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Abstract—Benchmarking heuristic algorithms is vital to un-
derstand under which conditions and on what kind of prob-
lems certain algorithms perform well. Most benchmarks are
performance-based, to test algorithm performance under a wide
set of conditions. There are also resource- and behaviour-based
benchmarks to test the resource consumption and the behaviour
of algorithms. In this article, we propose a novel behaviour-
based benchmark toolbox: BIAS (Bias in Algorithms, Structural).
This toolbox can detect structural bias per dimension and across
dimension based on 39 statistical tests. Moreover, it predicts the
type of structural bias using a Random Forest model. BIAS can
be used to better understand and improve existing algorithms
(removing bias) as well as to test novel algorithms for structural
bias in an early phase of development. Experiments with a
large set of generated structural bias scenarios show that BIAS
was successful in identifying bias. In addition we also provide
the results of BIAS on 432 existing state-of-the-art optimisation
algorithms showing that different kinds of structural bias are
present in these algorithms, mostly towards the centre of the ob-
jective space or showing discretization behaviour. The proposed
toolbox is made available open-source and recommendations are
provided for the sample size and hyper-parameters to be used
when applying the toolbox on other algorithms.

I. INTRODUCTION

The modern world has an ever growing need for good
heuristic optimisation algorithms due to the large amounts
of data and increasingly difficult problems to be optimised.
Since one overall best heuristic does not exist [1], we have
to benchmark heuristics to understand which one is better
under what conditions. Benchmarking can be performance-
based, resources-based or behaviour-based. Most bench-
marks for continuous optimisation are performance-based. An
example is the well-known Black-Box Optimisation Bench-
mark (BBOB) [2] test suite. Performance-based benchmarks
aid in learning about the performance of one algorithm and the
comparison between other algorithms in different situations.
For example, one algorithm could perform very well on
separable functions and another algorithm on uni-modal, high-
conditioned functions. Resource-based benchmarks show the
amount of resources (computation power / memory / energy)
required under certain conditions. However, these types of
benchmarks do not easily allow the analysis of the ‘behaviour’
of these algorithms under different circumstances. Behaviour
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is, for example, how a population of candidate solutions
move in a swarm optimisation algorithm either dependent
or independent of the function to optimise. An example of
a behaviour-based benchmark is RobustBench [3], an adver-
sarial attack benchmark designed to test the robustness of
image classification deep neural networks. Behaviour-based
benchmarks can be used to learn additional information about
the behaviour of an algorithm under different conditions.
Here, we concentrate on a particular kind of behaviour-based
performance estimate, structural bias (SB). SB is a form of
bias inherent to the iterative heuristic optimiser in the objective
space that also affects the performance of the optimisation
algorithm.

Detecting whether, when and what type of SB occurs in a
heuristic optimisation algorithm can provide guidance on what
needs to be improved in these algorithms, besides helping to
identify conditions under which such bias would not occur.
In many cases SB can be avoided by slightly redesigning an
algorithm component or by using different hyper-parameters.
However, SB is hard to detect when not specifically looking
for these kind of issues. Therefore, in this paper we propose a
toolbox to automatically benchmark continuous optimisation
algorithms to discover a portfolio of eleven different SB
scenarios. We aim to answer the following research questions:

RQ1 How to determine whether a heuristic continuous optimi-
sation algorithm suffers from SB?

RQ2 How to determine the type of SB suffered by a heuristic
continuous optimisation algorithm?

RQ3 Which heuristic continuous optimisation algorithms suf-
fer from what type of SB? Under what conditions?

To answer RQ1, we evaluate a large set of statistical tests
based on 1500 repetitions of 194 different artificially generated
parameterised distributions containing 11 different scenarios
of structural bias. The proposed toolbox can be used to detect
potential bias issues in newly developed algorithms as well
as benchmark already existing optimisation algorithms. To
answer RQ2, we propose a machine learning approach to
identify which SB scenarios are most likely occurring in a
given optimiser based on the resulting test statistics. The
complete SB benchmark statistical test suite (BIAS), data
generators for different SB scenarios and the machine learning
model for identifying different SB scenarios are provided
open-source [4]. To answer RQ3, we adopt the proposed
toolbox to detect SB in 432 different continuous optimisation
algorithms. We also discuss insights provided by the resulting
benchmarking of these algorithms and potential future research



directions.

The paper is structured as follows: in Section II, SB is
introduced and explained in detail. The main components of
our proposed BIAS toolbox are also briefly introduced. In
Section III, all considered statistical tests for uniformity are
introduced, including several newly proposed tests specifically
for SB. In Section IV, the SB scenarios and experiments are
explained in detail. In Section V, an analysis of the statistical
tests is conducted, answering RQ1. In Section VI, the machine
learning approach used to identify the type of SB is intro-
duced and evaluated, answering RQ2. In Section VII, existing
heuristic continuous optimisation algorithms are benchmarked,
answering RQ3. Finally, we end with recommendations and
conclusions in Section VIIIL.

II. STRUCTURAL BIAS

Put simply, algorithms are tools applied to particular prob-
lems. Just like a good hammer working well on many nails,
we would like algorithms to ideally deliver good solutions
for many problems. However, as postulated by the so-called
No-Free Lunch Theorem, no best optimiser exists over all
possible optimisation problems [1]. What is possible though
is algorithms specialising on certain kind of problems. Identi-
fying sets of such suitable problems for each algorithm is not
a trivial problem [5] and many landscape features have been
investigated to understand the success of some algorithms on
some kinds of functions [6]. However, what cannot practically
be a feature uniting such problems is the location of optima
in the domain — having an algorithm that consistently finds an
optima only located in the origin is of no use. Therefore, good
algorithms should not be biased towards specific locations of
the search space, e.g., towards solutions at the origin, centre,
or in the borders of the search space. Extrapolating such
reasoning, a good optimisation algorithm should be able to find
the optima regardless where exactly they are located within the
domain. Or, even stronger, a good algorithm should ideally
locate solutions anywhere in its domain with equal ‘effort’.

