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Abstract—Online learning has been showing to be very useful
for a large number of applications in which data arrive con-
tinuously and a timely response is required. In many online
cases, the data stream can have very skewed class distributions,
known as class imbalance, such as fault diagnosis of real-
time control monitoring systems and intrusion detection in
computer networks. Classifying imbalanced data streams poses
new challenges, which have attracted very little attention so far.
As the first work that formally addresses this problem, this paper
looks into the underlying issues, clarifies the research questions,
and proposes a framework for online class imbalance learning
that decomposes the learning task into three modules. Within
the framework, we use a time decay function to capture the
imbalance rate dynamically. Then, we propose a class imbalance
detection method, in order to decide the current imbalance status
in data streams. According to this information, two resampling-
based online learning algorithms are developed to tackle class
imbalance in data streams. Three basic types of class imbalance
change are discussed in our studies. The results suggest the
usefulness of the learning framework. The proposed methods
are shown to be effective on both minority-class accuracy and
overall performance in all three cases we considered.

I. INTRODUCTION

Online learning has been a hot topic in machine learning
in recent years. It refers to learning from data streams where
data arrive continuously and a timely response is required.
It has contributed to various real-world applications, such
as sponsored search from web click data [1], credit card
transactions [2] and spam filtering [3] [4]. Strictly speaking,
different from incremental learning algorithms that process
data in batches, online learning algorithms process each train-
ing example once “on arrival” without the need for storage
and reprocessing, and maintain a current model that reflects
the current concept to make a prediction at each time step [5].
The online learner is not given any process statistics for the
observation sequence, and thus no statistical assumptions can
be made in advance [6].

Online learning can be considered as a particular case of
incremental learning in which the buffer size is set to one for
batch processing. So, it can be used for applications where data
arrive in batches, by processing each example of the batch
separately. An advantage of using online learning is that it
avoids the problem of choosing an ideal batch size, which
can be difficult when considering changing environments [7].
Furthermore, the online learner can adapt to changes faster

than the incremental learner, because it does not have to wait
to receive a full data chunk for model update. As it can be
updated whenever a new training example is made available,
it is particularly useful for applications where data are not
necessarily provided in batches, such as the examples above.

Skewed class distributions can be seen in many data stream
applications, such as fault diagnosis of control monitoring
systems and intrusion detection in computer networks. In
these cases, some classes of data are much more difficult
or expensive to be collected than the other classes, referred
to as class imbalance. Given such imbalanced data streams,
existing online learning algorithms can suffer great perfor-
mance degradation, since the large number of majority-class
examples overwhelms the incremental update of the model
and minority-class examples are likely to be ignored [8].
Unfortunately, existing solutions for class imbalance are lim-
ited in the offline mode. Although some incremental learning
methods have been proposed to tackle skewed data streams in
batches [9] [10] [11] [12], very little work has been done for
learning from skewed data streams online.

Online class imbalance learning is a very challenging task,
because of the lack of prior knowledge about which classes
in data should be regarded as the minority or majority and
the uncertainty of when class imbalance happens. Moreover,
the underlying data distribution can change considerably over
time, referred to as concept drift or learning in nonstationary
environments [13]. This brings forth some difficult issues
on how to determine the class imbalance status dynamically
in data streams and how to adapt the online learner to the
class imbalance and new concept effectively. For example,
a complex engineering system may become fault prone over
time, causing the percentage of faulty and non-faulty examples
to change.

As the first work that calls the attention to this problem, this
paper looks into the underlying issues, clarifies the research
questions, and proposes a learning framework for online class
imbalance learning featured by three underlying issues, namely
online processing, class imbalance and concept drift. The
framework decomposes the learning task into three modules:
a class imbalance detector to capture the current class im-
balance status; a concept drift detector to find out whether
the concept drift occurs; an adaptive online learner to learn
the data stream and take corresponding actions when class



imbalance and concept drift happen. For the class imbalance
detector, we propose a time decay function to report the current
distribution of class labels accurately and efficiently, based
on which we propose an imbalance detection algorithm to
determine whether the current data stream should be regarded
as “imbalanced” in real time. If there is class imbalance, our
resampling-based Online Bagging methods will apply either
ramdom oversampling or undersampling to adjust the learning
bias from the majority towards the minority. The results show
that both over- and undersampling can improve the accuracy
on the current minority class identified by the detector signif-
icantly. Particularly, undersampling-based Online Bagging is
more aggressive at both recall and G-mean measures. Three
types of data streams with different changing severity in class
imbalance are considered. One with high severity is shown to
be a more difficult case than the others.

The rest of this paper is organized as follows. Section II
gives the background knowledge about class imbalance learn-
ing and research progress in learning from imbalanced data
streams. Section III proposes the learning framework for
online class imbalance learning. Section IV defines class
imbalance for online scenarios and proposes a class imbalance
detection method. Based on the current class imbalance status,
Section V proposes adaptive online learning methods to tackle
class imbalance online. Section VI draws the conclusions and
points out our future work.

