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Although class imbalance learning and online learning have been extensively studied
in the literature separately, online class imbalance learning that considers the challenges
of both fields has not drawn much attention. It deals with data streams having very
skewed class distributions, such as fault diagnosis of real-time control monitoring sys-
tems and intrusion detection in computer networks. To fill in this research gap and
contribute to a wide range of real-world applications, this paper first formulates on-
line class imbalance learning problems. Based on the problem formulation, a new online
learning algorithm, Sampling-based Online Bagging (SOB), is proposed to tackle class
imbalance adaptively. Then, we study how SOB and other state-of-the-art methods can
benefit a class of fault detection data under various scenarios and analyse their per-
formance in depth. Through extensive experiments, we find that SOB can balance the
performance between classes very well across different data domains and produce stable
G-mean when learning constantly imbalanced data streams, but it is sensitive to sud-
den changes in class imbalance, in which case SOB’s predecessor Undersampling-based
Online Bagging (UOB) is more robust.
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1. Introduction

Online learning has been extensively studied and applied in recent years. It refers to

learning from data streams where data arrive continuously and a timely response is

required. Strictly speaking, online learning algorithms process each training example

once “on arrival” without the need for storage and reprocessing, and maintain a

current model that reflects the current concept to make a prediction at each time

step 35. The online learner is not given any process statistics for the observation

sequence, and thus no statistical assumptions can be made in advance 32. Online

learning has contributed to various real-world applications, such as sponsored search

from web click data 11, credit card transactions 40 and spam filtering 34 12.

In many of such data stream applications, skewed class distributions exist and

cause great learning difficulties, such as fault diagnosis of control monitoring sys-

tems and fault detection in software engineering. In these cases, some classes of data

are much more difficult or expensive to be collected than the other classes, referred

to as class imbalance. Given such imbalanced data streams, existing online learn-
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ing algorithms can suffer severe performance degradation, since the large number

of majority-class examples overwhelms the incremental update of the model and

minority-class examples are likely to be ignored 20. Unfortunately, most existing

solutions for class imbalance are restricted to the offline mode.

Very little work has been devoted to learning from skewed data streams online.

New challenges arise in online class imbalance learning, such as imbalance rate esti-

mation 44, concept drift detection in imbalanced data streams 43 and online leaning

techniques to overcome class imbalance 44 33. Although a few learning algorithms

have been proposed for imbalanced data streams very recently, some essential ques-

tions are still open. Focusing on the fundamental concepts of online learning and

class imbalance learning, this paper will answer the following research questions:

what is the formal definition of online class imbalance learning? Based on the for-

mal definition, how should we tackle class imbalance effectively during the online

processing? How would online class imbalance algorithms contribute to real-world

applications? What are their advantages and disadvantages?

For the first two questions, we formulate online class imbalance problems with

the objective of maximizing G-mean, based on which we develop a learning algo-

rithm called Sampling-based Online Bagging (SOB) to deal with class imbalance

and make real-time predictions. SOB introduces sampling techniques into Online

Bagging algorithm 35, in which the sampling rate is determined adaptively based on

the current imbalance status and classification performance. With the theoretical

underpinning, it is expected to outperform its earlier versions Oversampling-based

Online Bagging (OOB) and Undersampling-based Online Bagging (UOB) 44. For

the last two questions, we examine the performance of SOB, OOB, UOB and two

other recently proposed algorithms on a set of fault detection problems from real-

world projects. Fault detection has drawn growing interest from both academia

and industry. A good fault detection method can automate engineering procedures,

reduce unnecessary costs and prevent fault events that may cause severe system fail-

ure. A typical fault detection task is inherently imbalanced between classes, which

aims to distinguish faulty examples (minority) from non-faulty examples (major-

ity) accurately. Since class imbalance methods have shown benefits to offline fault

detection applications 46, this paper studies their role in online scenarios. Through

comprehensive experimental discussions, we find that SOB can balance the perfor-

mance between classes very well across different data domains and produce stable

G-mean under static scenarios. However, it is sensitive to data sequences, especially

when there is a sudden change in class imbalance. UOB, by contrast, is more robust

against this situation. An in-depth analysis is given.

The rest of this paper is organized as follows. Section 2 gives the background

knowledge about class imbalance learning and research progress in learning from

imbalanced data streams, and describes fault detection problems. Section 3 gives

the problem formulation of online class imbalance learning. Section 4 proposes the

new online learning algorithm SOB. Section 5 discusses its performance in fault

detection data sets in comparison with other existing algorithms. Section 6 draws
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the conclusions and points out our future work.

2. Background

In this section, we first introduce class imbalance learning and the state-of-the-

art methods in this area. Then, we briefly review the current research progress

in learning from imbalanced data streams. Finally, we describe the classification

problem of fault detection and explain how class imbalance learning can contribute

to this type of tasks.

