised that a predictive algorithm derived using machine learning techniques in 146 

conjunction with a large training dataset of daily monitoring data would provide superior 147 

accuracy for detecting asthma exacerbations compared to previously published models.  148 

 149 



 150 

Methods 151 

 152 

Study dataset 153 

We utilised a large dataset of daily PEF and symptom scores which were recorded by 154 

participants in the SAKURA study (NCT00839800), an international multicentre randomised 155 

controlled trial comparing budesonide/formoterol as maintenance and reliever therapy versus 156 

budesonide/formoterol maintenance plus terbutaline as reliever, in patients age ≥ 16 years 157 

with persistent asthma
10

. Eligibility criteria included a documented history of persistent 158 

asthma for at least 6 months, reversible airway obstruction (increase in forced expiratory 159 

volume in one second [FEV1] of at least 12% relative to baseline with administration of a 160 

bronchodilator), use of maintenance inhaled corticosteroids (ICS) for at least 3 months before 161 

study entry, and having at least one asthma exacerbation in the 12 months prior to study 162 

entry. Current or previous smokers with a smoking history of ≥ 10 pack years were excluded. 163 

The study population had a mean age of 46 years with 68% being female. The mean 164 

beclometasone dipropionate equivalent ICS dose at study entry was 1023 µg/day, and 62% of 165 

patients were using long-acting β2 agonists at study entry. The mean baseline FEV1 was 70% 166 

predicted, with mean reversibility following administration of a bronchodilator of 23%. 167 

 168 

Participants in this study kept a paper diary in which they recorded on a daily basis: 169 

 170 

i) PEF twice daily (best of three blows each time) 171 

ii) Morning symptoms on an integer scale from 0 (no symptoms) to 3 (severe symptoms) 172 

iii) Evening symptoms on an integer scale from 0 (no symptoms) to 3 (severe symptoms) 173 

iv) Number of puffs of reliever inhaler taken overnight 174 



v) Number of puffs of reliever inhaler taken during the day 175 

vi) Whether or not they had woken up due to asthma during the previous night 176 

 177 

These data were entered into an electronic database together with a record of days in which a 178 

severe asthma exacerbation occurred. Severe exacerbations were defined as deterioration in 179 

asthma leading to oral corticosteroid treatment for at least 3 days, or hospitalisation or 180 

emergency room treatment due to asthma. Access to the dataset was provided to the 181 

investigators by AstraZeneca using a secure online data repository and analysis platform. 182 

Participants in the study gave informed consent for the secondary use of anonymised study 183 

data for research. 184 

 185 

Data analysis 186 

The dataset consisted of 728,535 records of daily monitoring data in 2010 patients, with a 187 

total of 576 severe exacerbation events. The mean length of follow-up for each patient was 188 

362 days. The primary goal of the analysis was to derive and validate a predictive model 189 

which could detect exacerbation events occurring on the same day or up to three days in the 190 

future. The analysis consisted of a number of steps as described in the text below and 191 

summarised in Figure 1. At each stage of the analysis a number of options were available, 192 

each of which was systematically investigated. Once the most favourable option had been 193 

selected this was then used for the remainder of the analysis until the final model was 194 

reached. This process is described in the results section. Further details of the analysis 195 

techniques are given in the Online Supplement. 196 

 197 

Processing of daily monitoring variables 198 

The nine basic daily monitoring variables entered into the predictive models were: 199 



i) Morning, evening and mean peak expiratory flow rate. 200 

ii) Morning and evening symptom scores 201 

iii) Number of puffs of reliever inhaler used during the overnight and daytime periods 202 

iv) Total of morning and evening symptom scores, and overnight and daytime reliever 203 

inhaler usage 204 

v) Waking during the previous night (yes/no) 205 

 206 

We utilised a number of variable post-processing techniques, alone or in combination, 207 

resulting in a total of 432 basic and derived variables: 208 

i) Normalisation of variables as a percentage of the mean value for that patient 209 

(normalisation), or as the number of standard deviations above or below the mean for 210 

that patient (standardisation)
13

. The rationale for this is that some parameters 211 

(particularly PEF) are heavily dependent on demographic characteristics such as age, 212 

sex and height. Therefore it is logical to standardise values according to the mean 213 

value for each individual, thus accentuating within-person rather than between-person 214 

variability. 215 

ii) Calculating the difference or the slope between the current value and the value 216 

observed 1, 2, 3, 4 or 5 days ago, as an indication of the short-term trend. We chose to 217 

explore this method since previous evidence has shown that exacerbations are often 218 

preceded by short-term reductions in PEF and increases in symptom scores
5
. 219 

iii) Applying filters in order to smooth short-term variability
14-16

. These were used since a 220 

number of home monitoring measurements (particularly PEF) exhibit a degree of 221 