In case of iterative optimisation algorithms, points sampled
during the initialisation ‘move’ within the domain defined by
its boundaries under the influence of algorithm’s operators and
potentially bring improvement of the values of the objective
function during the optimisation run, following some kind of
‘survival-of-the-fittest” logic. In effect, such movement of the
algorithm towards the optima gets steered by the differences
in the values of the objective function in the sampled points or
their derivates of some kind. Any feedback that is external to
the objective function or domain knowledge might hinder such
progression to the optima. Such external feedback stemming
from the iterative nature of the algorithm is referred to here
as structural bias.

Because of the high interdependence between the fitness
landscape and the information on the fitness obtained from
this cyclical application of the algorithm’s operators, the SB
contribution during the search for optima cannot be easily un-
veiled if not by means of a specific objective function capable
of nullifying such interaction over multiple optimisation runs.
The fy function, first introduced in [7], serves this purpose and

can be used to decouple these effects, thus separating the SB
component, arising from algorithmic design choices, from the
main driving force represented by the sampled differences in
the fitness landscape. Function fj is a ‘truly’ random problem,
having the simple analytical representation reported below':

fo :10,1]" — [0,1], where Vz, fo(z) ~U(0,1). (1)

A. Existing methodology for measuring SB

As explained in Section II, a heuristic optimisation al-
gorithm that does not exhibit SB should be able to find
randomly placed (uniformly distributed) optima for the special
objective function fy with equal difficulty/ease. Therefore,
the problem of determining whether a heuristic optimisation
algorithm suffers from SB can be reduced to the problem of
checking whether the best solutions found by multiple runs
of this algorithm to minimise®> f; are uniformly distributed.
However, such uniformity check is not a trivial task due to
the many forms in which SB can manifest itself for different
algorithms (see Section II-B) and under different algorithmic
configurations/parameter settings. To complicate things fur-
ther, challenges encountered while testing for SB depend on
the experimental setup used to execute optimisers, e.g., where
the number of performed runs might be adequate for classic
performance-based assessment but not for detecting SB. More-
over, testing for SB also depends on the allowed computational
budget allocated to the algorithm and/or employed termination
criterion. Indeed, the study in [8] has shown that when SB
emerges during the evolutionary process (for several versions
of the Differential Evolution algorithm), it only grows stronger
during the remaining evaluations. This means that practitioners
using different experimental settings might end up looking at
biases of different strengths for the same algorithm, which
makes direct comparisons unfair. These details can make it
difficult to generate a practical and robust procedure for the
SB detection.

Up until now, methods to check the uniformity of the
distribution of best solutions over multiple runs included visual
or statistical inspections, briefly discussed in Sections II-Al
and II-A2 respectively.

1) Visual test: Displaying locations of the best solutions
collected from multiple runs in the so-called ‘parallel coordi-
nates’ [9] appears to be the most effective way for visualising
SB on a multidimensional problem [7]. This approach is
easily reproducible, graphically valid and hence convenient.
However, when a large number of images is generated [10],
[11], [8], [12], visual inspection can become too laborious.
Such approach is also clearly subjective and therefore not
reliable for cases where graphical artefacts or unclear patterns
cannot be judged by a naked eye.

2) Statistical test: Let us consider a heuristic optimisation
algorithm that was run N times to solve the problem of

IThroughout this paper we refer to one-dimensional uniform sampling
within [a, b] as U(a, b) and to sampling from the Normal distribution with
mean £ and standard deviation o as N'(u, o).

2or maximise.



minimising fy. At the end of each run ¢, the best solu-
tion x(¥ found by the algorithm by the end of the run
is recorded, where naturally x(¥) € [0,1]". The random
sample {x(1) x® ... x(M)} represents the set of best so-
lutions retrieved by the N runs of the algorithm. Assume
that {x§1),x§2),--~ ,xﬁN)}, j € {1,2,--- ,n} was drawn
from a probability distribution with a continuous cumulative
distribution function F,;. A goodness-of-fit test can be used to
test the null hypothesis Hy : Fq ~ U(0,1).

The Kolmogorov—Smirnov test [13] was first employed with
a sample of size N = 50 and significance level a = 0.01 in
[7]. Subsequently, following the ‘power analysis’ performed
in [14] across three common tests, namely Kolmogorov-
Smirnov, Cramér-Von Mises [15] and Anderson-Darling [16]
tests, the latter test was chosen and used in combination with
the Benjamini—Hochberg [17] correction method for multiple
comparisons to achieve higher statistical power. However, it
was noted that the original sample size was not adequate
for testing all algorithms under investigation. Hence, a higher
number N = 100 of runs had to be used for some algorithms
in order to achieve a satisfactory level of statistical power.
Similar problems were encountered in a further study on SB
in a subclass of Estimation of Distribution Algorithms [18],
even when using an aggregated measure of SB defined as the
sum of the statistically significant (across all dimensions) test
statistics of the Anderson-Darling test.

It was concluded that the described statistical approaches
can effectively detect most cases of ‘strong’” SB but are
deficient on other scenarios, including clear ‘mild’ SB that
can be identified with the visual approach. Reasons for these
discrepancies between the two methodologies might be a
conservative nature of the employed tests combined with the
relatively low sample size. Indeed, more accurate SB detection
results could be obtained with N = 600, as used in [8], instead
of N = 100.

Using a large sample size (N = 600) indeed seems to
catch bias more often, but still gives no guarantee to detect all
different kinds of SB, at any significance level [8]. Even larger
sample sizes are necessary for smaller levels of significance,
higher desired power and smaller sizes of the deviations to
be identified [19]. However, given the limited computational
resources to run heuristic optimisation algorithms, it is not
always possible to obtain (very) large sample sizes. Therefore,
tests better able to detect significant deviations from unifor-
mity given limited sample sizes are desirable for detecting SB.
We study this in more detail in Section V-B.

Regardless of the above, there is a clear need for a better
automated statistical testing procedure to detect SB readily
available to the community as a software package.