2.1. Class imbalance learning

Class imbalance learning refers to learning from data sets that exhibit significant

imbalance among or within classes. The common understanding about “imbalance”

in the literature is concerned with the situation, in which some classes of data

are highly under-represented compared to other classes 20. By convention, we call

the classes having more examples the majority classes, and the ones having fewer

examples the minority classes. The recognition of minority class is more important,

because misclassifying an example from the minority class is usually more costly 46.

The challenge of learning from imbalanced data is that the relatively or abso-

lutely underrepresented class cannot draw equal attention to the learning algorithm

compared to the majority class, which often leads to very specific classification rules

or missing rules for the minority class without much generalization ability for future

prediction 48. How to better recognize data from the minority class is a major re-

search question in class imbalance learning. Its learning objective can be generally

described as “obtaining a classifier that will provide high accuracy for the minority

class without severely jeopardizing the accuracy of the majority class” 41.

Numerous methods have been proposed to tackle class imbalance problems of-

fline at data and algorithm levels. Data-level methods include a variety of resampling

techniques, manipulating training data to rectify the skewed class distributions,

such as random over/under-sampling, SMOTE 6 and some dynamic sampling ap-

proaches 25. Algorithm-level methods address class imbalance by modifying their

training mechanism directly with the goal of better accuracy on the minority class,

including one-class learning 22 and cost-sensitive learning algorithms 49 20. In ad-

dition, ensemble learning 37 has become another major category of approaches to

handling imbalanced data by combining multiple classifiers, such as SMOTEBoost 7,

AdaBoost.NC 42 45 and the Multi-objective Genetic Programming ensemble 2. Al-

though class imbalance learning has been extensively studied, none of the proposed

methods can process imbalanced data online.

In class imbalance learning, the traditional accuracy metric measuring the per-

centage of correctly classified examples is not appropriate for performance evalu-

ation anymore, because it can be overwhelmed by the high accuracy on the ma-

jority class and hide the poor performance on the minority class. Instead, recall
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and G-mean are more frequently used. Recall measures the accuracy of recognizing

a specific class of data. Minority-class recall tells us how many minority-class ex-

amples can be correctly identified. However, it does not provide any performance

information of other classes. To measure the overall accuracy, G-mean calculates the

geometric mean of recalls over all classes 23. More details will be given in Section 3.

2.2. Learning from imbalanced data streams

Most existing algorithms dealing with imbalanced data streams require process-

ing data in batches (incremental learning). The first attempt was made by Gao

et al. 17 16. They proposed an uncorrelated bagging strategy, based on the subset

of majority-class data in the current data chunk and the union of all minority-

class data collected thus far. Wang et al. proposed an ensemble algorithm based on

clustering and sampling 47, in which K-means clustering algorithm is used to under-

sample the majority class in the current data chunk. Chen et al. proposed SERA 8

and its improved versions MuSeRA 10 and REA 9, which selectively add minority

examples from previous chunks into current training chunk to balance data. Because

these methods require access to previous data, they are more suitable to the prob-

lem where the minority data concept is stationary or historical data can be retained.

Lichtenwalter and Chawla proposed a new metric to measure the distance between

data chunks, which is used to weigh the ensemble members learnt from imbalanced

data stream 24. It is shown to be more suitable to extremely complicated data

streams with complex concept drifts and high degrees of imbalance. Ditzler and Po-

likar proposed two ensemble approaches, Learn++.CDS and Learn++.NIE 13. The

former applies the well-established oversampling technique SMOTE 6 and the lat-

ter uses a Bagging based sub-ensemble method to rebalance data. They were shown

to outperform earlier methods in general but at the cost of higher computational

complexity due to the oversampling and sub-ensemble strategies.

All the aforementioned methods need to collect full data chunks for training.

Therefore, they cannot be applied to online problems directly. Nguyen et al. pro-

posed an online algorithm to deal with imbalanced data streams based on random

undersampling 33. The majority class examples have lower probability to be se-

lected for training. It assumes that the information of which class belongs to the

minority/majority is known and the imbalance rate does not change over time. Be-

sides, it requires a training set to initialize the classification model before learning.

Minku et al. 30 proposed to use undersampling and oversampling to deal with class

imbalance in online learning by changing the parameter corresponding to Online

Bagging’s sampling rate. However, the sampling parameters need to be set prior to

learning and cannot be adjusted to changing imbalance rates. Very recently, two

perceptron-based methods RLSACP 18 and WOS-ELM 31 were proposed to tackle

imbalanced data streams online. They adjust the weights between perceptrons de-

pending on the class label. A higher weight is assigned to the minority class. They

were tested in static scenarios with fixed imbalanced degree. In addition, WOS-ELM
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requires a validation set to adjust class weights, which may not be available in many

real-world applications.

