
Towards Novel Meta-heuristic Algorithms for
Dynamic Capacitated Arc Routing Problems

Hao Tong1, Leandro L. Minku1, Stefan Menzel2,
Bernhard Sendhoff2, and Xin Yao1

1 School of Computer Science, University of Birmingham
Edgbaston, Birmingham, B15 2TT, UK

{hxt922, L.L.Minku, x.yao}@cs.bham.ac.uk
2 Honda Research Institute Europe GmbH, 63073 Offenbach, Germany

{stefan.menzel,bs}@honda-ri.de

Abstract. The Capacitated Arc Routing Problem (CARP) is an ab-
straction for typical real world applications, like waste collection, winter
gritting and mail delivery, to allow the development of efficient optimiza-
tion algorithms. Most research work focuses on the static CARP, where
all information in the problem remains unchanged over time. However,
in the real world, dynamic changes may happen when the vehicles are
in service, requiring routes to be rescheduled. In this paper, we mainly
focus on this kind of Dynamic CARP (DCARP). Some meta-heuristics
solve (D)CARP by generating individuals that are sequences of tasks to
be served as the individual representation. The split of this sequence into
sub-sequences to be served by different vehicles needs to be decided to
generate an executable solution, which is necessary for calculating in-
dividual’s fitness. However, the existing split schemes for static CARP
and DCARP are not capable of getting high quality feasible solutions
for DCARP. Therefore, we propose two different split schemes in this
paper – an optimal and a greedy split scheme. The optimal split scheme,
assisted by A-star algorithm, can obtain the best vehicle routes from an
ordered list. The greedy split scheme is not guaranteed to obtain optimal
splits, but it is much more efficient. More importantly, it can keep the
rank information between different individuals. Our experiments show
that the greedy split scheme has good relative accuracy with respect to
the optimal split scheme and that the two proposed split schemes are
better than the existing DCARP split scheme in terms of the obtained
solutions’ quality.

Keywords: Dynamic CARP · Split scheme · A-star algorithm · Greedy
search.

1 Introduction

The Capacitated Arc Routing Problem (CARP) is a classical and important
combinatorial optimization problem, dealing with a set of edges in a graph served
by a number of vehicles with limited capacity [4]. Consider a pre-defined graph



2 H. Tong et al.

containing a set of vertices and edges, where every edge has a travel cost and
some edges, called tasks, have demands required to be served once by vehicles.
CARP’s aim is to find an optimal routing schedule that assigns vehicles to serve
all tasks once and only once, minimizing the total travel cost. There is a wide
range of real world applications related to CARP, such as waste collection [7],
winter gritting [6], mail delivery [2] and others.

Plenty of approaches have been proposed to handle the various CARP appli-
cations, including constructive heuristic methods [3, 18], efficient algorithms for
different kinds of CARP [1, 7, 16], algorithms for large scale CARPs [11, 17], and
algorithms for uncertain CARPs [16, 12]. Most existing work focuses on static
scenarios, in which the condition of a CARP does not change once it is given.
However, in the real world, CARP is likely to dynamically change during the
service process of vehicles. For example, new tasks may be added or some edges
may not be available any more. This is referred to as Dynamic CARP (DCARP),
and was, to the best of our knowledge, firstly investigated by [15, 5]. Liu et al. [10]
proposed a memetic algorithm with a new split scheme to solve DCARP, which
included six factors, i.e. vehicle availability, road accessibility, added/cancelled
tasks, road congestion and change in tasks’ demands. After Liu et al., to the
best of our knowledge, only one work related to DCARP was published [13], in
which failure of vehicles is the only dynamics considered.