B. Known deviations from uniformity due to SB

Formulating a good statistical measure of SB has turned
out to be difficult (see Section II-A2) due to a wide range of
potential deficiencies of distributions of locations of final best
points produced by the algorithm in a series of independent
runs — i.e., in what aspect samples from such distributions
deviate from uniformity.

The following deviations have been observed for different
kinds of iterative heuristic optimisation algorithms [7], [10],
[14], [18], [20], [8]:

e in terms of proportion of occupied continuous domain:

o sample values do not span the whole domain — the
sample is uniform on an interval smaller than [0, 1]
(‘centre-bias’);

o values in a sample cover discrete set of values (reg-
ularly spaced) within [0, 1] (‘discretization-bias’);

« in terms of locations of points, sample points exhibit:

o local clustering within the domain or clustering
around several clusters within the domain (‘cluster-
bias’);

o clustering in certain parts of each dimension: on
the bounds, in one or both sides of each dimension
(‘bound-bias’);

o one or more large empty gaps consistently identified
in all dimensions (‘gap-bias’);

« in terms of correlations between different dimensions of
the sample points: present or not.

C. BIAS toolbox

Our proposed BIAS (Bias in Algorithms, Structural) toolbox
fills in the gap in terms of the need for a better automated
procedure to detect SB and identify its type. In this paper, we
discuss the different components which constitute the proposed
BIAS toolbox. These components include 39 statistical tests
and a procedure to aggregate them for detecting SB (Section
III), a Random Forest model to identify the type of structural
bias (Section VI), the code for the used f; (which was
described in Section II) and the code for the generation of
the statistical bias decisions and plots (of which an example
is illustrated in Figure 3).

The BIAS toolbox is available as a python package at [4].
It provides a clear decision on whether or not structural bias
is present in the sample of final positions provided by the
user and, in case some SB is found, an assessment on the
possible type of SB observed in the sample using a random
forest model. In addition to the structural bias detection, the
toolbox also contains the needed functionality to sample data
from the scenarios in Table I, thus providing the means to
benchmark other statistical test for detecting structural bias.

III. TESTS

As explained in Section II-A2, the goodness-of-fit test
previously adopted for detecting SB (Anderson-Darling)
is deficient on several cases where SB is clearly visible even
with a sample size of 100. More powerful tests are therefore
desirable. This section introduces existing and newly proposed
goodness-of-fit tests evaluated in this paper for the purpose of
detecting SB in samples of a limited size. This wide selection
of tests includes both classical statistical tests and other
tests that have demonstrated competitive power for testing
uniformity in the statistical literature [21], [22]. All of these
tests are used to test the null hypothesis Hy : Fyq ~ U(0,1)
introduced in Section II-A2.



A. Tests per dimension

The following tests are designed to work on an individual
dimension. However, by aggregating all data we can run these
test on a sample size which is effectively n times larger.
If these tests are run on a per-dimension basis, correction
strategies need to be applied to deal with the multiple-
comparison problem. For this purpose, the Benjamini-Holberg
(BH) method was proposed originally, since it is less stringent
than the standard Bonferroni method. However, in this work,
we also investigate the effects of other multiple comparison
correction methods, which is discussed in Section V-D.

1) I-spacing-based test (1-spacing): [23], [4]® To detect
cases where the bias takes the form of large spacing differences
or clustering in each dimension, we can test the distribution
of distances between consecutive points (or points with m
neighbours between them, m € {1,2,3} here and in two
subsequent tests). Such distribution can then be compared
to the distribution from a large sample of truly uniform
random samples using a 2-sample KS test. This and two
subsequent tests in the list belong to a wider class of tests
called m-spacing.

2) 2-spacing-based test (2-spacing): [23], [4]® See
1I-Al.

3) 3-spacing-based test (3-spacing): [23], [4]® See
1I-Al.

4) Sample Range-based test (range): [4]>** The range
taken up by the samples in each dimension can be useful
in detecting SB where the points are far removed from the
boundaries. The same can be done using the sample extrema
(next two items).

5) Sample Minimum-based test (min): [4]>* See III-A4.

6) Sample Maximum-based test (max): [4]>* See III-A4.

7) Anderson-Darling (AD): [16], [24] is the most com-
monly used test for checking uniformity, and as such the test
proposed to detect SB in [18].

8) Transformed Anderson-Darling test (tAD): To boost the
power of the AD test in some of the most common cases of
SB, where the bias occurs near either the boundaries or the
centre of the space, a transformation can be applied to the
samples by taking their distance to the nearest boundary [20],
[24]. This can then be tested using an AD test with domain
0,1].
| 92)] Shapiro test (Shapiro): Instead of testing the samples
for uniformity directly, we can transform them to their normal
counterpart, and check for normality using tests like the
Shapiro test [25], [26].

10) Jarque—Bera test (JB): This test, obtained through the
use of the Lagrange multiplier test on the Pearson family of
distributions [27], [28], is also applied to transformed samples
to test for their normality.

11) Minimum Linear Distance-based test (LD-min): [4]*
The minimum distance between a set of samples and a linearly
uniform distribution using the same range and sample size.

12) Maximum Linear Distance-based test (LD-max): [4]*
The maximum distance between a set of samples and a linearly
uniform distribution using the same range and sample size.

3For calculation of critical values, see Section III-C.
4Test proposed here.

13) Kurtosis-based test (Kurt): This test>** measures how
differently the tails of a distribution are shaped, compared to
the tails of the normal distribution. Kurtosis is defined as the
fourth standardised central moment, of the random variable
of the probability distribution [29], [26]. Note that this test is
applied after transforming the data to its normal counterpart.

14) Minimal Minimum Pairwise Distance-based test
(MPD-min): [4]>* The minimum pairwise distances between
neighbours. If the minimum distance between neighbours is
too small, this can indicate dense clusters.

15) Maximal Mininimum Pairwise Distance-based test
(MPD-max): [4]>** Same as MPD-min but now comparing
the maximum instead. If the maximum distance between
neighbours is too large, this indicates uncovered areas of the
objective space.