2.3. Fault detection problems

Fault detection is an emerging and challenging practical task, aiming to find faulty

data produced in any engineering systems in either real time or offline mode, such

as sensor faults in smart buildings 28 and robotic systems 36, or identify program-

ming faults in software engineering in a wider sense 5. For the example of smart

buildings with sensors installed to monitor hazardous events, any sensor fault can

cause catastrophic failures. Detecting faults accurately and timely is crucial to the

operation and stability of the overall system. Fault predictors for software engineer-

ing also become popular since 2005 after the PROMISE repository was created 3.

PROMISE includes a collection of fault prediction data sets from real-world appli-

cations for public use, among which the percentage of defective modules varies from

6.94% to 32.29%. An accurate software fault predictor can help to improve software

quality and reduce the cost of delivering software systems.

Fault detection data are inherently imbalanced. In other words, a faulty example

is much less likely to be observed than an example produced from the system in a

normal condition. Obtaining a fault in such systems can be very expensive. Recent

studies have employed cognition and machine learning methods to enhance fault

diagnosis performance offline, but very few considered the highly imbalanced na-

ture between faulty and non-faulty classes. The obtained classifier tends to perform

poorly in predicting faulty examples due to the rarity of this class. Therefore, it is

worthwhile exploring class imbalance methods to alleviate this learning difficulty.

Although some researchers have noticed the class imbalance issue in fault detec-

tion and attempted to apply class imbalance techniques to improve the prediction

accuracy 22 46 26, they are limited to offline data. Encouraged by their promising re-

sults, this paper explores how class imbalance learning can facilitate fault detection

problems during online processing.

3. Problem Formulation of Online Class Imbalance Learning

Consider an online binary classification problem. We build an online classifier F

that receives a new example xt at each time step t and predicts its class label as

ŷt. After making the prediction, the classifier receives the expected label yt of xt,

evaluates its loss and gets updated. Both predicted label ŷt and expected label yt
belong to label set Y = {+1,−1}. If ŷt = yt, the prediction is correct. Without loss

of generality, we assume the positive class to be the minority, which is much less

likely to occur than the negative class, such as spam in email filter applications and

faults in engineering systems. The imbalance rate (IR) is defined as the occurrence

probability of the minority class. It is not easy to estimate IR in online scenarios,

as we cannot obtain a whole picture of data and IR can change over time. The IR
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estimation and performance evaluation are usually based on received examples so

far.

Given a sequence of training examples with T time steps (x1, y1) , . . . , (xT , yT ),

we can classify the prediction results from classifier F into four categories – true

positives (TP) if ŷt = yt = +1, true negatives (TN) if ŷt = yt = −1, false positives

(FP) if ŷt = +1 and yt = −1, and false negatives (FN) if ŷt = −1 and yt = +1.

Based on these four metrics, recall and G-mean can be calculated, which have been

frequently used as performance criteria in class imbalance learning. We use P to

denote the number of positive examples and N to denote the number of negative

examples. Minority-class recall (Rp), majority-class recall (Rn) and G-mean (G) are

defined as:

Rp =
TP

TP + FN
=
P − FN

P
,Rn =

TN

TN + FP
=
N − FP

N
;

G =
√
Rp ·Rn =

√(
P − FN

P

)(
N − FP

N

)
.

Minority-class recall is the ratio of the number of correctly classified minority-

class examples to the number of all minority-class examples, reflecting the classi-

fication accuracy on the minority class. G-mean is the geometric mean of recall of

both classes, an overall performance measure for imbalanced data. Due to different

misclassification costs, recall and G-mean are more appropriate metrics than the

traditional accuracy. Particularly, G-mean equally considers both classes with easy

calculation.

With the goal of maximizing G-mean, we proof next that maximizing G-mean

is equivalent to minimizing the objective:

∑
yt=+1

N

P
I (ŷt 6= yt) +

∑
yt=−1

RpI (ŷt 6= yt) , (1)

where I is the indicator function. Then, we propose online learning algorithm –

Sampling-based Online Bagging (SOB) to achieve this goal.

By expanding the G-mean expression, to maximize G-mean, we need to

minimize
FN

P
+
FP

N
− FN · FP

P ·N
⇔

minimize
N

P
FN +

P − FN
P

FP.

Thus, we obtain Eq. (1). We can see from the equation that there is a perfor-

mance trade-off between two classes to achieve the best G-mean. It suggests that

we need to consider the current performance of the classifier when it is dealing with

class imbalance online, in addition to the imbalance rate. Inspired by Eq. (1), we can
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handle class imbalance by setting different misclassification costs – N/P (equivalent

to (1/IR− 1)) for the minority class and Rp for the majority class. In this way, the

minority class will receive a higher cost (≥ 1) than the majority class. The cost

of majority class will depend on minority-class recall. If Rp is quite high, then the

majority-class cost will not be lowered down that much. It is reasonable, because

we only need to deemphasize the majority class when necessary.

4. Sampling-based Online Bagging

As one of the most popular methods applying different misclassification costs in

the learning algorithm, resampling (aka rebalancing) has been theoretically and

empirically proved to be an effective and simple technique 14 38 for making the

optimal decision, which manipulates the number of training examples without any

extra requirements to the applied learning algorithm.