II. RELATED WORK

This section introduces the two focal points of this paper.
First, we describe what problems class imbalance learning
aims to solve and the state-of-the-art methods in this area.
Subsequently, we briefly review the current research progress
in learning from imbalanced data streams.

A. Class Imbalance Learning

Class imbalance learning refers to learning from data sets
that exhibit significant imbalance among or within classes. The
common understanding about “imbalance” in the literature is
concerned with the situation, in which some classes of data
are highly under-represented compared to other classes [8].
By convention, we call the classes having more examples
the majority classes, and the ones having fewer examples
the minority classes. The recognition of minority class is
more important, because misclassifying an example from the
minority class is usually more costly.

The challenge of learning from imbalanced data is that the
relatively or absolutely underrepresented class cannot draw
equal attention to the learning algorithm compared to the
majority class, which often leads to very specific classification
rules or missing rules for the minority class without much
generalization ability for future prediction [14]. How to better
recognize data from the minority class is a major research
question in class imbalance learning. Its learning objective
can be generally described as “obtaining a classifier that will
provide high accuracy for the minority class without severely
jeopardizing the accuracy of the majority class” [15].

Numerous methods have been proposed to tackle class
imbalance problems at data and algorithm levels. Data-level
methods include a variety of resampling techniques, manipu-
lating training data to rectify the skewed class distributions,
such as random over/under-sampling and SMOTE [16]. They
are simple and efficient, but their effectiveness depends greatly
on the problem and training algorithms [17]. Algorithm-level
methods address class imbalance by modifying their training
mechanism directly with the goal of better accuracy on the
minority class, including one-class learning [18] and cost-
sensitive learning algorithms [19] [8]. Algorithm-level meth-
ods require specific treatments for different kinds of learning
algorithms, which hinders their use in many applications, since
we do not know in advance which algorithm would be the best
choice in most cases. In addition to the aforementioned data-
level and algorithm-level solutions, ensemble learning [20] has
become another major category of approaches to handling
imbalanced data by combining multiple classifiers, such as
SMOTEBoost [21] and AdaBoost. NC [22] [23]. Ensemble
learning algorithms have been shown to be able to combine
strength from individual learners and enhance the overall
performance [24] [25]. They also offer additional opportunities
to handle class imbalance at both the individual and ensemble
levels.

Although class imbalance learning has been extensively
studied, none of the proposed methods can process imbalanced
data online. This paper proposes two online ensemble learning
methods based on resampling techniques to deal with imbal-
anced data streams.

B. Learning from Imbalanced Data Streams

Most existing online learning algorithms assume that the
underlying data distribution is balanced. Until recently, few
attempts have been made to address the problem of dealing
with imbalanced data streams. The first attempt was done by
Gao et al. [26] [9]. They proposed an uncorrelated bagging
strategy, based on the subset of majority-class data in the
current data chunk and the union of all minority-class data
collected thus far. This method implicitly assumes that the
minority-class data is stationary. Once violated, this assump-
tion can lead to the misinterpretation of the true feature
space of the minority class at subsequent time steps [12].
Besides, some of the accumulated minority-class data could
have become irrelevant over long periods of time. Wang et
al. proposed an ensemble algorithm based on clustering and
sampling, which has only been tested on a few artificial data
sets [10]. K-means clustering algorithm is used to undersample
the majority class in the current data chunk, from which a
new classifier is built. Chen et al. proposed SERA [27] and
its improved versions MuSeRA [28] and REA [29], which
selectively add minority examples from previous chunks into
current training chunk to balance data. Because these methods
require access to previous data, they are more suitable to
the problem where the minority data concept is stationary
or history data can be retained. Lichtenwalter and Chawla
proposed a new metric to measure the distance between data



chunks, which is used to weigh the ensemble members learnt
from imbalanced data stream [30]. It is shown to be more
suitable to extremely complicated data streams with complex
concept drift and high degrees of imbalance. Ditzler and
Polikar proposed two ensemble approaches, Learn++.CDS and
Learn++.NIE [12]. The former applies the well-established
oversampling technique SMOTE [16] and the latter uses a
Bagging based sub-ensemble method to rebalance data. They
are shown to outperform earlier methods in general but at the
cost of computational complexity due to the oversampling and
sub-ensemble strategies.

All the aforementioned methods, however, need to collect
full data chunks for training. Some of them require access to
previous training data. Therefore, they cannot be applied to
online problems directly. Nguyen et al. proposed an online
algorithm to deal with imbalanced data streams based on
random undersampling [31]. The majority class examples have
lower probability to be selected for training. It assumes that the
information of which class belongs to the minority/majority
is known and the imbalance rate does not change over time.
Besides, it requires a training set to initialize the classification
model before learning. Minku et al. [32] proposed to use
undersampling and oversampling to deal with class imbalance
in online learning by changing the parameter corresponding
to Online Bagging’s sampling rate. However, the sampling
parameters need to be set prior to learning and cannot be
adjusted to changing imbalance rates. Different from all the
existing work, the online learning methods proposed in this
paper do not need any prior knowledge about data and storage
of old data. A class imbalance detection method is developed
to help determine the current class imbalance status in data
streams and the sampling parameters for the learner adaptively.