random variability which may mask the underlying trend. Figure 2 shows an example 222 

of PEF data before and after application of a smoothing filter. 223 

 224 



Variable selection and reduction 225 

As the total number of basic and derived variables (432) is very large and it is unclear which 226 

of them are most predictive of exacerbations, both recursive feature elimination and principal 227 

component analysis (PCA)
17 

were investigated as variable selection and reduction techniques. 228 

Recursive feature elimination is a variable selection method which is used in combination 229 

with a particular machine learning model and with cross-validation. Starting with the full list 230 

of 432 variables, the weakest (least predictive) variables are eliminated from the model one 231 

by one until the optimal sensitivity is reached. PCA is a data reduction method that is used to 232 

reduce a large number of variables into a smaller number of linearly independent 233 

(uncorrelated) components, each of which is a weighted linear combination of one or more of 234 

the original variables. The purpose of PCA is to capture the variance or information content 235 

of a dataset with many variables using a smaller number of components, which can then be 236 

entered into predictive models. Since the components derived using PCA are linearly 237 

independent (uncorrelated) they are more likely to have independent value when entered into 238 

a predictive model. The numbers of components can be specified a priori. We investigated 239 

PCA using 3, 5, 9, 20, 40, 60, 80 and 100 components. It should be noted that PCA is a 240 

standalone procedure which occurs prior to entering data into a machine learning model, 241 

whereas recursive feature elimination is integrated into the process of tuning and testing a 242 

machine learning model. 243 

 244 

Application of class imbalance learning techniques 245 

Predicting asthma exacerbations from this dataset was a class imbalanced learning problem
11

, 246 

in which there were much fewer examples of exacerbation cases (approximately 0.08%) than 247 

non-exacerbation cases (approximately 99.92%) in the dataset. Therefore, we investigated 248 

class imbalance learning techniques that operate by resampling the training data. These 249 



techniques increase the proportion of the training set that represents the minority 250 

(exacerbation) class, aiming at producing models that are able to better recognise cases of the 251 

minority class. Importantly, it should be noted that these techniques were only applied to the 252 

training data, not the validation data from which the final model accuracy was determined. 253 

The following three techniques were investigated: 254 

i) Random under-sampling: Randomly discarding training data from the majority (non-255 

exacerbation) class.  256 

ii) Random over-sampling: Randomly duplicating training data from the minority 257 

(exacerbation) class.  258 

iii) Synthetic minority over-sampling technique (SMOTE): Adding synthetic training data 259 

that have been generated from the minority (exacerbation) class
11,12

.  260 

For each of these techniques we investigated different ratios of exacerbation to non-261 

exacerbation training data to determine which produced the best balance between sensitivity 262 

and specificity. 263 

 264 

Development and validation of machine learning models 265 

We investigated a number of machine learning models: 266 

i) Logistic regression: Statistical model in which the log odds of an event are assumed to 267 

be linearly related to one or more predictor variables. 268 

ii) Naïve Bayes: Conditional probability model in which the probability of an event is 269 

assumed to be related independently to one or more predictor variables. 270 

iii) Decision tree: Classification algorithm which assigns a category in a hierarchical 271 

manner based upon decision points with respect to the predictor variables. 272 

iv) Perceptron: Classification algorithm which assigns a category based upon whether a 273 

weighted combination of the predictor variables exceeds a particular threshold. 274 



The ability of the machine learning models to recognise exacerbation and non-exacerbation 275 

cases was evaluated using sensitivity, specificity, and area under the receiver operating 276 

characteristic curve (AUC). Sensitivity was defined as the true positive rate. We considered a 277 

prediction to be a true positive if an exacerbation occurred on the same day or up to 3 days 278 

after the prediction. Specificity was defined as the true negative rate. AUC was the area under 279 

the curve formed by true positive and false positive rates obtained by varying the decision 280 

thresholds within the machine learning models. We used stratified cross-validation
18

 to 281 

evaluate each of the machine learning models. This procedure was chosen due to the small 282 

number of exacerbation examples in the data set.  It separates the data into k folds. k-1 folds 283 

are used to train a predictive model, and the remaining fold is used for evaluation purposes. 284 