16) Wasserstein distance-based test (Wasserstein):
[4]® Originally proposed for optimal allocation problems [30]
and rigorously formulated by Kantorovitch in [31], this metric
is used to measure the distance between two probability
distributions defined on a metric space. This result is exploited
in this study to build the Wasserstein test for uniformity.

17) Neyman-Smooth test (NS): Neyman [32], [33] con-
structed his smooth tests specifically to test for the continuous
uniform distribution.

18) Kolmogorov-Smirnov test (KS): [13], [24] is a non-
parametric test based on the maximum distance between the
empirical cumulative distribution function (ECDF). While this
test is most commonly used to compare 2 samples, it can also
be used for goodness-of-fit testing.

19) Cramer-Von Mises test (CvM): [34], [22] is similarly
based on the expected squared difference between the ECDF
and true CDF function of the null distribution.

20) Durbin test (Durbin): To test for uniformity, the
Durbin C), test [35] compares the cumulated periodogram
graph of the residuals from a least-squares regression with the
Kolmogorov-Smirnov limits. This is based on previous results
showing that when the employed test statistic is calculated with
a generic number 2m + 1 of samples then it is distributed as
the mean of m — 1 independent uniform variables [36], [22].

21) Kuiper test (Kuiper): This is an extension of the stan-
dard Kuiper test obtained by replacing the original distribution
with the Pyke’s modified empirical distribution function as
proposed in [37] and implemented in [22]. This makes the
test suitable for showing that a population has a prescribed
continuous distribution function, including uniform.

22) Ist Hegazy-Green test (HG1): This test refers to the
variant of the Hegazy-Green tests for uniformity proposed in
[38] and implemented in [22] employing the 7} test statistic
defined as the average of the absolute differences between
samples and their expected value.

23) 2nd Hegazy-Green test (HGZ2): This is the second
variant of the Hegazy-Green test in [38], [22] employing the 15
test statistic defined as the average of the squared differences
between samples ans their expected value.

24) Greenwood test (Greenwood): This test is based on a
spacing statistic that can be used to evaluate events in time or
locations in space by testing how the intervals between them
are distributed [39], [22].



TABLE I
OVERVIEW OF PARAMETERISED DATA SAMPLING SCENARIOS IN [0, 1],
THE TOTAL OF 194 / 249 SCENARIO SETTINGS (PER DIMENSION / ACROSS DIMENSIONS), PER CONSIDERED SAMPLE SIZE.

scenario name how sampled parameter 1 parameter 2 settings diagnosis’

Uniform® sample full sample size viald/(0,1) - - 1 no bias

Cut Uniform’ subscenario 1: sample full sam- fraction cut z. € {0.01, 10/10 centre-bias
ple size via U(z¢,1), subscenario  0.025, 0.05, 0.1, 0.2}
2: sample full sample size via
U(%: 1- 27(‘)

Cut Normal® sample full sample size via o € {0.1,0.2,0.3,04, p€{0.5 0.6,0.7} 15/15 centre-bias
N(u,0), remove all points 0.5}
outside [0, 1] and repeat until full
sample size

Inverse Cut Normal same as above, but transform to  same as above same as above 15/15 bound-bias
have most mass at bounds

Cut Cauchy similar to Cut Normal but for same as above same as above 15/15 centre-bias
Cauchy distribution

Inverse Cut Cauchy same as above, but transform to  same as above same as above 15/15 bound-bias
have most mass at bounds

Clusters sample n. cluster centre points number of clusters n. € o € {0.01, 0.025, 0.05, 30/30 cluster-bias
c; via U4(0,1), sample remaining {1,2,3,4,5} 0.1, 0.2, 0.3}
points around them via A(c;, o)°

Consistent Clusters!® same as above o € {0.01, 0.025, 0.05, 0/30 cluster-bias

0.1, 0.2, 0.3}

Loose Clusters sample z, portion of sample size fraction of uniform o € {0.01, 0.02, 0.05, 12/12 cluster-bias
via U4(0,1). For each remaining samples z, € {0.1, 0.1}
point, select an existing point z;  0.25,0.5}
and sample N (z;,0)

Gaps sample full sample size via number of centres n. €  gap radius r4 € {0.01, 25/25 gap-bias
U(0,1), select n. sampled points  {1,2,3,4,5} 0.02, 0.03, 0.04, 0.05}
x;, remove all sampled points
in [x; — rg,x; + rg], resample
missing points outside gaps via
U(0,1) until full sample size!!

Consistent Gaps'? same as above same as above 0/25 gap-bias

Spikes randomly sample integers in number of spikes ns € - 8/8 discretization-
[1,ms], rescale as uniformly {25, 50, 100, 150, 200, bias
placed spikes in [0, 1] 250, 500, 1000}

Noisy Spikes same as above, but spike locations  same as above o € {0.005, 0.01, 0.02, 48/48 discretization-
are independently shifted accord- 0.03, 0.04, 0.05} bias

ing to N(0, o)

5 See Section II-B
6 Sanity check, excluded from the tests

7 Two subscenarios: 1. modify only min (equivalent to varying only max, so don’t do both to save time); 2. modify both min and max at the same time, with

the same parameter setting (half cut on both sides)
8 Vary p only to one side since it is equivalent to the other side

9 For across-dimension tests, need to differentiate between same cluster-centres in each dimension (Consistent Clusters) vs. different gaps (Clusters)
10 Only used in across-dimension tests, as it is equivalent to Clusters per-dimension
' For across-dimension tests, need to differentiate between same gaps in each dimension (Consistent Gaps) vs. different gaps (Gaps)

12 Only in across-dimension tests, as it is equivalent to Gaps per-dimension

25) Quesenberry-Miller test (QM): This test [40], [22] is a
modification of the Greenwood test [39] which additionally
considers the co-occurrence of extreme squared spacing dis-
tances.

26) Read-Cressie test (RC): This test [41], [22] belongs to
a family of goodness-of-fit tests based on the power divergence
statistic.

27) Moran test (Moran): This test [42], [22] operates via
the distribution of the sum of squares of intervals into which
the domain is divided, using a homogeneity of variances test.