III. A LEARNING FRAMEWORK FOR ONLINE CLASS
IMBALANCE LEARNING

In this section, we propose a learning framework that breaks
down the online class imbalance learning process into three
modules — a class imbalance detector, a concept drift detector
and an adaptive online learner, as shown in Fig. 1. Each
module handles one major issue of online class imbalance, and
communicates with the others for the up-to-date status of data
streams. The class imbalance detector reports the class imbal-
ance status of data streams under nonstationary environments.
The concept drift detector captures concept drift, including all
cases with classification boundary drift, in imbalanced data
streams. Based on the information provided by the first two
modules, the adaptive online learner determines when and how
to respond to the detected class imbalance and concept drift.
This is a general framework for dealing with imbalanced data
streams with arbitrary number of classes.

A. Class Imbalance Detector

When processing imbalanced data streams online, we first
need to find out how imbalanced the data stream is and
which classes should be regarded as the minority. The class
imbalance detector aims to capture the imbalance status in real
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time. If the class distribution is too skewed that degrades the
learner’s performance, some class imbalance techniques must
be triggered in a timely fashion. This module should provide
the following information:

o Which classes can be regarded as the minority/majority?
How many minority/majority classes are there in the data
stream?

o How imbalanced is the current data stream? What is the
current imbalance degree?

e Which classes are harder to be identified that need more
focus from the learner?

What is challenging for the class imbalance detector is to
decide the imbalance degree at the current moment in the
dynamically changing environment. It could be the case that
a class appearing to be the majority due to the small sample
size within a short period of time is actually the minority in
a longer run. Moreover, a change in class imbalance could
happen over time. For example, a new minority or majority
class of data could join in the middle of the data stream;
the data stream could get imbalanced to a higher degree;
the data stream could get imbalanced from balanced; or, in
a more extreme case, a minority class could even convert
to the majority. An illustrative example would be a fault
isolation system, where a certain machine being monitored
could present more faults as it becomes older. An effective
class imbalance detector should be able to capture the current
imbalance status correctly, and inform the online learner to
handle class imbalance timely.

B. Concept Drift Detector

The concept drift detector in this framework aims to detect
potential changes in the underlying data distribution with clas-
sification rules altered. Following the traditional understanding
of drift detection, it allows the learner to adapt quickly and
accurately to possible changes and maintain its performance.
Different from the traditional methods, the detector for im-
balanced data streams should be able to sense the drift in



minority classes, which would be much harder than dealing
with the balanced case.

When there is class imbalance, the traditional methods can
become ineffective. It is commonly believed that, when con-
cept drift occurs, a decrease in classification accuracy usually
occurs because the training data the learner is built on would
be carrying out-of-date concepts [9]. Thus, most existing meth-
ods detect drift based on overall accuracy/error made by the
learner, such as EDDM (Early Drift Detection Method) [33]
and DDM (Drift Detection Method) [34]. However, they may
not be appropriate for imbalanced data streams. First of all, the
overall accuracy/error is not a good performance measure for
class imbalance data, since it is too sensitive to imbalanced
degree and cannot reflect the performance on the minority
class [8]. The minority class contributes too little to the overall
accuracy compared to the majority class. Second, there may
not be enough examples from minority classes in new data for
the detector to discover the drift. Besides, a drift can have very
different impacts on minority and majority classes. A great
performance variation caused by the drift in the minority class
may not be observed in the majority class. More intractable
issues exist in imbalanced cases that hinder the detector from
capturing the drift. It would be necessary to discuss concept
drift for each individual class.

In our framework for online class imbalance learning, the
concept drift detector should not only identify when the drift
occurs accurately in terms of each individual class, but also
evaluate to what degree the performance of each class is
affected. Based on the information from the class imbalance
detector, the identified minority class will be given more focus
by the concept drift detector. Correspondingly, the following
questions should be answered by this module:

o Does concept drift happen to current data?

o Which class’s performance is affected the most/least?

It helps the online learner to decide when and how to
be adapted to the new concept. It can also warn the class
imbalance detector of possible changes in class imbalance. A
good concept drift detector should be capable of discovering
different types of drifts.