In this study we used k=5 folds and for most analyses repeated the procedure 10 times. The 285 

average sensitivity, specificity and AUC was calculated across the 10 repetitions (if 286 

applicable). 287 

 288 

 289 

Results  290 

Qualitative examination of the dataset revealed that when all 576 exacerbation events were 291 

taken in aggregate, each of the raw daily monitoring variables displayed a distinct pattern in 292 

the run-up to exacerbation events, as shown in Figure 3. However, there was a great deal of 293 

individual variability, meaning that none of these variables alone was sufficient to predict 294 

asthma exacerbations with high sensitivity or specificity. 295 

 296 

Developing a predictive model of asthma exacerbations presented a number of options at 297 

each step such as the choice of variable processing techniques, variable selection method, 298 



class imbalance learning technique and machine learning model. These choices were made 299 

sequentially until the final model was reached, as described below. 300 

 301 

i) Exploratory analysis of variable processing methods 302 

We initially investigated the effect of different variable processing techniques on the 303 

predictive ability of home monitoring variables. For this part of the study, three basic 304 

variables were used (mean PEF, total symptom score and night-time waking), entered into a 305 

logistic regression model with the use of SMOTE to address class imbalance. Results were 306 

assessed using 5-fold cross-validation repeated 10 times. Table S1 in the Online Supplement 307 

shows the predictive performance of the basic variables compared to when smoothing filters 308 

were applied. When applied alone the smoothing filters did not confer an advantage 309 

compared to the basic variables. The best performing filter was Savitzky-Golay with window 310 

width s=3 and polynomial order d=2, so this was retained for subsequent analyses. 311 

 312 

Table S2 shows the performance of standardised and normalised variables, with and without 313 

the additional use of the Savitzky-Golay smoothing filter. Standardised variables are 314 

expressed as the number of standard deviations above or below the mean value for that 315 

patient, while normalised variables are expressed as the percentage of the mean value for that 316 

patient. Standardisation improved the predictions compared to the basic variables whereas 317 

normalisation worsened them. Therefore, only standardisation was retained as a variable 318 

processing method for subsequent analyses. 319 

 320 

Table S3 shows the performance of differenced measurements and slope (over 1 to 5 days), 321 

with and without the additional use of standardisation and Savitzky-Golay filter. For each of 322 

these tests, a total of 15 processed variables were entered into the model, since the difference 323 



or slope was calculated over a period of 1, 2, 3, 4 or 5 days for each of the three basic 324 

variables. It was observed that differenced values were moderately sensitive and specific, 325 

whereas slopes were more sensitive but rather non-specific. Both variable processing 326 

methods were retained for future analyses. 327 

 328 

ii) Comparison of machine learning algorithms 329 

In light of the exploratory analysis described in the previous section, a list of predictor 330 

variables was chosen in order to test the four machine learning models (logistic regression, 331 

naïve Bayes, decision tree and perceptron). These were the three basic variables used in the 332 

previous section (mean PEF, total symptom score and night-time waking) smoothed using the 333 

Savitzky-Golay filter, with standardisation, or with differencing (over 1, 2, 3, 4 or 5 days), or 334 

with calculation of the slope (over 1, 2, 3, 4 or 5 days). These analyses were performed using 335 

SMOTE to address class imbalance, and a grid search to tune parameters based on one run of 336 

5-fold stratified cross-validation for each combination of parameter values investigated. 337 

Table S4 shows the parameter values investigated and the performance obtained by each of 338 

the machine learning models using these input data. Logistic regression gave the best balance 339 

between sensitivity and specificity and was therefore used in subsequent analyses. 340 

 341 

iii) Comparison of class imbalance learning techniques 342 

We found that using over-sampling, under-sampling or SMOTE was essential to overcome 343 

the class imbalance problem and enable the logistic regression algorithm to recognise 344 

exacerbation cases. Table S5 shows the results obtained by logistic regression using no 345 

resampling and using different class imbalance learning techniques. These analyses were 346 

performed with 5-fold cross-validation repeated 10 times. The most balanced results in terms 347 

of sensitivity and specificity were provided with a 1:1 ratio of exacerbation and non-348 



exacerbation cases. The three class imbalance learning techniques performed equally with 349 

respect to sensitivity and specificity when using a 1:1 ratio of exacerbation and non-350 

exacerbation cases. For subsequent analyses under-sampling was used since this was the 351 

simplest and least computationally intensive option. 352 

 353 

iv) Comparison of variable selection and data reduction techniques 354 

In order to develop and validate the final predictive model, the variable processing techniques 355 

detailed in section (i) above were applied alone or in combination to the full list of nine raw 356 

monitoring variables to produce a total of 432 raw and processed variables. The final model 357 

used logistic regression as the machine learning model with under-sampling as the class 358 

imbalance technique. Recursive feature elimination and PCA were applied as described in the 359 

Methods section, with the results shown in Table S6. These analyses were performed with 5-360 

fold cross-validation repeated 10 times. PCA with the number of components (c) = 80 361 

achieved the best overall results, with sensitivity of 90% and specificity of 83% for asthma 362 

exacerbations, and an AUC of 85%, as shown in Figure 4.  363 

 364 

 365 

Discussion 366 

We have shown that machine learning techniques in combination with simple daily 367 

monitoring data such as PEF and patient-reported symptom scores can predict asthma 368 

exacerbations with good sensitivity and specificity. In particular our best algorithm, using 369 

logistic regression in combination with PCA for feature extraction, achieved sensitivity of 370 