We propose sampling-based Online Bagging (SOB) that combines resampling

with Online Bagging (OB) 35. Online Bagging (OB) is a popular ensemble approach

that successfully extends the well-known offline ensemble algorithm Bagging 4 to

Online cases. It is based on the fact that when the number of training examples

tends to infinite in offline Bagging, each training subset for base learner fm con-

tains K copies of each original training example, where the distribution of K tends

to a Poisson (λ) distribution with the parameter λ = 1. So, in Online Bagging,

whenever a training example is available, it is presented K times for each ensemble

member fm, where K is drawn from Poisson (1). It is designed for balanced data.

To handle class imbalance, resampling is integrated by varying the parameter λ. If

the current example belongs to the minority class, it will be oversampled through

Poisson (λ = N/P ); otherwise, it will be undersampled through Poisson (λ = Rp),

according to Eq. (1). The training procedure of SOB at each time step is described

in Table 1.

Table 1. Sampling-based Online Bagging.

Input: an ensemble classifier F composed of M base learners fm,
and current training example (xt, yt).

for each base learner fm (m = 1, 2, . . . ,M) do
if yt is + 1

set K ∼ Poisson (N/P )
else

set K ∼ Poisson (Rp)
end if
update fm K times

end for

SOB is the modification of our recently proposed algorithms for online

class imbalance problems – Oversampling-based Online Bagging (OOB) and
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Undersampling-based Online Bagging (UOB) 44. Different from the resampling

strategy in SOB, OOB only oversamples minority-class examples at the rate of
P+N
P , and UOB only undersamples majority-class examples at the rate of P

P+N .

Their sampling rate only relies on the class size. For a more imbalanced data stream,

the resampling degree will be encouraged more accordingly.

The next key issue is how to determine real-time IR and Rp in SOB. This work

adopts the equations used in OOB and UOB 44:

w
(t)
k = ηw

(t−1)
k + (1− η) [(xt, ck)] (k = 1, 2, . . . , |Y |), (2)

R
(t)
k = η′R

(t−1)
k + (1− η′) [xt ← ck] (k = 1, 2, . . . , |Y |). (3)

w
(t)
k denotes the size percentage of class ck ∈ Y at time step t (w

(0)
k = 0).

[(xt, ck)] = 1 if the true class label yt of xt is ck, otherwise 0. Similarly, Rk stands

for the current recall on class ck. [xt ← ck] is equal to 1 if xt is correctly classi-

fied and 0 otherwise. At each time step, w
(t)
k and R

(t)
k are incrementally updated.

Coefficients η and η′ (0 < η, η′ < 1) are time decay factors that balance the con-

tribution between newly received examples and historical examples. Smaller time

decay factors mean more focus on current data. The learning system will therefore

have higher sensitivity to dynamic data streams, but less performance stability. If

the class distribution of data streams is roughly known in advance, then it is better

to use larger η and η′ that can provide better estimation of w
(t)
k and R

(t)
k . Our

preliminary experiments suggest that the reasonable range for η and η′ is [0.9, 1) 44.

These equations are applicable to data streams with arbitrary number of classes. In

binary cases, N/P is estimated by w
(t)
−1/w

(t)
+1, and R

(t)
+1 is used as Rp.

5. Applications in Fault Detection

Due to the rarity and importance of faults, fault detection in engineering systems

is a typical problem of learning from imbalanced data. This section examines the

performance of proposed algorithm SOB and explores the ability of existing online

class imbalance methods on fault detection applications from real-world projects.

The chosen data sets are highly imbalanced. We design and look into a series of

practical scenarios, including not only data streams that are constantly imbalanced,

but also data streams suffering short-term fluctuations of class imbalance status.

SOB is compare with its earlier versions OOB and UOB and two most recent state-

of-the-art methods RLSACP 18 and WOS-ELM 31.

5.1. Data description

Six real-world data sets are used in the experiments. Three of them, i.e. Gearbox,

Smart building and iNemo, are collected in real time from complex engineering sys-
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tems. The remaining three, i.e. JM1, KC1 and PC1, come from software engineering

tasks, available in PROMISE 3.

Gearbox is the fault detection competition data from PHM society 2009 1. The

task is to detect faults in a running gearbox using accelerometer data and informa-

tion about bearing geometry. Data were sampled synchronously from accelerometers

mounted on both the input and output shaft retaining plates. The original data con-

tain more than one type of faults that can happen to gears and bearings inside the

gearbox. To simplify the problem, we select one type of gear faults – the gear with

a chipped tooth, which exists in the helical (spiral cut) gear with 24 teeth. The

data set is thus a 2-class fault detection problem – the gear either in good condition

(nonfaulty class) or having a chipped tooth (faulty class).