C. Adaptive Online Learner

With the information of class imbalance and concept drift,
the online learner needs to take the corresponding action
adaptively to maintain its effectiveness on the new concept and
minority classes without hurting the performance on the major-
ity class. Different from the traditional online learning methods
that aim for high overall accuracy, the online learner needs
to handle class imbalance and concept drift simultaneously
with the goal of a performance balance among classes. To
handle class imbalance in data streams, new class imbalance
techniques need to be developed, as the traditional ones are
only applicable to a set of stationary data. At the same time,
the online learner should be prepared to tackle various concept
drift scenarios. To handle concept drift, one can choose to
either update the current learner or build a new learner for the
new concept. Besides, it would be a good idea to keep the

track of the majority-class performance during the learning
procedure, in order to avoid too much performance loss.

Generally speaking, the objective of online class imbalance
learning can be described as ‘“developing adaptive online
learning methods that can identify minority-class data effec-
tively and timely without sacrificing the performance on the
majority class”. Three important characteristics are desirable
for a good solution: a) accuracy — predict the minority class
accurately; b) efficiency — give timely response; c) adaptivity
— handle nonstationary environments. To achieve the goal, the
proposed framework formulates and resolves the learning tasks
through three basic modules collaborating with each other.
Each module contains very challenging and open research
issues to be answered. It’s worth mentioning that a change
of true imbalance rates in the data stream is a specific type of
concept drift, since it causes a change in the joint probability
P(xz,y) = P(y) - P(x|y) through the term P (y), where y
is the class label of given feature vector x. To simplify our
problem and clarify learning tasks, we use class imbalance
detector to focus on the change in prior probability P (y) alone
without considering any drift in classification boundaries,
whereas concept drift in general may involve changes in the
classification boundaries that will be tackled by concept drift
detector.

According to the framework, we next define class imbalance
in a dynamic environment and develop a class imbalance
detection method to determine the current imbalanced status.
Then, we propose resampling-based online learning methods
to tackle the imbalance. In this paper, we temporarily assume
that there are only class imbalance changes affecting P (y) in
data streams. Other types of concept drift will be considered
in our future work.

IV. CLASS IMBALANCE DETECTOR

In this section, to answer the questions in the module
of class imbalance detector, we first define class imbalance
in dynamically changing environment by proposing a new
updating function for calculating class percentages. It can
effectively reflect the current imbalance degree in data streams.
We then propose a class imbalance detection method to decide
when to invoke the online learner to deal with class imbalance.

A. Define Class Imbalance

Suppose a sequence of examples in the form of pairs
(z¢,y:), arriving one at a time. z; is a p-dimensional vector
belonging to an instance space X observed at time t, and
y; is the corresponding label belonging to the label set
Y ={e1,...,¢k,...}. Y is automatically extended if any new
class joins in the stream. |Y'| denotes the number of classes that
have appeared so far. Let H (x) be the online learner, updating
its hypothesis H : X — Y sequentially with the example at
the current time step. When a target example x4 arrives, the
task of online class imbalance learning is to predict its label
Yi+1, aiming to minimize the cumulative prediction error and
maximize the cumulative accuracy on minority classes during
the learning process.



To define class imbalance, imbalance rate (IR) is an impor-
tant indicator to describe how skewed the learning problem is.
It is defined as the percentage of the minority class over the
whole population representing the true underlying distribution.
The smaller the imbalance rate, the more imbalanced the data
set. In the offline mode, it can be well estimated based on a set
of examples. In the online mode, because no prior knowledge
about data is available and no data are stored during the
processing, the estimation is not an easy task. Besides, the
true IR can drift over time, as explained in section III-A.

In order to find out the true IR quickly, we need to set up
a few variables updated at each time step for remembering
data properties based on received examples. We use a set of
counters recording the size percentage of each class in the
data observed so far. Let w,(:) denote the size percentage of
class ¢, € Y at time step ¢t. When a new example z arrives
at each time step ¢t (t = 1,2,3,...), w,(:) is usually calculated
as follows:

(t—1) - wl™V + [(z, )]
t

w = J(k=1,2,...,|Y]) (D
where wlio) =0 and [(x,c)] = 1 if the true class label of x
is cg, otherwise 0.

As more data are received, {wy} will get closer to the
real class distribution gradually over time. This estimation can
work quite well if the class imbalance status is static in the
data stream. However, once the status changes, this method
can take very long time to reflect the new status. This is
because the term [(z, ¢x)] contributes to wy less and less as
the total number of examples grows. It would be necessary
to emphasize examples from the new imbalance status and
reduce the impact of examples representing the previous status.
To capture the imbalance change quickly and estimate the
imbalance degree accurately, we propose to apply a time decay
factor n (0 < n < 1) to wy at each time step, by calculating
w,(:) as follows:

w]it) _ nw}(ctf

V(@) (k=12 V). @

By doing so, older data affect the class percentage less
along with time through an exponential smoothing, and wy,
is adjusted more based on new data.