90% and specificity of 83% for asthma exacerbations, with an AUC of 85%. This was 371 

achieved using class imbalance techniques to better balance the positive and negative training 372 

data, enabling the resulting models to better recognise minority cases. This was necessary due 373 



to the severe class imbalance in the original dataset (0.08% exacerbation cases, 99.92% non-374 

exacerbation cases). Without using class imbalance learning techniques, most statistical and 375 

machine learning models would simply predict all cases as being in the majority class (ie. 376 

non-exacerbation cases) since this would yield an accuracy of 99.92% - however, such a 377 

model would clearly not have clinical utility. Therefore, class imbalance learning techniques 378 

are essential to develop predictive models that give meaningful results. It should be noted that 379 

class imbalance techniques were only used to balance cases in the training data, not the 380 

validation data. Therefore the sensitivity, specificity and AUC values we have reported are 381 

applicable to prospectively collected home monitoring data. Using predictive models in 382 

clinical practice requires consideration of additional factors such as the relative ‘cost’ of false 383 

negative and false positive results. For instance it may be decided that a given number of 384 

false alarms will be tolerated to correctly diagnose one exacerbation event. This will 385 

determine the threshold of the model output that is chosen to initiate further action such as 386 

contact with a health professional. 387 

 388 

The primary outcome of this study was the accuracy of predicting asthma exacerbations 389 

occurring on the same day or up to 3 days in the future. This was chosen based on previous 390 

work by Tattersfield et al showing that significant changes in PEF and asthma symptoms start 391 

to occur 3 days prior to exacerbations
5
. Given that the anti-inflammatory actions of inhaled 392 

and oral corticosteroids commence within 2-3 days and 3-8 hours of administration 393 

respectively
19,20

, intervention within this timeframe would be expected to have a favourable 394 

effect, potentially averting incipient exacerbations before they become severe. McKeever et 395 

al showed that a strategy of quadrupling inhaled corticosteroid dose in response to a drop in 396 

PEF or increase in asthma symptoms had the effect of reducing asthma exacerbations
4
. It is 397 



likely that improving the algorithm for early detection of exacerbations would further 398 

enhance the efficacy of this strategy.  399 

 400 

A number of smartphone apps already exist for daily monitoring and self-management of 401 

asthma
21

. The algorithms we have developed could be readily incorporated into a smartphone 402 

app, providing patients and clinicians with an early warning of impending exacerbations. 403 

Although development of machine learning models is often computationally intensive due to 404 

the need to tune the model to a large training dataset, applying the final model to new data is 405 

usually much less so. The final model we generated uses relatively simple manipulations of 406 

data which would be well within the capacity of modern smartphones.  407 

 408 

Further treatment or management studies are needed to determine the best response to 409 

algorithm-generated early warnings, with the goal of reducing severe exacerbations, use of 410 

oral corticosteroids and hospital admissions. Potential options include contact with a 411 

healthcare professional or a patient-initiated increase in therapy such as a quadrupling of 412 

inhaled corticosteroid dose
4
. Moreover, the health economic benefits of such an approach 413 

require evaluation, given the potential for false alarms and unnecessary healthcare contacts. 414 

 415 

Strengths of our study include the use of a large international dataset, incorporating 728,535 416 

patient-days of data in 2010 patients, with a total of 576 severe exacerbation events. We 417 

investigated a wide variety of machine learning techniques in order to optimise the potential 418 

of this dataset. However we acknowledge a number of potential limitations of the study. This 419 

was a post hoc analysis of daily diary data that were collected as part of a randomised 420 

controlled trial, and were not originally intended to be used for exacerbation prediction. The 421 

data were collected using paper diaries which may have been prone to inaccurate transcribing 422 



or fabrication. Moreover, there was no way of verifying correct technique with home peak 423 

expiratory flow measurements. Electronic real-time data collection using a smartphone app 424 

wirelessly linked to a digital spirometer with in-built quality control would have provided 425 

more reliable data. It is also possible that the simple three-point symptom scores utilised in 426 

this study were not maximally predictive. Validated daily outcome measures such as the 427 