Smart building is a 2-class fault detection data set, aiming to identify sensor

faults in smart buildings 28. The sensors monitor the concentration of the contami-

nant of interest (such as CO2) in different zones in a building environment, in case

any safety-critical events happen. In this data set, the sensor placed in the kitchen

can be faulty. A wrong signal can lead to improper ventilation and unfavourable

working conditions.

iNemo is a multi-sensing platform developed by STMicroelectronics for robotic

applications, human machine interfaces and so on. It combines accelerometers, gyro-

scopes and magnetometers with pressure and temperature sensors to provide 3-axis

sensing of linear, angular and magnetic motion in real time, complemented with

temperature and barometer/altitude readings 39. To avoid any functional disrup-

tion caused by signalling faults in iNemo, a fault emulator is developed for producing

and analysing different types of faults. A fault is defined as an unpermitted devi-

ation of at least one characteristic property or parameter of the system from the

acceptable/usual/standard condition. It can be introduced into any sensor of iNemo

by using the emulator given the real data sequence coming from the sensors. For

this study, we generate offset faults for the feature of gyroscope x-axis, by adding

an offset to its normal signal.

Examples in JM1, KC1 and PC1 describe attributes of software modules (i.e.

the unit of functionality of source code) in programs, including the static code met-

rics defined by McCabe 27 and Halstead 19 and other complexity related attributes.

McCabe metrics collect information about the complexity of pathways contained in

the module through a flow graph. Halstead metrics estimate the reading complexity

based on the number of operators and operands in the module. The learning objec-

tive is to find as many defective software modules as possible without hurting the

overall performance of the constructed predictor (i.e. without increasing the false

alarm rate).

The common features of the above data sets are: 1) the basic task is to discrim-

inate between two classes – faulty and non-faulty; 2) the faulty examples present

to be the minority in the long run, but may arrive in high frequency within a short

period of time depending on the property of faults; 3) they aim to find faults ac-

curately without degrading the performance on the other class; thus, high G-mean
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(i.e. a good performance balance between classes) is desired for the obtained online

predictor.

Based on the features of this type of problems, we produce highly imbalanced

data streams for our experiment. For each of the three mechanical data sets, due to

the large amount of collected data, we choose 5000 examples to form the data stream

for training, in which only 50 examples are faulty. Besides, a data set containing

1000 examples is generated as a separate testing data. Both training and testing

data have imbalance rate of 1% (i.e. the percentage of being faulty). For each of

the three software engineering data sets, 90% examples are used for online training

and the remaining 10% are used for testing. The original imbalance rate is kept for

both. The data information is summarized in Table. 2.

Table 2. Fault Detection Data Information.

Data Training No. Testing No. Attributes No. IR

Gearbox 5000 1000 5 1%
Smart building 5000 1000 14 1%

iNemo 5000 1000 11 1%
JM1 9792 1088 21 19.35%
KC1 1898 211 21 15.45%
PC1 998 111 21 6.94%

We design four scenarios for each of the above data sets – one has a fixed

imbalance rate, and the other three have class imbalance fluctuations.

• In the first scenario, the minority examples are uniformly distributed in the data

stream, in which case the imbalance rate is constant. It simulates stable systems

with hidden faults that are hard to be captured.

• In the second scenario, all the faults occur at the beginning of the training data.

It is possible when the faulty system is fixed at some point. The data stream

involves a sudden decrease of imbalance rate.

• In the third scenario, all the faults occur at the end of the training data. It

can happen when a key part of the system is broken suddenly. The data stream

involves a sudden increase of imbalance rate.

• In the last scenario, the faults become more and more frequent in the training

data. It simulates the case when the damaged condition gets worse gradually. The

data stream has a gradual increase of imbalance rate.

It is worth mentioning that the total number of faults in the training data stream

is the same under all the four scenarios for each data set. Only the order of data

examples is different.
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5.2. Experimental analysis

How SOB performs on fault detection data in comparison with OOB, UOB, RL-

SACP 18 and WOS-ELM 31 is studied here. The SOB, OOB and UOB ensembles

are composed of 50 Hoeffding trees 21. To obtain accurate real-time class sizes and

performance, the time decay factors η and η′ for updating size percentage w
(t)
k and

single-class recall R
(t)
k are set to 0.99. Based on our preliminary experiments 44, low

values of η and η′ can lead to unstable performance and lose the bigger picture of

data. For fault detection data, since it is commonly known that the faulty class is

the real minority and the imbalance rate is generally very small, we choose to set

large values to balance learning adaptivity and stability.

RLSACP 18 and WOS-ELM 31 are perceptron-based approaches, adjusting

weights between perceptrons and treating minority and majority classes differently

to tackle class imbalance. The weights are determined by the number of examples

observed in each class from the beginning or within a fix-sized window. Following the

choice in the original papers, we set the forgetting factor to 0.9 and the learning rate

to 0.1 in RLSACP. RLSACP has two error weighting strategies. The second strategy

RLSACPII is applied here, which has fewer pre-defined parameters and was shown

to produce similar results to the first error weighting strategy RLSACPI 18. For

WOS-ELM, the minority-class weight is set to the ratio of the number of majority-

class examples to the number of minority-class examples observed so far, and the

weight for the majority class is always equal to 1. The number of perceptrons in both

RLSACP and WOS-ELM are equal to the number of attributes of the processing

data stream. Their implementations are provided by the authors.