Many algorithms for CARP usually produce a sequence of tasks, i.e. the
individual represented in the meta-heuristic and evolutionary algorithms is a
sequence of tasks [7, 16]. A split scheme is applied to obtain the executable
sub-routes (i.e., sub-sequences of tasks) to be served by different vehicles. Such
executable sub-routes are necessary for evaluating the fitness of the individu-
als. Fitness evaluation, and in particular the split scheme used during fitness
evaluation, is thus a key point when using sequence of tasks as the individual
representation in meta-heuristics to solve DCARP. However, split schemes for
static CARP are unsuitable for DCARP, because DCARP has to assign outside
vehicles to serve the remaining tasks and return to the depot, instead of using
only vehicles that are in the depot. The only existing split scheme proposed for
DCARP uses a random-based operator. Among other problems, it (1) makes
the fitness evaluation noisy and (2) leads to fitness values that are unlikely to
correspond to the actual fitness of the solution to be adopted in practice.

In this paper, we propose two new split schemes toward meta-heuristic algo-
rithms for DCARP: (1) an optimal split scheme whose time and space complexity
are high, and (2) a greedy split scheme which is not optimal, but has lower time
and space complexity, being more suitable for real world applications. We per-
form experiments showing that the greedy split scheme maintains the rank of
individuals of the population much better than the exiting split scheme, and also
showing that the greedy split scheme is much more efficient than the proposed
optimal split scheme.

The remainder of this paper is organized as follows. Section 2 discusses related
work on split schemes for (D)CARP. Section 3 presents the main procedures of



Towards Novel Meta-heuristic Algorithms for Dynamic CARP 3

our two proposed split schemes. Section 4 presents experiments to evaluate the
proposed and existing DCARP split schemes. Section 5 concludes the paper.

2 Related Work

As explained in Section 1, the representation of individuals for solving CARP
by meta-heuristic algorithms is a sequence of tasks. To form a feasible CARP
solution whose fitness can be computed, this sequence needs to be split into
different sections, each of them to be served by a different vehicle. Given this
work’s focus on DCARP split schemes, this section concentrates on split schemes.

2.1 Split Scheme for Static CARP

For static CARP, the Ulusoy’s scheme [18] is used, which can obtain an optimal
split from an individual by building an auxiliary graph. Assume an individual
{t1, t2, ..., tNt

} for CARP, Ulusoy’s split builds an auxiliary graph, G∗, to find
the optimal split. G∗ contains Nt + 1 nodes, in which the first node represents
the depot. Each edge (i, j) in the auxiliary graph represents a feasible sub-route,
rsub, of the CARP, and its cost is the weight, wi,j , of the corresponding edge.
For example, consider that edge (i, j) represents the route rsub = {depot →
ti+1 → ti+2 → ... → tj → depot}, and wij = costrsub

. Then, Ulusoy’s split uses
Dijkstra’s algorithm to find the shortest path from first node to the last node in
G∗, which indicates the optimal split for the assigned individual. Ulusoy’s split
cannot be used for DCARP, because different vehicles in DCARP start from
different stop points in the intermediate states, whilst all targets are the depot.

Some studies extended Ulusoy’s split to multi-depot CARP [19]. However,
each edge in the auxiliary graph represents a route that must start and end at
the same depot. Therefore, these split schemes are also not suitable for DCARP,
where vehicles start from different stop points in the intermediate states.

2.2 Split Schemes for DCARP

Liu et al. [10] proposed the first split scheme for DCARP, called Distance Based
Split Scheme (DSS). Consider a given individual {t1, t2, ..., tNt

}. DSS randomly
splits it into NK sub-routes, where NK is the number of vehicles used in service
and is defined by the solution of the initial CARP instance. For each sub-route
Sk, DSS calculates the sum of cost Cpvj of each vehicle j from its current position
to each task’s start node and end node:

Cpvj =

Sk∑
ti

cost(vj , startti) + cost(vj , endti) (1)

where vj denotes the location of vehicle j. The vehicle with minimal Cpvj will
be assigned to serve the Sk. After all vehicles are assigned to all tasks, the total



4 H. Tong et al.

cost can be calculated for the whole schedule. Finally, DSS repeats the above
process three times and selects the schedule with minimal total cost.