Asthma Control Diary
22

 and the Asthma Daily Symptom Diary
23

 are available, but these 428 

instruments are subject to licencing restrictions which prevent their free use on electronic 429 

platforms. Reliever inhaler usage was self-reported in our study whereas there is now the 430 

potential to objectively monitor this using digital inhaler attachments
24-27

. There is emerging 431 

evidence that monitoring reliever inhaler usage in real time may provide important predictive 432 

information. Objectively monitored reliever inhaler use has been shown to increase in the 433 

days leading up to asthma exacerbations
26

 and hospital admissions
27

. It is possible that daily 434 

monitoring of additional variables such as exhaled nitric oxide would also improve the 435 

predictive power of home monitoring, albeit with the drawback of increasing cost and 436 

complexity. Exhaled nitric oxide is a biomarker of steroid-responsive airway inflammation 437 

which can be measured in a variety of settings
28

. A recent systematic review and meta-438 

analysis has shown that tailoring asthma treatment based on exhaled nitric oxide 439 

measurements can reduce exacerbations in both adults and children with asthma
29

. Home 440 

monitoring of exhaled nitric oxide using portable devices has been shown to be feasible by a 441 

number of investigators
30-34

, and Van der Walk et al observed increases in exhaled nitric 442 

oxide in the days leading up to moderate exacerbations in children with asthma
32

. 443 

 444 

In conclusion, we have shown that machine learning algorithms have the potential to improve 445 

the early detection of asthma exacerbations when compared to traditional paper-based action 446 

plans. We anticipate that electronic data collection using smartphone apps linked to digital 447 



spirometers and inhalers will further improve the predictive ability of these algorithms. 448 

Further studies are needed to assess whether this can translate into improved clinical 449 

outcomes, and whether asthma self-management using predictive algorithms is cost-effective. 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 



References 473 

1) Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, Casale 474 

TB, Chanez P, Enright PL, Gibson PG, de Jongste JC, Kerstjens HA, Lazarus SC, 475 

Levy ML, O'Byrne PM, Partridge MR, Pavord ID, Sears MR, Sterk PJ, Stoloff SW, 476 

Sullivan SD, Szefler SJ, Thomas MD, Wenzel SE; American Thoracic 477 

Society/European Respiratory Society Task Force on Asthma Control and 478 

Exacerbations. An official American Thoracic Society/European Respiratory Society 479 

statement: asthma control and exacerbations: standardizing endpoints for clinical 480 

asthma trials and clinical practice. Am J Respir Crit Care Med. 2009; 180(1): 59-99. 481 

 482 

2) Global Initiative for Asthma, 2020. Global strategy for asthma management and 483 

prevention. Available from: https://ginasthma.org. Accessed 1
st
 June 2020. 484 

 485 

3) Desai D, Siddiqui S, Brightling C. Can inhaled corticosteroids prevent asthma 486 

exacerbations? Curr Opin Pulm Med. 2011; 17(1): 16-22. 487 

 488 

4) McKeever T, Mortimer K, Wilson A, Walker S, Brightling C, Skeggs A, Pavord I, 489 

Price D, Duley L, Thomas M, Bradshaw L, Higgins B, Haydock R, Mitchell E, 490 

Devereux G, Harrison T. Quadrupling Inhaled Glucocorticoid Dose to Abort Asthma 491 

Exacerbations. N Engl J Med. 2018; 378(10): 902-910. 492 

 493 

5) Tattersfield AE, Postma DS, Barnes PJ, Svensson K, Bauer CA, O'Byrne PM, 494 

Löfdahl CG, Pauwels RA, Ullman A. Exacerbations of asthma: a descriptive study of 495 

425 severe exacerbations. The FACET International Study Group. Am J Respir Crit 496 

Care Med. 1999; 160(2): 594-9. 497 

https://ginasthma.org/


 498 

6) Kupczyk M, Haque S, Sterk PJ, Niżankowska-Mogilnicka E, Papi A, Bel EH, Chanez 499 

P, Dahlén B, Gaga M, Gjomarkaj M, Howarth PH, Johnston SL, Joos GF, Kanniess F, 500 

Tzortzaki E, James A, Middelveld RJ, Dahlén SE; BIOAIR investigators. Detection 501 

of exacerbations in asthma based on electronic diary data: results from the 1-year 502 

prospective BIOAIR study. Thorax. 2013; 68(7): 611-8. 503 

 504 

7) Honkoop PJ, Taylor DR, Smith AD, Snoeck-Stroband JB, Sont JK. Early detection of 505 

asthma exacerbations by using action points in self-management plans. Eur Respir J. 506 

2013; 41(1): 53-9. 507 

 508 

8) Gonem S, Janssens W, Das N, Topalovic M. Applications of artificial intelligence and 509 

machine learning in respiratory medicine. Thorax. 2020 May 14. [Epub ahead of 510 

print] 511 

 512 

9) Finkelstein J, Jeong IC. Machine learning approaches to personalize early prediction 513 

of asthma exacerbations. Ann NY Acad Sci. 2017; 1387(1): 153-65. 514 

 515 

10) Atienza T, Aquino T, Fernández M, Boonsawat W, Kawai M, Kudo T, Ekelund J, 516 