1) Data Sets and Experimental Settings: To examine
whether our method for updating wy, is effective, we simulate
three types of data streams with different severity of class
imbalance change based on a real-world data set. The data
set is from the PHM society, fault detection competition in
2009 [35]. The task is to detect faults in a running gearbox
using accelerometer data and information about bearing geom-
etry. The original data contain more than two types of faults,
distributed in different parts of the gearbox. To simplify the
problem, we just pick one type of faults that happens to the
helical gear with 24 teeth — the gear with a chipped tooth. The
data set is thus transformed into a two-class fault detection
problem — the gear either in good condition (nonfaulty class)
or having a chipped tooth (faulty class). We randomly choose

10 examples as a group from the nonfaulty and faulty classes
100 times without replacement (i.e. there are 1000 examples
in total), to form the input data stream. Three data sequences
are generated as follows:

e Case 1 (no change in class imbalance): every ten in-
coming data examples contain nine nonfaulty examples
and one faulty example. The true between-class ratio
(nonfaulty class to faulty class) in data is fixed to 9:1.
Faulty class is regarded as the minority.

e Case 2 (low severity change in class imbalance): every
ten incoming data examples contain five nonfaulty and
five faulty examples during the first 500 time steps (i.e.
data stream appears to be balanced with true between-
class ratio 1:1). Afterwards, each group consists of nine
nonfaulty examples and one faulty example (i.e. faulty
class becomes the minority and the true between-class
ratio is 9:1).

e Case 3 (high severity change in class imbalance): ev-
ery ten incoming data examples contain one nonfaulty
example and nine faulty examples during the first 500
time steps (i.e. faulty class appears to be the majority
and the true between-class ratio is 1:9). Afterwards, each
group consists of nine nonfaulty examples and one faulty
example (i.e. faulty class turns into the minority and the
true between-class ratio is 9:1).

2) Experimental Results: For each case, class percentages
wy, are recorded at each time step, produced by the traditional
updating method without time decay (equation 1) and our
method with time decay (equation 2). They are shown in
Fig. 2, where x-axis indicates the number of training examples
seen so far, and y-axis indicates the size percentage of classes
c1 (nonfaulty class) and cs (faulty class). The black solid lines
represent the true class ratio in data.

For case 1 without change in class imbalance, the true class
ratio between c; and cy is 9:1. Both updating methods can
give roughly correct estimation within a reasonable fluctuating
range. The traditional method without time decay provides
more stable and accurate results than our method as more
examples are received. This is because the time decay factor
reduces the role of old data, and the information in old data
is still helpful in this case. For case 2 with a less severe
change in class imbalance, before the change happens, both
methods fluctuate at class percentage of 0.5, indicating a
balanced class distribution. After the time step 500, when
the class distribution becomes very skewed, our method can
find true class percentages much more quickly than the other.
When the traditional method is still slowly approaching to
the black lines, our method has already reached the desired
level. Similar results are obtained in case 3 with a severe
change in class imbalance. The traditional method will take
even longer time to find out the true imbalance rate after it
changes. Our updating method responds to the change more
quickly, because it is based on less information from the past
and more information from recent data.
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Fig. 2: Comparison of two updating methods of class percentages under the three scenarios with different changing severity

of class imbalance status.

B. A Class Imbalance Detection Method

With better recognized class imbalance status, we propose
an imbalance detection method to trigger the class imbalance
technique of the online learner. Sometimes, imbalanced data
does not cause poor performance, which also relies on other
factors such as the complexity of data distributions [36].
In this case, it is not necessary to complicate the learning
procedure by adding specific techniques for dealing with class
imbalance. Based on this fact, such techniques should only be
invoked when the classification accuracy on the minority class
is very poor compared to the accuracy on the majority class.
Thus, our imbalance detector considers both class imbalance
status and single-class performance for deciding the current
imbalance status. In addition to class percentages wy, we
maintain the current accuracy R of the online learner for
each class, also known as recall, defined by nﬁ /my where
nz denotes the number of correctly classified examples with
true label ¢, and nj denotes the total number of examples
with true label c; received so far. Similarly to wy, if the
current example x has true label ci, Rj will be updated by
R,(:) = n’R,(f*l)—i—(l — 1) [z + ¢k, where ’/ (0 <7/ < 1)is
a time decay factor for emphasizing the learner’s performance
at the current moment, and [z < ¢g] is equal to 1 if z is
correctly classified and 0 otherwise. As a key output of class
imbalance detector, Rj, provides the information of which
class receives the worst/best performance from the learner. It
can help the online learner to decide which class needs more
attention.

The main idea behind this method is, if there are any
two classes having wy, difference greater than a threshold §;
(0 < 41 < 1) and Ry difference greater than a threshold
d2 (0 < 3 < 1), then the small class is regarded as the
minority and the large class is regarded as the majority. After
going through all pairs, the remaining classes are treated as
normal. The procedure leads to three label sets — minority-
class set Y,,;,, majority-class set Y,,,; and normal-class set
Y,om- It is necessary to have a normal-class set, considering
that some easy classes may not need any specific treatment
from the online learner. The three label sets are updated at each

time step to check whether class imbalance happens. Table I
describes the proposed algorithm. It is applicable to a data
stream with arbitrary number of classes.