28) Ist Cressie test (Cressiel): This test [43], [22] is
based on the logarithm of m-spacing gaps.

29) 2nd Cressie test (CressieZ2): This test [44], [22]
operates via the family of statistics based on m-spacing gaps,

obtained by summing a suitably regular function of each
spacing gap.

30) Vasicek test (Vasicek): As entropy can be used
to characterise distributions, this test uses an estimate of
entropy based on higher order (m > 1) m-spacings to test
for uniformity [22]. Entropy had been originally adopted by
Vasicek [45] for testing the hypothesis of normality.

31) Swartz test (Swartz): Instead of using entropy,
Swartz [46], [22] uses the Kullback-Leibler information to
derive a statistic to test for uniformity. This statistic is also
based on m-spacings.

32) Morales test (Morales): This test [47], [22] compares
an empirical and a hypothetical distribution based on the limit
laws for a statistic based on ¢-disparity [48], [49] of m-



spacings.

33) Pardo test (Pardo): Informational Energy is a measure
of certainty, related to the Shannon Entropy, which is a
measure of uncertainty. This test uses m-spacings to estimate
Informational Energy as a test statistic for the hypothesis of
uniformity [50], [22].

34) Marhuenda test (Marhuenda): This test [21], [22]
uses a quantile-based divergence statistic based on Cressie and
Read’s power divergence statistics [51].

35) Ist Zhang test (Zhangl): Zhang [52] proposed a
general parametrized test statistic that can be used to derive
both classical goodness-of-fit test statistics such as Anderson-
Darling [16] and Kolmogorov-Smirnov [13] and other new
goodness-of-fit test statistics that were demonstrated to be
more powerful [52]. Zhangl is derived based on this
parametrized test statistic using likelihood ratio statistics [52],
[22].

36) 2nd Zhang test (ZhangZ2): This test statistics [52], [22]
is derived in a similar way to Zhangl, but is based on an
approximation.

B. Tests across dimensions

In addition to the tests which work on a per-dimension basis,
we can also perform tests on the full set of 30-dimensional data
at once. This can be done by grouping together the samples or
distances and performing the same test as the per-dimension
testing on the aggregated data. For this purpose, we use all
tests discussed above, with the exception of the sample limits-
based tests, LD, MPD and Wasserstein tests. It can also
be done by using across-dimension tests. In this work, we use
the following across-dimension tests:

1) The mutual information-based test (MI): This test>* is
based on the fact that mutual information [53], [54] between
variables of a random distribution should be close to zero.
If the MI between two variables is higher, this suggests bias
towards specific values in the domain shared by these two
variables (dimensions). The median mutual information is the
median over all dimensions.

The mutual information between two Random Variables U
and V is defined as:

ol V]
MIUV) =3 |UZ;/_VJ‘

i=1 j=1

N|U; nVj|
Uil Vj

log

2) Maximum Minimum Pair-wise Distance-based test
(MMPD): [4]>* This test is the maximum distance between
two neighbouring points in a (multi) dimensional space. This
distance should not be significantly different from the same
distance metric over a random uniform sampling. A significant
higher distance means that there is a region in the search space
where the algorithm is more attracted to (and subsequently a
region that is avoided). In another words, bias.

3) Maximum Difference per Dimension between a linear
uniform distribution-based test (MDDLUD): [4]** This test is
the multi-dimensional equivalent of the LD-max test, where
we aggregate either using the maximum or median across all
30 dimensions.

X

Fig. 1. Empirical Density Distribution for the Cut Cauchy scenario, with
varying o, and p = 0.7 (based on 1000000 samples each). The dotted line
shows the theoretical density of the uniform distribution on [0, 1].

C. Critical values for all tests

To determine rejection based on the test statistic, we need to
either calculate the corresponding p-values, or check if the test
statistic exceeds the corresponding critical value. Several of
the test we include calculate the p-value by default, but for the
others we will use the critical values. To get accurate estimates
of these values, we use a 100 000 samples Monte Carlo simu-
lation of the test statistic under the uniform distribution, from
which we determine the a-quantiles for « € {0.01,0.05}. The
Monte Carlo test is a well known procedure for implementing
hypothesis tests [55]. It enables calculating the critical values
when the true (sampling) distribution of the test statistic is
unknown. The resulting critical values calculated using this
procedure are available at [56].

IV. METHODOLOGY

To effectively judge the performance of the proposed tests
for different types of SB, we have defined a large portfolio of
bias scenarios according to which we can generate arbitrary
number of samples. This set of scenarios is chosen in such a
way that all common types of SB discussed in Section II-B are
represented. Additionally, these scenarios are parameterised to
control the level of bias, which enables us to better judge the
robustness of tests.

A. Portfolio of scenarios

We choose the scenarios to include based on the most
common types of structural bias (see Section II-B) as observed
in previous papers:

« bias towards the centre of the search space,

« bias towards the bounds of the search space,

o bias towards certain parts of the search space forming

clusters,

o bias towards avoiding certain parts of the search space,

creating gaps and

o strong discretization.

In total, this gives us 11 distinct scenarios (13 for the across-
dimension case) — the full list these scenario definitions and
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Fig. 2. Confusion matrix based on decisions from the KS-test between all scenarios. Blue indicates combinations which are not distinguishable based on the
2-sample KS-test for a = 0.01. Used sample size is 100, with 1000 sets of samples generated for each scenario, aggregated into a 1D sample. The white
lines divide the types of scenario. Norm+Cauchy group contains all Cut and Inverse scenarios based on Normal and Cauchy distributions.

their parameters used in this paper is shown in Table I. An
example of the density of several parameterizations of scenario
Cut Normal is shown in Figure 1.

In Figure 2, we show that there exists minimal overlap
between the densities of the different parameterizations of
these scenarios by collecting 10 000 samples and performing
pairwise KS tests. Note that these samples are aggregations
of multiple independent dimensions, so for Gaps this means
that each set of 100 samples has its own gap-centres, which
explains why it is seen as similar to Uniform.