DSS has some significant weaknesses. Firstly, it makes the fitness evaluation
noisy, as the fitness is not deterministic anymore and highly depend on the qual-
ity of the best among three random splits. Secondly, the fitness value obtained
based on DSS is unlikely to correspond to the actual fitness of the solution to be
adopted in practice. Thirdly, if the demand of a sub-route exceeds the remain-
ing capacity of an assigned vehicle, DSS uses a path repair operator, where the
vehicle returns back to the depot to get refilled and then goes back to continue
serving the next task. This is inefficient to some extent, because other vehicles
may still have big remaining capacities and could potentially be assigned to serve
the remaining tasks that exceeded the original vehicle’s capacity. Furthermore,
DSS never considers new sub-routes starting from the depot, resulting in an in-
flexible schedule. In some cases, vehicles may not have enough capacity to serve
the distant tasks after serving the near tasks so that they have to apply the
repair operator to serve the distant tasks separately with a high cost. However,
if it was allowed to create a new route for near tasks, vehicles would have enough
capacity to serve all distant tasks simultaneously, avoiding to serve the distant
tasks independently with a very high cost, and thus the total cost is reduced.
Finally, DSS cannot guarantee an optimal split.

To overcome DSS’ shortcomings, we propose two deterministic split schemes
for DCARP. Both of them can handle the situation where vehicles start from
different stop points, and they also consider that new vehicles can be assigned to
serve tasks. One of them focuses on optimality and the other one on efficiency.

3 Proposed Split Schemes for DCARP Fitness Evaluation

For static CARP, Ulusoy’s split finds the optimal split by building an auxiliary
graph, in which the shortest path represents the optimal split. Inspired by this
idea, our two proposed DCARP split schemes also mainly contain two steps: aux-
iliary graph construction and path finding. The two split schemes apply different
path-finding strategies based on the same auxiliary graph.

3.1 Auxiliary Graph Construction

In the auxiliary graph for static CARP, the edge between any two nodes rep-
resents a sub-route, serving a set of tasks. For instance, edge eij represents a
sub-route serving the task’s set {ti+1, ti+2, ..., tj}. Similarly, we also use an edge
in the auxiliary graph to represent a sub-route for DCARP. Hence, for an or-
dered list of tasks, i.e., t1, t2, ..., tNt , there are Nt + 1 nodes in the auxiliary
graph. However, different from the static CARP, we already have some vehicles
outside of the depot, which can be assigned to serve the remaining tasks. They
stopped in different positions when the change happened, and they have to start
from these positions to serve the remaining tasks. Therefore, an edge (i, j) be-
tween two nodes represents different routes for different vehicles in the auxiliary



Towards Novel Meta-heuristic Algorithms for Dynamic CARP 5

graph. As a result, we construct several edges between two nodes in the auxiliary
graph to represent sub-routes for all outside vehicles. Besides, considering that
new sub-routes starting from the depot can also be created1, we add an addi-
tional edge between two nodes to represent the route starting from the depot.
Algorithm 1 presents the procedure for building an auxiliary graph for DCARP.

Algorithm 1: Build auxiliary graph for DCARP

Input: Individual : I = {t1, t2, ..., tN}
Stop points for outside vehicles: V = {v1, v2, ..., vK}
Remaining capacity for outside vehicles: CP = {cp1, cp2, ..., cpK}

1 Generate N + 1 Nodes (Index from 0 to N) for the auxiliary graph G∗;
2 v0 = depot, cp0 = original capacity;
3 V = {v0, v1, v2, ..., vK}, CP = {cp0, cp1, cp2, ..., cpK};
4 for each vehicle k in V do
5 for each node pair: (Nodei, Nodej) do
6 Use vehicle k to serve {ti+1, ti+2, ..., tj};
7 Sub-route: rijk = {vk → ti+1 → ti+2,→ ...,→ tj → depot};
8 Calculate the total demand dijk of rijk;
9 if dijk > cpk then