TABLE I: Class imbalance detection algorithm

Input: observed class labels Y = {c1,...,¢ck,...} in the ascending
order based on the current class percentage wy; updated recall Ry of
each class; size threshold ¢1; performance threshold d2.

Initialize: label sets Yinin = {}, Yina; = {} and Yoom = {}.

fori=1t |Y|—1do
for j =i+ 1to |Y] do
ifwj—wi > 61 and Rj — R; > 62
Ymin < Ymin U {Cz}
Ymaj ¢ Ymaj U{cs}
end if
end for
end for

for k=1to |Y| do
if ¢, € Yiin and ¢, € Ymu.j
Yimaj < Ymaj\{ck}
end if
if ¢, ¢ Ymin and ci ¢ Ymaj
Ynom < Ynom Ucy
end if
end for

Output label sets Yinin, Ymaj and Ynom.

The algorithm is composed of two independent iterations.
The first iteration recognizes all potential minority and major-
ity classes. Then all the rest of the classes are inserted into the
normal label set in the second iteration. It is worth pointing out
that, after the first iteration, one class can appear in both of the
minority and majority label sets. This is because the algorithm
evaluates the relative imbalance of class pairs — one class can
be the majority compared to a very small class, which can
also be the minority compared to a very large class. When it
happens, we remove the overlapping class from the majority
set and treat it as the minority, to guarantee that no minority
classes would be ignored. The final output of the algorithm
should include three disjoint label sets, whose union is equal



to Y. As a special case when there are only two classes in
the current data stream, two types of results are possible: 1)
there is one minority class and one majority class, and the
normal-class set is empty; 2) both classes are in the normal-
class set, which means that the current data stream is not
thought of as “imbalanced”. The effectiveness of this method
will be examined through the resampling-based online learner
proposed in the next section.

V. ADAPTIVE ONLINE LEARNER

In this section, we propose two resampling-based ensem-
ble methods, oversampling-based Online Bagging (OOB) and
undersampling-based Online Bagging (UOB), to handle imbal-
anced data streams and make real-time predictions. They pro-
cess each example strictly online without the need for storage
and any prior knowledge about data. When class imbalance
is detected by our class imbalance detection method, over-
sampling or undersampling embedded in Online Bagging [5]
will be triggered to either increase the chance of training
minority class examples or reduce the chance of training
majority class examples. Online Bagging (OB) is a popular
ensemble approach that successfully extends the well-known
offline ensemble algorithm Bagging [37] to Online cases. It is
based on the fact that when the number of training examples
tends to infinite in offline Bagging, each training subset for
base learner f,, contains K copies of each original training
example, where the distribution of K tends to a Poisson (\)
distribution with the parameter A = 1. So, in Online Bagging,
whenever a training example is available, it is presented K
times for each ensemble member f,,,, where K is drawn from
Poisson (1).

A. Resampling-Based Online Bagging

During the online processing, if the new example (z,cy)
belongs to one of the minority classes (cx € Ypin), OOB
will tune the parameter A of Poisson distribution to 1/wg,
which indirectly increases the number of copies of the current
example K for training. OOB adjusts the class distribution
by increasing the number of minority-class examples. In other
words, it combines oversampling with Online Bagging. If the
new training example (x,cy) belongs to one of the majority
classes (c; € Ypna;), UOB will set A to (1 — wy). Training
examples from the majority class will be undersampled ac-
cordingly through smaller K. The training procedures of OOB
and UOB are described in Tables II- III respectively. We can
see that the sampling rate for OOB and UOB is automatically
decided by wj through A. Smaller classes deserve more
attention from the learner.

B. Comparative Study

In this section, we compare resampling-based Online Bag-
ging with the original version on the same data streams we
generated in Section IV. The experiments here aim to find out
whether the class imbalance detector can help to identify the
occurrence of class imbalance status in time and whether the

TABLE II: Oversampling-based Online Bagging

Input: label sets Yinin, Ymaj and Ypom, an ensemble with M
base learners, and current training example (z, cg).

for each base learner f,, (m =1,2,..., M) do
if ¢k € Yinin
set K ~ Poisson (1/wyg)
else
set K ~ Poisson (1)
end if
update fr, K times
end for

TABLE III: Undersampling-based Online Bagging

Input: label sets Yinin, Ymaj and Ynom, an ensemble with M
base learners, and current training example (z, cg).

for each base learner f,, (m =1,2,..
if ci, € Yinaj
set K ~ Poisson (1 — wyg)
else
set K ~ Poisson (1)
end if
update fr, K times
end for

., M) do

proposed online learning algorithms are effective in dealing
with class imbalance.