In total, this gives us 194 scenarios to consider in the per-
dimension case, and 249 scenarios in the across-dimension
case. For each of these scenarios, we generate data with sample
sizes {30, 50,100, 600}. In the per-dimension case, we collect
1500 independent sets of samples for each use-case, while
the across dimension cases all use 100 sets of 30-dimensional
samples.

For each of the generated sets of samples, we apply
the corresponding test-battery from Section III with a €
{0.05,0.01}: 36 tests for per-dimension case and 32 for
the across-dimension case. Using this setup, we thus collect
194 - 1500 - 4 - 36 = 4.19 x 107 test statistics / p-values for
the per-dimension tests, and 249 -100-4-32 = 3.19 x 106 for
the across-dimension tests.

We show an example of the set of statistical tests applied to
an instance of the Cut Normal scenario in Figure 3. This

figure shows the rejections for each dimension individually,
as well as the corresponding sample on which this decision is
based. This visualisation is available as part of the toolbox as
described in Section II-C, and provides a visual way to inspect
the structural bias present in the scenario.

For the analysis on the per-dimension test, we do not
directly apply multiple correction methods. However, in Sec-
tion V-D, we will analyse the effect of different correction
methods on the overall false positive rate and select which
method to use in practice.

V. ANALYSIS OF STATISTICAL TESTS APPLIED TO
SCENARIOS

This section analyses the statistical tests presented in Sec-
tion III in terms of their suitability to be included in the BIAS
toolbox for the purpose of detecting structural bias.

A. Robustness of tests to scenario parameters

To analyse the effect of different parameterizations of the
selected scenarios on the difficulty of detecting bias, we can
consider the overall number of rejections for a single test
across all parameter settings. An example for the Inverse
Cauchy scenario is shown in Figure 4. In this figure, we see
clearly that extreme parameter settings (highly shifted mean
and low variance) are always detectable by the AD test, while
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Fig. 3. Example of an instantiation of the Normal Cut scenario with © = 0.5 and ¢ = 0.2, with 100 samples in each of 30 dimensions. The top figure
shows the assumed distribution of the final positions potentially returned by an optimisation algorithm in each dimension. Jitter is applied here to reveal
vertically overlapping points. The colour scheme is used to highlight different dimensions. The binary heatmap in the bottom figure shows in green which
tests reject the null-hypothesis of uniformity per dimension with o = 0.01 (no multiple comparison correction applied).

the tAD test performs much better when the distribution is
centred.

While this granular view of results can give important in-
sights, it is impractical to use this low-level view to investigate
the different impacts of our experiment settings on the final
rejections. For the sake of completeness, the figures for all
scenarios and all experimental settings have been uploaded
at [57].

B. Sample size

To study the impact of the available sample size on the
overall performance of different statistical tests, we can ag-
gregate the number of rejections over all parameterizations
of each scenario. This allows us to show the fraction of
cases of a scenario which are rejected by each test given a
certain sample size. Figure 5 shows this for the Cut Normal
scenario. From this figure, we can see that the effect of sample
size is not the same across all tests. As an example, the AD
test has a relatively high number of rejections at 30 samples,
but doesn’t reach the same precision as other tests when
increasing sample size to 600. This indicates that analysis
of the performance of the tests should take the number of
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Fig. 4. Fraction of rejected cases for the AD (left) and tAD (right) tests on
the Cut Cauchy scenario, based on its parameterizations. The used sample
size is 100, with o = 0.01 and no multiple comparison correction applied.

available samples into account, as this will influence which
tests are more distinguishing.

From Figure 5, we can also see that the Moran test
significantly outperforms any others on this scenario, but even
this test does not reject all cases when the sample size is
small. This reinforces the notion that if possible, increasing
the sample size is beneficial to the ability to detect less clear
cases of structural bias. However, we also note that for most
scenarios, a sample size of 50 seems to be sufficient to detect
the presence of structural bias. While increasing the sample
size would increase the ability to detect less obvious cases
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Fig. 5. Fraction of rejections for each test on the Shifted Spikes
scenario, with @ = 0.01 and no multiple comparison correction method
applied. Data is aggregated over all parameterizations of the scenario, as
described in Table I. This figure shows 15 tests with the most rejections (when
aggregated over the different sample sizes). Note that the negative space over
each bar (1 — x) is equivalent to the false negative rate of the test.

of SB, N = 50 should be able to correctly identify the most
blatant ones.

C. Overall analysis

With the rejection data, we can investigate the interplay
between statistical tests and the scenarios, in order to find
what set of tests is more suitable to each kind of structural
bias. For this analysis, we make use of the concept of Shapley
values [58] to assess the contribution of each test to a portfolio
of tests for finding bias in each type of scenario. In particular,
we define the marginal contribution of a test ¢ to a portfolio
of tests 7" C T on scenario S as follows:

c(t, T, S,n,0) = 3 gD imoMaxpe(rr J(1}) Ler(s))<a —

EsES Z?:O maxy et Ilt’(s.;)<a (2)

where n is the number of realizations s; of scenario s. The
indicator function 1 corresponds to the test ¢ rejecting the null
hypothesis with significance « on the data from realization s;.

Based on this definition of marginal contribution, we can
compute approximate Shapley values by sampling random
permutations calculating the marginal contribution for each
test at each position within this permutation [59], [60]. This
can be formulated as follows:

m

S(t,Sm,a) =3 > c(t, T, S,n,a) : T' C T,|T'| =i

r =0
3)
where r is the number of repetitions used, and m is the
maximum size of these permutations, which is introduced
to ease with computations and because the impact of larger
permutations on the total sum is relatively minor — in this
paper, we set m = 10.