10 continue;

11 else
12 Calculate the cost of rijk: cijk;
13 Assign an edge eijk with weight cijk between Nodei and Nodej ;

Output: An auxiliary graph G∗

Assume that K vehicles are currently outside the depot. The stop points
and remaining capacities for vehicles are V = {v1, v2, ..., vK} and CP =
{cp1, cp2, ..., cpK}. For the additional edge for new vehicles, we add a stop point
v0 = depot into V and cp0, equal to the original capacity, into CP , in Line 2-3.
For each pair of nodes (Nodei, Nodej), we build an edge eijk for each vehicle k,
which represents the sub-route rijk = {vk → ti+1 → ti+2 → ... → tj → depot},
in Lines 6-7. However, if the total demand of rijk exceeds the vehicle’s remaining
capacity, edge eijk will be removed due to the capacity constrain, in Lines 8-10.
Otherwise, the weight of eijk is assigned with the cost of rijk, cijk in Lines 12-13.

3.2 A-Star Based Optimal Split Scheme

Path Finding: For static CARP, the Dijkstra algorithm is used directly to
find the shortest path in the auxiliary graph. However, the number of edges in
DCARP is much larger, as explained in Section 3.1, because there is a different

1 New routes could potentially be served by a new vehicle (if we extra vehicles are
available), or by an outside vehicle (after it finishes serving its currently assigned
tasks and returns to the depot).



6 H. Tong et al.

edge (i, j, k) for each vehicle k between the pair of nodes (i, j). To increase
efficiency, we adopt the A-star algorithm to find the optimal path, instead of
Dijkstra.

There are also two important constraints which have to be considered in
DCARP and which did not exist in static CARP. First, any two edges in the
whole path cannot belong to the same outside vehicle. Otherwise, the outside
vehicle would have to serve two sub-routes, starting from the same outside stop
point. However, when the vehicle finishes one sub-route, it stops at the depot.
Therefore, it is impossible for this vehicle to serve another sub-route starting
from an outside stop point. Secondly, all outside vehicles have to return to the
depot even if they are not assigned to serve tasks in the new schedule. This
means that, if no edge is assigned to a given outside vehicle in the whole path,
the cost of this vehicle returning to the depot still needs to be considered in the
total final split cost.

To use A-star, we need to determine a suitable admissible heuristic function
h(n). A heuristic is admissible if the cost it retrieves is smaller than or equal
to the actual minimal cost to reach the target node in the tree from n [14]. In
our problem, we use the minimal cost from the current node to the final node in
the auxiliary graph without considering the constraints as the heuristic function.
The cost function g(n) is calculated according to the actual path to reach n. In
our split scheme, when different paths arrive at the same node in the auxiliary
graph, the path with better cost will not replace the worse one because the
choice of vehicles before influences the cost from the current node to the target.
Therefore, the tree-based A-star search [14] is used in our split scheme. The
procedure of the A-star-based optimal split scheme is presented in Algorithm 2.

The split scheme builds an auxiliary graph in Line 1 for shortest path find-
ing. From the first node in the auxiliary graph, A-star expands each selected
node with minimal f(n) and finds its successors, in Lines 8-9 and Line 20. The
estimated costs f(n) for all successors are calculated in Lines 13-14. During the
procedure of expanding the current node, the A-star-based split scheme applies
two strategies to handle the two constraints for DCARP. Firstly, in order to
avoid the repetition of edges belonging to the same vehicle, it removes all edges
belonging to the vehicles which have already been selected in the current part
of the path and then explores the rest of path, in Line 12. For the second con-
straint, when A-star reaches the final node, we repair the cost of the final path
if some outside vehicles are never selected, adding the returning cost for these
non-selected outside vehicles in Lines 15-16.