Each ensemble model is formed by ten neural networks
as the base learner. The performance is evaluated through
the prequential test [38], in which each individual example
is used to test the model before it is used for training, and
from this the performance measures can be incrementally
updated. The model is always being tested on examples it
has not seen, and thus reflects its “current” performance at
each time step. Because class imbalance change can happen
right in the middle of the data stream, we separate prequential
performance into two stages for each model by resetting the
performance results to O at the 500th time step. This ensures
that the performance observed after change is not affected
by the performance before change, allowing us to analyse
the behaviour of the models before and after the change
adequately.

For the parameters in class imbalance detector, we set size
threshold §; = 0.6 and performance threshold 6o = 0.4
according to some preliminary experiments. Higher threshold
values diminish the effect of resampling; lower threshold
values can lead to unnecessary imbalance alerts and harm
the majority-class performance and system stability, when the
changes are not so frequent. The time decay factors 7 and 7’
for updating wy and Ry are set to 0.9. The output of class
label sets is sent to the online learner at each time step, to
decide whether resampling needs to be applied at the current
moment. Fig. 3 shows 2-stage prequential recall curves of
faulty class (c2) and nonfaulty class (c;) produced by OB,
OOB and UOB on the 3 data streams with different types of
class imbalance change. Each point on the curve is the average



of 30 independent runs. We can see how accurately the online
learner can recognize data for each class.
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Fig. 3: Prequential recall curves of faulty class cy (left) and
nonfaulty class ¢; (right) produced by OB, OOB and UOB
on the 3 data streams with different types of class imbalance
change.

In the data set with no change in class imbalance, the faulty
class is always the minority. OB produced very low recall
for this class (Fig. 3(a) left). It remained zero, which means
that none of the examples from this class is recognized, until
after 700 time steps. Because resampling was triggered by
our class imbalance detector at a very early stage, OOB and
UOB showed different behaviors. During the first stage of
prequential curve (1-500 time steps), OOB did not seem to
have helped classify the minority-class data; UOB improved
it greatly from 0% to 30%. During the second stage of
prequential curve (501-1000 time steps), both OOB and UOB
showed better recall. The reason for OOB not being very
helpful in the first stage could be that the number of minority-
class examples is too small to make an effect on the learner.
Besides, oversampling is believed to be a more conservative
and stable method than undersampling [17]. For the nonfaulty-
class recall in this case (Fig. 3(a) right), UOB has a larger
performance drop than OOB, due to the trade-off between two
classes.

When the class imbalance status drifts from balanced to

imbalanced (change with low severity), different observations
were obtained, especially during the first stage. Generally,
during the first stage, recall values from both classes got
closer to each other as the data stream is balanced. During
the second stage, when faulty class becomes the minority, its
recall reduced and nonfaulty-class recall increased quickly for
all methods. When size difference and recall difference hit the
threshold, resampling was triggered by the class imbalance
detector, and OOB and UOB started improving minority-class
recall (Fig. 3(b) left). Note that several examples of the faulty
class have already been used for training during the first half
of the learning. That may be the reason why OOB and UOB
obtained more similar performance behavior to each other on
the minority class in the second half of the learning, in the
same way as in the data set with no change.

In the data set with a severe change in class imbalance,
i.e. faulty class turns from majority into minority, the faulty
class recall was very high during the first stage, then dropped
dramatically (Fig. 3(c) left). Correspondingly, nonfaulty-class
recall was very low at first, then started increasing as more
nonfaulty examples arrived during the second stage (Fig. 3(c)
right). The class imbalance detector labelled the nonfaulty
class as the minority during the first stage, and labelled the
faulty class as the minority during the second stage. Therefore,
UOB and OOB produced better nonfaulty-class recall than OB
at first. When the status changed abruptly at the 500th time
step, UOB and OOB suffered from a larger drop of faulty-
class recall than OB, because resampling is still running to
emphasize the nonfaulty class. When the faulty class was
labelled as the minority, UOB started recovering its recall
loss again. For this scenario, OOB and UOB performed better
in minority-class recall than OB, but needed longer time
to respond to the severe change in class imbalance status.
Moreover, OOB recovered faster than UOB from the change,
even though in the longer term UOB produced better recalls.
A possible reason to that may be also linked to the number of
examples that have been already received from the faulty class.
At the moment of the change, UOB will have been trained with
much less examples of the faulty class than OOB due to the
undersampling of the faulty class. As OOB has been trained
with more examples of the faulty class, it is better prepared
for when the faulty class becomes the minority. This scenario
is harder to be tackled than the previous two.