With the above settings, these algorithms are applied to the described data sets.

For a clear understanding, the first scenario with a constant imbalance rate and the

other three scenarios with class imbalance changes will be discussed separately.

5.2.1. Data with constant imbalance rates

To examine the online prediction ability, we perform prequential test, a popular

performance evaluation strategy in online learning, in which each individual example

is used to test the model before it is used for training, and from this the performance

measures can be incrementally updated. Meanwhile, for generalization performance,

we let the online model classify a separate testing data set after the online training

finishes, as described in Table 2. All the discussed algorithms are run 100 times

independently. Average G-mean is recorded for both prequential and after-training

tests. Prequential G-mean curves along with the online processing are shown in

Fig. 1. Each plot includes the curves from the five learning algorithms.

When the data stream is constantly imbalanced, we can see that SOB presents

quite stable and high G-mean. It ends with the highest G-mean in Gearbox and

PC1, and comparable G-mean to the highest in the remaining four cases. During

the first few time steps of training, SOB may suffer from performance fluctuation to

some extent, such as in KC1 and PC1. This is due to the less accurate minority-class
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Fig. 1. Prequential G-mean curves of OOB, UOB, SOB, RLSACP and WOS-ELM on fault de-
tection data.

recall and class size percentages used as misclassification costs. As more examples

arrive, its overall performance gets better and more stable. Comparing OOB and

UOB, OOB performs better in Smart Building, JM1, and KC1; UOB performs bet-

ter in iNemo and PC1; both present zero G-mean in Gearbox, which is caused by

zero minority-class recall. It implies that OOB and UOB’ performance depends on

the data domain more than SOB. Oversampling is more effective than undersam-

pling in some cases, and the other way around in other cases. From this point of

view, SOB has the advantages of both OOB and UOB, and is thus versatile in a

broader range of applications. Besides, we notice that Gearbox is a more difficult

classification problem than the others, in which neither oversampling in OOB nor

undersampling in UOB helps to detect any faults. Compared to them, the combi-

nation of oversampling and undersampling in SOB is more aggressive.

With regards to RLSACP and WOS-ELM, their G-mean is not very satisfactory.

Although they are quite aggressive in finding faults on Gearbox data, their G-mean

is quite poor in all the other cases. Especially in JM1, KC1 and PC1, G-mean gets

lower during learning. By observing prediction accuracy on each class, we find that

faulty class is overemphasized, and RLSACP and WOS-ELM produce poor recall

of non-faulty class. They are thus not good at balancing the performance trade-off

between classes.

To further confirm our observations in the prequential test, we compare after-

training G-mean through Wilcoxon Sign Rank tests with Holm-Bonferroni correc-

tions at the overall level of significance of 0.05, between SOB and other methods.
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Holm-Bonferroni corrections are performed to counteract the problem of multiple

comparisons. 24 pairs of comparisons (6 data sets * 4 compared algorithms of SOB)

are involved in this analysis. The average G-mean values and the corresponding sta-

tistical test results including p-values are shown in Table 3. If SOB achieves better

performance than any of the other methods significantly, the corresponding p-value

will be highlighted in bold italics.

Table 3. Means and standard deviations of G-mean from SOB, OOB, UOB, RLSACP and
WOS-ELM on supplied testing data of fault detection data sets under the static scenario.
P-values of the Wilcoxon Sign Rank tests between SOB and every other method are given
in brackets. P-values in bold italics indicate statistically significant difference when using
Holm-Bonferroni corrections at the overall level of significance of 0.05, considering the 24
comparisons performed.

SOB OOB UOB RLSACP WOS-ELM

Gearbox 0.481±0.062 0.000±0.000 0.000±0.000 0.000±0.000 0.450±0.121
(0.00000) (0.00000) (0.00000) (0.11140)

Smart building 0.953±0.032 0.977±0.000 0.797±0.008 0.000±0.000 0.428±0.228
(0.00000) (0.00000) (0.00000) (0.00000)

iNemo 0.816±0.000 0.999±0.000 0.956±0.001 0.000±0.000 0.491±0.075
(0.00000) (0.00000) (0.00000) (0.00000)

JM1 0.678±0.006 0.670±0.009 0.644±0.011 0.008±0.063 0.493±0.022
(0.00000) (0.00000) (0.00000) (0.00000)

KC1 0.601±0.027 0.648±0.043 0.646±0.001 0.231±0.286 0.493±0.062
(0.00000) (0.00000) (0.00000) (0.00000)

PC1 0.472±0.118 0.263±0.037 0.268±0.001 0.080±0.150 0.503±0.086
(0.00000) (0.00000) (0.00000) (0.04280)

The results in Table 3 generally tally with the prequential results. OOB’s gen-

eralization ability seems to be better than UOB’s in most cases; RLSACP performs

the worst among all; WOS-ELM performs well in Gearbox and PC1, but quite

poorly in the others. SOB is significantly better than both OOB and UOB in 3 out

of 6 cases (Gearbox, JM1, PC1), worse than them in 2 cases (iNemo and KC1), and

in between them in the remaining one (Smart building). In iNemo and KC1, the

minority-class recall is not improved much by either oversampling or undersampling

in SOB, probably because it overlearns the observed minority-class examples and

lacks of generalization.