Ivanov S, Carlsson LG. Budesonide/formoterol maintenance and reliever therapy via 517 

Turbuhaler versus fixed-dose budesonide/formoterol plus terbutaline in patients with 518 

asthma: phase III study results. Respirology. 2013; 18(2): 354-63. 519 

 520 

11) He H, Garcia EA. Learning from imbalanced data. IEEE Transactions on Knowledge 521 

and Data Engineering. 2009; 21(9): 1263-84. 522 



 523 

12)  Wang S, Minku LL, Yao X. Resampling-Based Ensemble Methods for Online Class 524 

Imbalance Learning. IEEE Transactions on Knowledge and Data Engineering. 2015; 525 

27(5): 1356-68. 526 

 527 

13) http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html  528 

 529 

14)  https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.medfilt.html 530 

 531 

15)  https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html 532 

 533 

16)https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal534 

.wiener 535 

  536 

17)  http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html 537 

  538 

18)  Bishop, C. Pattern Recognition and Machine Learning. Springer: New York, 2006.  539 

 540 

19) Anderson WJ, Short PM, Williamson PA, Lipworth BJ. Inhaled Corticosteroid Dose 541 

Response Using Domiciliary Exhaled Nitric Oxide in Persistent Asthma: The 542 

FENOtype Trial. Chest. 2012; 142(6): 1553-1561. 543 

 544 

20) Williams DM. Clinical Pharmacology of Corticosteroids. Resp Care. 2018; 63(6): 545 

655-670 546 

 547 

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.medfilt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal.wiener
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal.wiener
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html


 548 

21) Kagen S, Garland A. Asthma and Allergy Mobile Apps in 2018. Curr Allergy Asthma 549 

Rep. 2019; 19(1): 6. 550 

 551 

22) Juniper EF, O'Byrne PM, Ferrie PJ, King DR, Roberts JN. Measuring asthma control. 552 

Clinic questionnaire or daily diary? Am J Respir Crit Care Med. 2000; 162(4 Pt 1): 553 

1330-4. 554 

 555 

23) Gater A, Nelsen L, Fleming S, Lundy JJ, Bonner N, Hall R, Marshall C, Staunton H, 556 

Krishnan JA, Stoloff S, Schatz M, Haughney J; Patient-Reported Outcome 557 

Consortium’s Asthma Working Group. Assessing Asthma Symptoms in Adolescents 558 

and Adults: Qualitative Research Supporting Development of the Asthma Daily 559 

Symptom Diary. Value Health. 2016; 19(4): 440-50. 560 

 561 

24) Patel M, Pilcher J, Munro C, Hosking A, Pritchard A, Shaw D, Black P, Weatherall 562 

M, Beasley R; SMART Study Group. Short-acting β-agonist use as a marker of 563 

current asthma control. J Allergy Clin Immunol Pract. 2013; 1(4): 370-7. 564 

 565 

25) Patel M, Pilcher J, Reddel HK, Pritchard A, Corin A, Helm C, Tofield C, Shaw D, 566 

Black P, Weatherall M, Beasley R; SMART Study Group. Metrics of salbutamol use 567 

as predictors of future adverse outcomes in asthma. Clin Exp Allergy. 2013; 43(10): 568 

1144-51. 569 

 570 

26) Pilcher J, Patel M, Pritchard A, Thayabaran D, Ebmeier S, Shaw D, Black P, 571 

Braithwaite I, Weatherall M, Beasley R. Beta-agonist overuse and delay in obtaining 572 



medical review in high risk asthma: a secondary analysis of data from a randomised 573 

controlled trial. NPJ Prim Care Respir Med. 2017; 27: 33. 574 

 575 

27) Patel M, Pilcher J, Hancox RJ, Sheahan D, Pritchard A, Braithwaite I, Shaw D, Black 576 

P, Weatherall M, Beasley R, SMART Study Group. The Use of β2-agonist Therapy 577 

Before Hospital Attendance for Severe Asthma Exacerbations: A Post-Hoc Analysis. 578 

NPJ Prim Care Respir Med. 2015; 25: 14099. 579 

 580 

28) Menzies-Gow A, Mansur AH, Brightling CE. Clinical utility of fractional exhaled 581 

nitric oxide in severe asthma management. Eur Respir J. 2020; 55(3): 1901633. 582 

 583 

29) Petsky HL, Cates CJ, Kew KM, Chang AB. Tailoring Asthma Treatment on 584 

Eosinophilic Markers (Exhaled Nitric Oxide or Sputum Eosinophils): A Systematic 585 