Since the used definition of marginal contribution is com-
mutative, we can sum the individual Shapley values for each
scenario to get the overall Shapley values across scenarios.
These values are then shown in Figure 6, where we can see
that most tests have a very comparable contribution to the
overall rejections, with relatively few outliers in both positive
(e.g. Moran) and negative (e.g. MPD-m1in) sense. Because of

variable
Bl Feature Importance
B Shapley Value

Fig. 6. Approximated Shapley values for all 36 per-dimension tests, based
on marginal contribution to the total number of rejections across all scenarios
(sample size 100, o = 0.01). Additionally, the feature importance of these
tests in the random forest model discussed in Section VI is also shown.

this, we consider all test to have their uses in the portfolio,
and refrain from removing any tests from consideration.
Additionally, we can also consider the per-scenario Shapley
values to find a relation between the statistical tests and the
scenarios which it can most effectively distinguish. This is
visualized in Figure 7. There are some clear patterns visible in
this figure, e.g. for the scenarios which mimic poor discretiza-
tion, where the Moran and Cressiel tests have a very high
contribution, while their impact on the other scenarios seems
to be relatively minor. This highlights the benefit of having a
large portfolio of different statistical test to identify SB.
Overall, we have seen that no single test is clearly preferable
over all others. Moreover, an analysis of the Kendall-Tau [61]
correlations between the rejections of tests across all scenarios
shows that very few tests are highly correlated. Figure 8 shows
the correlation heatmaps for two representative settings of
sample size and . We can observe relatively higher correla-
tions among some of the tests listed from NS to Greenwood,
and among some of the tests listed from QM to Pardo, in
all settings. However, these higher correlations involve very
few of the tests, and overall these correlations tend to get
slightly weaker as the sample sizes get smaller. Moreover, the
correlations among the other tests are very low for the largest
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Fig. 7. Approximated Shapley values of all per-dimension tests, based on
marginal contribution to the total number of rejections across all parameteriza-
tion of the used scenarios, with sample size of 100, &« = 0.01 and no multiple
comparison correction applied. These Shapley values are approximated based
on 3600 random permutations.
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Fig. 8. Cluster plot showing the Kendall-Tau correlations [61] between test rejections on all scenarios, with sample size 50 (left) and 600 (right), a = 0.01.

sample size of 600. Therefore, it is likely that different tests
are best suited to recognise different types of deviations from
uniformity. For this reason, we will include all considered tests
in the BIAS toolbox.

D. Multiple comparison correction methods

For the per-dimension tests, we should take into ac-
count the fact that multiple tests are being done, and thus
the p-values should be changed using a correction proce-
dure. For this purpose, we consider 3 methods: Benjamini-
Holberg (BH) [62], Benjamini- Yekutieli (BY) [63] and Holm-
Bonferroni (Holm) [64].

For each of these methods, we consider their impact on 30-
dimensional samples of the uniform distribution to judge the
false positive rate. In Figure 9 on the left, we see the false
positive relative the the used « values (defined as ‘at least
1 rejection in the 30D sample’). This figure clearly shows
the need for a multiple comparison correction method, given
that the false positive rate is way over « (shown as dotted
lines) when using no correction methods. We also note minor
differences between the correction methods considered, with
BY leading to the lowest false positive rate.

Similarly, we can also consider the overall false negative
rate as an aggregation over all scenarios, as is done in the
right part of Figure 9. This figure shows that the impact of
the choice of multiple comparison correction method on the
false negatives is relatively minor. Because of this, we set the
BY-method as the default, since it is better able to produce
false positive rate lower than a.

E. Results on correlated samples

Within the set of scenarios, there are two sets which are
enabled only for the across-dimension tests. These scenarios

are the Consistent versions of existing scenarios Gaps
and Clusters. In Figure 10, we show the difference in test
rejections between these two versions of the scenario. It is
clear from the figure that aggregating samples from clusters
with different intiantiations on each dimension removes the
ability of many tests to detect structural bias, while the
across-dimension tests such as MDDLUD do not have this
issue. Additionally, since the spacing tests aggregate spacings
per dimension instead of samples, their effectiveness is not
reduced when the clusters are inconsistent. For the sake of
brevity, the other results on the across-dimension tests are
not discussed here, but the relevant figures and data is made
available at [57].
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Fig. 9. Evaluation of multiple comparison correction methods: fraction of
false positives in 30D samples with different correction methods (on the left)
and aggregated fraction of False Negatives across all scenarios of the 6 most
distinguishing tests based on Shapley values (on the right). On the left, values
above the relevant a-thresholds (0.01, 0.05) indicate too large false positive
rates. On both figures, markers identify the used sample size: O), >, A and OJ
are 30, 50, 100 and 600, respectively. Here, we conclude that BY correction
method should be chosen.
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VI. ESTIMATION OF THE SB TYPE

Since we use the results of many statistical tests to find
bias in artificially generated samples and different tests may
be better at capturing different deviations from uniformity,
we can use these tests to not only check if structural bias is
present, but also to identify what the most likely form of bias
is. This provides an answer to RQ2. To achieve this, we build
a random forest (RF) model, which takes as input the test-
rejections from all per-dimension tests. This is done to allow
scaling to arbitrary dimensions while having one model for
all sample sizes. Specifically, if we use statistical test values
directly, we would need one model per sample size, and a way
to aggregate the resulting predictions. Instead, a RF based on
rejections only needs to deal with the aggregation problem.

The data used to train and evaluate the random forest model
consists of the full set of scenario results (per-dimension
version) on all tests, with the output being the scenario-type it
comes from. However, if for a specific sample no test rejects
the null-hypothesis, these samples are discarded, since we have
no evidence of structural bias. This two-stage approach leaves
us with 1158000 biased samples, on which we train the RF
model with 100 trees and balanced class weights. For the sake
of clarity and reproducibility, we make the training data-set
available in the online repository [56]. A confusion matrix
created from an 80-20 test split is shown in Figure 11 (F1-
score of 0.56). Similarly to Figure 2, we see that the distinction
between the Cut Uniform and the other scenarios can be
challenging to accurately detect. However, this doesn’t have to
be an issue for practical detection of SB, since the scenarios
misidentified as Cut Uniform might show similar types of
bias, even tough their initial creation mechanism is different.