Generally speaking, the class imbalance detector can capture
the class imbalance status correctly even when there is a status
change in the data stream, and our resampling-based Online
Bagging methods show better performance on the current
minority class than the original Online Bagging accordingly.
Particularly, undersampling-based method is shown to be a
better choice than oversampling-based one. It is more aggres-
sive at finding minority-class examples. When a severe change
in class imbalance happens, however, undersampling-based
method may suffer from a significant performance drop at the
beginning, then takes longer time to recover its performance,
possibly because it has been trained with fewer examples of
the new minority class than other methods such as OB and



TABLE IV: Means and standard deviations of G-mean from OB, OOB and UOB at time steps 500 and 1000 on the three
data sets. P-values of the Wilcoxon Sign Rank tests between UOB and OB/OOB are given in brackets. P-values in bold italics
indicate statistically significant difference when using Holm-Bonferroni corrections at the overall level of significance of 0.05,
considering the twelve comparisons performed. UOB’s G-mean is shown in bold italics when it is significantly better than

both OB and OOB.

No change in class imbalance Imbalance change with low severity | Imbalance change with high severity
Time step 500 | Time step 1000 | Time step 500 Time step 1000 Time step 500 Time step 1000
OB 0.000=£0.000 0.42040.040 0.443£0.009 0.086+0.072 0.000=£0.000 0.408=+0.026
(0.00000) (0.00000) (0.73430) (0.00000) (0.00000) (0.00011)
OOB | 0.000+£0.000 0.54540.003 0.443£0.009 0.38440.029 0.122£0.048 0.372£0.019
(0.00000) (0.21030) (0.59990) (0.00000) (0.00000) (0.00000)
UOB | 0.507+0.022 0.550£0.020 0.444+0.010 0.462+0.042 0.517+0.020 0.443+0.028

OOB. It can be fixed by further improving our class imbalance
detector and adaptive online learner, which will be incuded in
our future work.

To compare the overall performance of the three online
learners, we present their prequential G-mean [39] and stan-
dard deviation at specific time steps 500 and 1000 in Table IV.
G-mean is a better overall performance measure than overall
accuracy for imbalanced data. It is defined as the geometric
mean of recalls of all classes and shown to be insensitive to the
imbalance degree [8]. Wilcoxon Sign Rank tests with Holm-
Bonferroni corrections at the overall level of significance of
0.05 were performed to compare UOB and OB/OOB. The
Holm-Bonferroni corrections consider the twelve comparisons
performed to counteract the problem of multiple comparisons.
UOB’s G-mean is shown in bold when it is significantly better
than both OB and OOB according to the statistical tests.

The results in the table tally with our observations from the
prequential curves of recall. UOB achieves the best overall
performance at the end of two stages when class imbalance
exists. OOB also performs better than OB, after seeing more
minority-class examples.

VI. CONCLUSIONS

As the first work that formally addresses online class
imbalance learning, this paper formulates the problem by
proposing a learning framework, which clarifies underlying
issues and decomposes the learning tasks into three modules: a
class imbalance detector to capture the current class imbalance
status; a concept drift detector to find out whether the concept
drift occurs; an adaptive online learner to learn the data stream
and take corresponding actions when class imbalance and
concept drift happen.

For the class imbalance detector, we propose a time decay
function to report the current distribution of class labels. Its
performance is tested on three types of data streams with
different changing severity in class imbalance. It is shown
to produce more accurate class percentages within a much
shorter period of time than the traditional updating method.
Based on the up-to-date class imbalance rate and performance
of the online learner, we propose an imbalance detection
algorithm to determine whether the current data stream should
be regarded as “imbalanced” and which classes should belong
to the minority and majority.

For the adaptive online learner, we propose two resampling-
based ensemble methods that combine random oversampling
and undersampling with Online Bagging to handle class im-
balance by adjusting the parameter in Poisson distribution.
They process data online strictly, without the need of any
prior knowledge about data and storage of old examples. The
resampling technique will be triggered once a class imbalance
status is reported by the class imbalance detector at any time
step. The performance of the two methods in collaboration
with the class imbalance detector is examined through two-
stage prequential test of recall, showing the current accuracy
for each class along with time. Overall performance measure
G-mean is also compared at the final moments before and
after the imbalance status changes. The results show that both
over- and undersampling can improve the accuracy on the
current minority class identified by the detector significantly.
Particularly, undersampling-based Online Bagging is more
aggressive at both recall and G-mean measures. When there
is a severe change, it suffers from longer time to retrieve its
effectiveness on the new minority class.

In the near future, we would like to further improve our class
imbalance detector and online learners to better deal with vari-
ous types of class imbalance change, including abrupt/gradual
changes and the cases with the presence of noisy data. How the
parameters in the algorithms affect their performance, such as
size and performance threshold values, would also be explored
under different scenarios. All the methods proposed in this
paper are applicable to data streams with arbitrary number of
classes, but we have only discussed two-class cases so far.
We would like extend our study to multi-class problems. In
addition, there are still many interesting questions that haven’t
been answered within the framework. For example, our next
step is to look into the module of concept drift detector,
aiming to develop effective and efficient algorithms that can
find out different drifts with changing classification boundaries
in imbalanced data streams.
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