Review and Meta-Analysis. Thorax. 2018; 73(12): 1110-1119. 586 

 587 

30) Pijnenburg MW, Floor SE, Hop WC, De Jongste JC. Daily ambulatory exhaled nitric 588 

oxide measurements in asthma. Pediatr Allergy Immunol. 2006; 17(3): 189-93. 589 

 590 

31) Hashimoto S, Ten Brinke A, Roldaan AC, van Veen IH, Möller GM, Sont JK, 591 

Weersink EJM, van der Zee JS, Braunstahl GJ, Zwinderman AH, Sterk PJ, Bel EH. 592 

Internet-based Tapering of Oral Corticosteroids in Severe Asthma: A Pragmatic 593 

Randomised Controlled Trial. Thorax. 2011; 66(6): 514-20. 594 

 595 



32) van der Valk RJP, Baraldi E, Stern G, Frey U, de Jongste JC. Daily exhaled nitric 596 

oxide measurements and asthma exacerbations in children. Allergy. 2012; 67(2): 265-597 

71. 598 

 599 

33) Saito J, Gibeon D, Macedo P, Menzies-Gow A, Bhavsar PK, Chung KF. Domiciliary 600 

diurnal variation of exhaled nitric oxide fraction for asthma control. Eur Respir J. 601 

2014; 43(2): 474-84. 602 

 603 

34) Nanda CR, Singapuri A, Soares M, Monteiro W, Siddiqui S, Gonem S. Domiciliary 604 

exhaled nitric oxide and eosinophilic airway inflammation in adults with asthma. Eur 605 

Respir J. 2016; 48(1): 242-4. 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 



Figure 1: Summary of data analysis steps 621 

 622 



Figure 2: Application of a data smoothing filter 623 

Daily peak expiratory flow data (L/min) is shown before and after application of a Savitzky-624 

Golay filter. 625 

 626 

 627 

 628 

 629 

 630 



Figure 3: Changes in daily monitoring variables in the period preceding and following 631 

exacerbations 632 

Panels show the average value of daily monitoring variables immediately preceding and 633 

following exacerbation events occurring on Day 0. PEF = peak expiratory flow (L/min). 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 



Figure 4: Receiver operating characteristic curve for the detection of asthma 647 

exacerbation using the final logistic regression model 648 
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Detecting asthma exacerbations using daily home monitoring and machine learning  660 
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Further details of post-processing techniques 688 

Filter techniques: 689 

 Median Filter – this filter keeps a sliding window over the data produced over time 690 

and uses the median value in this sliding window as a variable. 691 

 Savitzky-Golay Filter – this filter fits a low order polynomial to the examples in a 692 

sliding window of the data based on linear least squares. 693 

 Wiener Filter – this filter uses Wiener deconvolution to smooth signals based on a 694 

sliding window of the data. 695 

 Median Filter, Savitzky-Golay Filter and Wiener Filter’s parameter s refers to the 696 

sliding window used for smoothing the data. 697 

 Savitzky-Golay Filter’s parameter d is the polynomial order used by the filter. 698 

 699 

Difference and slope techniques: 700 

 Difference refers to the difference between the current value of a monitored variable 701 

and its value d days ago. 702 

 Slope refers to the slope of the regression line that fits a sequence of values of the 703 

variables. The sequence includes the current value and all values up to and including 704 

d days ago. 705 

 706 

Principal Component Analysis (PCA): 707 

 PCA is a variable transformation technique that converts a set of values from possibly 708 

correlated variables into a set of values of linearly uncorrelated variables called 709 

principal components. PCA’s parameter c refers to the number of principal 710 

components to be used. 711 

 712 



Table S1: Predictive performance obtained using different smoothing filters  713 

Post-processing 

technique 

Sensitivity Specificity AUC 

Basic variables 80 78 82 

Median Filter s = 2 79 77 81 

Median Filter s = 5 77 76 80 

Median Filter s = 7 75 75 79 

Median Filter s = 9 73 74 77 

Savitzky-Golay 

Filter s = 3, d = 2 

80 78 82 

Savitzky-Golay 

Filter s = 5, d = 2 

79 78 82 

Savitzky-Golay 

Filter s = 5, d = 3 

79 78 82 

Savitzky-Golay 

Filter s = 7, d = 2 

78 78 82 

Savitzky-Golay 

Filter s = 7, d = 3 

78 78 82 

Savitzky-Golay 

Filter s = 9, d = 2 

78 77 82 

Savitzky-Golay 

Filter s = 9, d = 3 

78 77 82 

Wiener Filter s = 2 79 78 82 

Wiener Filter s = 5 78 78 82 

Wiener Filter s = 7 78 78 82 

Wiener Filter s = 9 78 78 82 

 714 

AUC = area under the receiver operating characteristic curve. 715 

 716 

 717 

 718 

 719 

 720 



Table S2: Predictive performance obtained using standardisation and normalisation +/- 721 

smoothing filter 722 

Post-processing 

technique 

Sensitivity Specificity AUC 

Basic variables 80 78 82 

Standardisation 

applied to basic 

variables 

87 84 83 

Standardisation 

applied to variables 

with Savitzky-Golay 

Filter s = 3, d = 2 

87 84 83 

Normalisation 

applied to basic 

variables 

75 89 83 

Normalisation 

applied to variables 

with Savitzky-Golay 

Filter s = 3, d = 2 

75 89 83 

 723 

AUC = area under the receiver operating characteristic curve. 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 