To provide a more practical estimation of SB in our toolbox,
we create an additional model to predict the type of bias, as
shown in the final column of Table I. These 5 categories are
more distinct from each other, removing overlap between some
similar classes, i.e. between Spikes and Noisy Spikes.
Overall, this model gives us an improved Fl-score of 0.79 on
a similar 80-20 split.

Cut Cauchy

Clusters; 0.8
Gaps |
Inverse Cut Cauchy 0.6
Inverse Cut Normal
Cut Normal; 0.4
Loose Clusters |
Noisy Spikes/ 0.2
Spikes |
Cut Uniform]
0.0

Cut Cauchy
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Inverse Cut Cauchy
Inverse Cut Normal
Cut Normal

Loose Clusters

Cut Uniform-

Fig. 11. Confusion matrix for the random forest model trained on test
rejections, aggregated over all sample sizes. The true scenario is shown on
the y-axis, while the predicted scenario is on the x-axis.

To use these models in the BIAS toolbox to predict bias
of the multi-dimensional test, we need to perform some
aggregation across dimensions to transform it into a binary
vector. We do this by checking the number of false positive
tests in 30D uniform samples. We run 10000 simulations,
where we record the maximum number of test rejections by
each test. This gives us a total of 92 cases where a test gives 2
rejections, and 2 cases where a test gives 3 rejections. As such,
we set the threshold for the aggregation of multi-dimensional
data to 0.1 - n. If no test is rejected in this aggregation, we
consider the samples to be non-biased. This threshold value is
then used to create the binary input vector for the RF model.

To verify that this works for other dimensionalities as well,
and to gauge the overall performance of the toolbox, we
simulate the false positive and false negative rates. This is
achieved by sampling (with replacement) from the set of test-
statistics on each of our used scenarios and applying this
aggregation rule. For false positives, this is done 100000
times on the (true) uniform data, while for false negatives it is
done 10000 times on every non-uniform scenario. The results,
shown in Figure 12, indicate that while the 0.1 n threshold is
rather conservative on higher dimensionalities, the FPR is well
below the selected o = 0.01, while the FNR is not needlessly
increased.

VII. BENCHMARKING SB OF REAL ALGORITHMIC DATA

This section benchmarks a large set of heuristic optimisation
algorithms by applying the BIAS toolbox, answering RQ3.

A. Data collection setup

We use data from a heterogeneous pool of heuristics exe-
cuted over f at dimensionalitly n = 30 for a maximum of
10000 - n fitness functional calls. In total, we consider 432
optimisation heuristics, which fall into the following categories
(all except the latter use N = 100, while the latter uses
N = 50 runs each):

o Variants of Differential Evolution (195 configurations),
o Compact optimisation algorithms (81 configurations),



« Single-solution algorithms (60 configurations),

o Variants of Genetic Algorithms (96 configurations).
For the sake of clarity and reproducibility, the exact composi-
tion and set-up of these algorithmic configurations is described
fully in a dedicated document available from [65].

B. Results

For each of the considered algorithm configurations, we
collect their final positions and feed these into the BIAS
toolbox. In Figure 13 (left side), we show the outcome from
the RF predicting the type of structural bias present in the
different GA configurations (only the biased ones are shown).
This shows that there are quite some differences in the detected
bias, even within this limited algorithm design space. It is also
interesting to note that the population size seems to have a
relatively small impact on the type of predicted bias, which
seems to be mostly impacted by the operator configuration.

For the single-solution algorithms, we see in the right part of
Figure 13 that the strategy of dealing with infeasible solution
seems to drastically change the type of detected bias. For
example, the Powell algorithm is classified as ‘discretiza-
tion’ bias when using mirror strategy, while the classification
changes completely with a COTN strategy. Such differences
can give us useful insight into the effect of these SDIS methods
on the optimisation behaviour of these algorithms.

VIII. CONCLUSION

Behaviour-based benchmarking is a great way to better
understand heuristic algorithms. We have proposed a new
behaviour-based benchmark, BIAS, in order to detect different
scenarios of structural bias in optimisation algorithms. The
BIAS toolbox consists of 36 per-dimension tests and 32
across-dimension tests to detect SB (RQ1). These statistical
tests are selected based on an elaborate literature research;
some of these tests are specifically designed for this toolbox
by the authors. The tests are compared and analysed using
different sample sizes and hyper-parameters to detect 11
different scenarios of SB. In addition to the tests, a generator
of SB scenarios is provided as well as two machine learning
models to predict the scenario of SB using the 11 scenarios
mentioned above (RQ?2).
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Fig. 13. Predicted SB class probabilities of the biased GA configurations
(left, sorted alphabetically) and the biased single-solution algorithms (right),
using the random forest model. Names for the GA are structured as mutation—
crossover—selection—-SDIS—population size. For the single-solution algorithms,
the character in brackets refers to the used SDIS.

From the results of the analysis, it is clear that the tool-
box performs very well in detecting structural bias in the
generated distributions. The machine learning models show
some confusion between similar SB scenarios, such as Gaps
- Loose clusters, and Spikes - Noisy Spikes, but
overall perform well enough to provide suggestions of the type
of SB.

In addition we provided the results of BIAS on a large set
of optimisation algorithms including variants of Genetic Algo-
rithm and Differential Evolution, compact and single-solution
algorithms (RQ3). The results show different kinds of SB in
existing heuristic optimisation algorithms. The BIAS toolbox,
including the fy function, the statistical tests, the SB scenario
generator and the random forest models are provided open-
source [4]. We recommend to use the Benjamini-Yekutieli cor-
rection method when using BIAS, since this correction method
is fast to compute and more conservative than Benjamini-
Holberg. We furthermore recommend a minimum sample size
of 50 since in most cases it is sufficient to detect SB for all
scenarios, as can be seen from the Genetic Algorithm results.
However, some mild SB scenarios could still go undetected.
If time and computation power permits, a sample size of 100
would be best.

For future research, it would be interesting to explore
different machine learning models to see if the predictions
of the type of SB can be improved. Additionally, decreasing
the number of statistical tests could improve the execution
time required to run the benchmark, and may not necessarily
decrease accuracy of the BIAS toolbox.
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