5.2.2. Data with class imbalance changes

When minority-class data do not come uniformly, how does the data sequence affect

the performance of online class imbalance algorithms? Focusing on this research

question, we adjust the order of faulty examples without changing the total number

in the data stream. As described in Section 5.1, to simulate real-world situations,
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we generate and discuss three different scenarios here: the scenario with a sudden

IR decrease; the scenario with a sudden IR increase; the scenario with a gradual IR

increase (corresponding to scenarios 2-4 in Section 5.1). Due to the poor performance

of RLSACP and WOS-ELM, we only discuss OOB, UOB and SOB in this section.

Table 4 presents their G-mean on the testing data to show their generalization

performance under each scenario. The prequential performance is not included here,

because the intensive arrival of faulty examples within a short period of time can

give over-optimistic prequential results.

Table 4. Means and standard deviations of G-mean from SOB, OOB and UOB on
supplied testing data of fault detection data sets under scenarios with class imbalance
changes. P-values of the Wilcoxon Sign Rank tests between SOB and every other
method are given in brackets. P-values in bold italics indicate statistically significant
difference when using Holm-Bonferroni corrections at the overall level of significance
of 0.05, considering the 12 comparisons performed for each scenario.

Scenario 2 (sudden IR decrease)
SOB OOB UOB

Gearbox 0.000±0.000 0.000±0.000 (1.00000) 0.000±0.000 (1.00000)
Smart building 0.000±0.000 0.000±0.000 (1.00000) 0.831±0.016 (0.00000)

iNemo 0.764±0.000 0.764±0.000 (1.00000) 0.969±0.001 (0.00000)
JM1 0.000±0.000 0.000±0.000 (1.00000) 0.000±0.000 (1.00000)
KC1 0.647±0.001 0.646±0.000 (0.00000) 0.648±0.001 (0.00000)
PC1 0.268±0.000 0.268±0.001 (0.67140) 0.268±0.001 (0.01870)

Scenario 3 (sudden IR increase)
SOB OOB UOB

Gearbox 0.001±0.004 0.466±0.087 (0.00000) 0.589±0.03 (0.00000)
Smart building 0.000±0.000 0.014±0.030 (0.00001) 0.782±0.007 (0.00000)

iNemo 0.133±0.200 0.925±0.019 (0.00000) 0.963±0.003 (0.00000)
JM1 0.000±0.000 0.000±0.000 (1.00000) 0.000±0.000 (1.00000)
KC1 0.095±0.088 0.055±0.031 (0.00000) 0.648±0.001 (0.00000)
PC1 0.265±0.026 0.267±0.001 (0.00530) 0.269±0.001 (0.00000)

Scenario 4 (gradual IR increase)
SOB OOB UOB

Gearbox 0.470±0.109 0.000±0.000 (0.00000) 0.000±0.000 (0.00000)
Smart building 0.817±0.080 0.974±0.000 (0.00000) 0.935±0.000 (0.00000)

iNemo 0.866±0.000 0.999±0.000 (0.00000) 0.962±0.005 (0.00000)
JM1 0.677±0.005 0.681±0.007 (0.00000) 0.033±0.060 (0.00000)
KC1 0.627±0.014 0.630±0.017 (0.16290) 0.646±0.001 (0.00000)
PC1 0.487±0.135 0.242±0.081 (0.00000) 0.268±0.001 (0.00000)

For scenario 2, both SOB and OOB suffer a great G-mean reduction compared

to their results in the static scenario. Zero G-mean is obtained in three out of six

cases, which is due to the zero minority-class recall by looking into the accuracy

on each class, but the majority-class recall remains one. It means that all faulty

examples arrive constantly at the beginning of the data stream does not help to

recognize faults better. Even if the recognition rate is high during that period, the
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generalization is not improved. On the contrary, UOB’s performance only gets worse

in JM1, and gets even better in Smart building, iNemo and KC1. These observations

suggest that the resampling strategy in UOB is more suitable to this scenario. SOB

and OOB become less effective, because the oversampling level in OOB and SOB

and the undersampling level in SOB are weakened. During the arrival of minority-

class data, the online minority-class recall and size can get very high temporarily.

Correspondingly, the oversampling and undersampling levels become lower than

the ones in the static scenario. For the example of Smart building, the highest

minority-class recall reaches 0.94 and the highest minority-class size reaches 0.35.