Table S3: Predictive performance obtained using difference and slope +/-  736 

standardisation +/- smoothing filter 737 

Post-processing technique Sensitivity Specificity AUC 

Basic variables 80 78 82 

Difference d = {1,2,3,4,5} 

applied to basic variables 

84 84 72 

Difference d = {1,2,3,4,5} 

applied to variables with 

Savitzky-Golay Filter s = 3, d 

= 2 

84 84 72 

Difference d = {1,2,3,4,5} 

applied to variables with 

Standardisation 

84 84 72 

Difference d = {1,2,3,4,5} 

applied to variables with 

Savitzky-Golay Filter s = 3, d 

= 2 and Standardisation 

84 84 72 

Slope, d = {1,2,3,4,5} 

applied to basic variables 

91 72 54 

Slope d = {1,2,3,4,5} applied 

to variables with Savitzky-

Golay Filter s = 3, d = 2 

91 72 54 

Slope d = {1,2,3,4,5} applied 

to variables with 

Standardisation 

92 68 54 

Slope d = {1,2,3,4,5} applied 

to variables with Savitzky-

Golay Filter s = 3, d = 2 and 

Standardisation 

92 68 54 

Slope d = {1,2,3,4,5} applied 

to variables with Savitzky-

Golay Filter s = 3, d = 2, 

Standardisation and 

Difference d = {1,2,3,4,5} 

92 75 63 

 738 

AUC = area under the receiver operating characteristic curve. 739 

 740 

 741 

 742 

 743 



Table S4: Comparison of machine learning model performance 744 

Machine learning 

model 

Sensitivity Specificity AUC 

Decision tree 8 

 

100 52 

Naïve Bayes 80 84 82 

Perceptron 96 69 - 

Logistic regression 86 86 84 

 745 

AUC = area under the receiver operating characteristic curve. 746 

These values have been obtained after a grid search to tune the parameter values below, based 747 

on one run of 5-fold stratified cross validation for each combination of parameter values. The 748 

values in bold obtained the best results. 749 

 Decision tree:  750 

o Split criterion {gini index, entropy} 751 

o Split strategy {best, random} 752 

 Naïve Bayesian: 753 

o Prior probabilities of the classes {none, (1 – 10
-2

, 10
-2

), (1 – 10
-3

, 10
-3

), (1 – 754 

10
-4

, 10
-4

)} 755 

 Perceptron: 756 

o Regularisation method {l1, l2} 757 

o Tolerance for stopping criterion {none, 10
-3

, 10
-4

} 758 

 Logistic regression: 759 

o Regularisation method {l1, l2} 760 

o Tolerance for stopping criterion {10
-3

, 10
-4

} 761 

 762 

 763 



Table S5: Comparison of class imbalance learning techniques  764 

Technique Sensitivity Specificity AUC 

No resampling 0 100 82 

Under-sampling 

r=25% 

55 97 83 

Under-sampling 

r=50% 

72 93 83 

Under-sampling 

r=75% 

81 89 83 

Under-sampling 

r=100% 

87 84 83 

Over-sampling 

r=25% 

55 97 83 

Over-sampling 

r=50% 

72 93 83 

Over-sampling 

r=75% 

81 89 83 

Over-sampling 

r=100% 

87 84 83 

SMOTE r=25% 54 97 83 

SMOTE r=50% 72 93 83 

SMOTE r=75% 81 89 83 

SMOTE r=100% 87 84 83 

 765 

AUC = area under the receiver operating characteristic curve; SMOTE = synthetic minority 766 

over-sampling technique; r = ratio of exacerbation and non-exacerbation training examples 767 

obtained by resampling. 768 

 769 

 770 

 771 

 772 

 773 

 774 



Table S6: Comparison of variable selection and data reduction techniques 775 

Post-processing 

technique 

Sensitivity Specificity AUC 

Recursive feature 

elimination 

88 83 86 

PCA c = 3 83 69 73 

PCA c = 5 84 68 73 

PCA c = 9 85 69 73 

PCA c = 20 87 79 79 

PCA c = 40 88 82 85 

PCA c = 60 89 83 86 

PCA c = 80 90 83 85 

PCA c = 100 90 82 84 

 776 

AUC = area under the receiver operating characteristic curve; PCA = principal components 777 

analysis. 778 

c = number of components 779 