So, the oversampling rate is 0.65/0.35 and the undersampling rate is 0.94 for SOB,

which are a lot weaker than 0.99/0.1 and [0.25, 0.65] observed in the scenario 1. For

UOB, even when the majority-class size is 0.65, the undersampling rate is still at the

level of (1− 0.65), which is more aggressive than SOB. After more majority-class

data come, its undersampling degree is further boosted, which does not happen to

OOB and SOB.

For scenario 3, UOB still performs the best in most cases, and SOB performs the

worst. Different from scenario 2, scenario 3 results in online models overemphasizing

faulty examples. The very low G-mean in the table is caused by low majority-class

recall, but the minority-class recall is nearly 1 in many cases. During the first stage

of training, non-faulty data occupy the data stream. The observed imbalance rate

is much lower than the real one. Thus, the undersampling level is more severe than

what it should be. When faulty data start arriving intensively, the oversampling

rate for OOB and SOB is extremely high (e.g. 1/0.001 for OOB and 0.999/0.001 for

SOB) during the first few time steps, based on their sampling mechanism. Due to the

double resampling procedures, SOB overlooks the majority class too much. Because

OOB and UOB apply only one resampling strategy, their performance is affected

less. From Section 5.2.1, we know that Gearbox is a difficult data set, in which most

faulty examples tend to be ignored. In this scenario, both OOB and UOB present

better generalization, because this data sequence enforces more aggressive sampling

degree.

Compared to scenarios 2 and 3, scenario 4 does not affect the performance of

the three methods that much, except that UOB still overemphasizes the minority

class in JM1. A gradual IR change does not cause extreme performance and class

size values, so it shouldn’t cause as severe problems as the previous two cases.

According to the above analysis, we can see that an abrupt change in short-term

imbalance rate can cause severe performance reduction, especially to SOB. When

minority-class examples arrive frequently during the early stage of training, the on-

line learner considers this class to be the majority. So, it tends to be overlooked.

When minority-class examples arrive frequently during the later stage of training,

the online learner exaggerates imbalance degree, and the minority class is overem-

phasized. One major reason is that the estimated IR and online performance are

led by the local status of data and learner, which can be quite different from future

status. Besides, SOB is more sensitive to the data sequence, because it uses both



16 Shuo Wang, Leandro L. Minku, Xin Yao

oversampling and undersampling to overcome class imbalance. UOB is shown to be

more robust against short-term changes. The underlying issue here is how to bet-

ter recognize class imbalance status and discriminate any short-term and long-term

changes, in order to reduce the impact of data sequences.

6. Conclusions and Future Work

This paper studied a new learning problem, online class imbalance learning, which

considers the challenges of both online learning and class imbalance learning. To

have a clear understanding of the underlying issue, we first formulated this type of

problems with the aim of maximizing G-mean. It tells us that both imbalance degree

and online performance need to be considered for the best G-mean. Second, based on

the problem formulation, we proposed a new online algorithm SOB, making use of

oversampling and undersampling to overcome class imbalance and integrating them

into Online Bagging for online processing. With the theoretical underpinning, it is

expected to outperform its two earlier versions OOB and UOB, and other state-

of-the-art methods. To test its effectiveness, SOB was then used to solve a class

of real-world applications – fault detection in engineering and software engineering

systems, in comparison with OOB, UOB, RLSACP and WOS-ELM. These methods

were discussed under four practical scenarios, including a constantly imbalanced

scenario and three scenarios with class imbalance fluctuations. In the first scenario,

we found that SOB can balance the performance between classes very well across

different data domains and produce stable G-mean. However, it is sensitive to data

sequences in the other scenarios, especially when there is a sudden change in class

imbalance. UOB, by contrast, was shown to be more robust against this fluctuant

situation.

Based on the results so far, there are several points we would like to look into

in the near future. First, a weak point of SOB is its ability in dealing with dy-

namic data streams with concept drifts 29. The reason could be that the proposed

problem formulation aims to maximize G-mean greedily over all received examples.

During the online processing, however, maximizing G-mean for examples received

so far may not be the best way of maximizing G-mean later on, especially when the

data stream suffers from some severe concept drifts. Therefore, it is necessary to

formulate the problem that can have adaptive learning objectives to nonstationary

situations. A possible solution is to not only consider past examples, but also find

an objective that is robust to future environmental changes 15. Besides, some tech-

niques can be developed to detect changes in the data stream. Once it happens, the

resampling strategy in SOB will be adapted to the change, in order to reduce the

impact of concept drifts. Second, the problem formulation proposed in this paper is

only applicable to two-class problems. How to formulate multi-class problems is im-

portant, as many applications involve more than one minority or majority class, and

the number of classes can even change during the online processing. Third, we would

like to apply our concept drift detection method DDM-OCI 43 to the discussed fault
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detection tasks and examine whether it can help to further improve the prediction,

considering some unknown concept drifts may happen to faulty examples over time.
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