Complexity Analysis: A-star guarantees the optimality of the path found.
However, it has a high space and time complexity since there are N tasks in

total. For static CARP, the number of edges is #ES = N(N−1)
2 , and the number

of all possible paths is #PS = 2N+1 in the auxiliary graph. In the auxiliary
graph for DCARP, if there are K outside vehicles, the number of edges is

#ED =
(K + 1) ·N(N − 1)

2



Towards Novel Meta-heuristic Algorithms for Dynamic CARP 7

Algorithm 2: A* based optimal split scheme

Input: Individual : I = {t1, t2, ..., tN}
1 Build an auxiliary graph G∗ for DCARP;
2 expandNode = Node0; openNodeSet = {}; pathSet = {};
3 while True do
4 if expandNode == target then
5 Shortest path P : path correspond to expandNode;
6 Minimal cost C: fexpandNode correspond to expandNode;
7 break;

8 Select rootPath (i.e. path from Node0 to expandNode) from pathSet;
9 Find all feasible successors for expandNode in the graph;

10 for each successor of expandNode do
11 newPath = rootPath + expandNode→ successor;
12 Remove all edges belong to vehicles used in newPath for successor;
13 Calculate the hsucc and gsucc;
14 Set fsucc = hsucc + gsucc;
15 if successor == target then
16 Repair fsucc;

17 Add the successor into openNodeSet;
18 Add the newPath into pathSet;

19 Remove expandNode, rootPath from openNodeSet and pathSet;
20 Select the node in openNodeSet with minimal f as expandNode;

21 The shortest path from Node0 to target in G∗: P = {p1, p2, ..., pM};
22 Each pm represents an edge eijk, which denotes a sub-route rijk;
23 Obtain the solution S by splitting the I by P .

Output: Solution S = {r1, r2, ..., rM}, Minimal cost: C

and the number of all possible paths, i.e. from the first node to the target in the
auxiliary graph, is

#PD =

N∑
n=1

Cn−1
N−1

min(n,K)∑
i=0

Cn−i
n · Pi

K

Therefore, the number of routes in the auxiliary graph for DCARP is much
larger than in the static case. The A-star algorithm has to save all expanded
nodes during the search process. In the worst case, it will visit and save all
#PD possible paths. Even though heuristics can frequently avoid the worst case
scenario, the computational time still depends on #PD and is often still unac-
ceptably high, as will be demonstrated by our experiments in Section 4.3.

3.3 Greedy split scheme

Path Finding: As discussed above, the A-star based optimal split scheme is
computationally expensive when using A-star search to find the optimal path in



8 H. Tong et al.

the auxiliary graph. Therefore, we propose a greedy strategy to find a path with
a good quality in the auxiliary graph.

In the auxiliary graph, each edge eijk represents a route rijk, serving a list
of tasks and having a cost cijk. So, we can obtain an efficiency parameter for
each route, which is the average cost for each demand of this route. Generally,
when there are several possible routes to be selected, we will choose the route
with the lowest average cost for each demand, from a greedy perspective. The
greedy procedure is presented in Algorithm 3.

Algorithm 3: Greedy split scheme

Input: Individual : I = {t1, t2, ..., tN}
1 Build an auxiliary graph G∗ for DCARP;
2 for each edge eijk in G∗ do
3 Calculate the ACD: ACDijk;

4 expandNode = Node0; newPath = Node0
5 while True do
6 if expandNode == target then
7 Greedy path: newPath, P = {p1, p2, ..., pM};
8 Calculate the greedy cost of greedy path: C;
9 break;

10 rootPath ← newPath;
11 Find all edges linking to successors for expandNode;
12 Select the edge with the minimal ACD;
13 NodeX ← successor that the selected edge belongs to;
14 newPath = rootPath + expandNode→ NodeX ;
15 Remove all edges corresponding to vehicles being used in newPath;
16 expandNode← NodeX ;

17 Each pm represents an edge eijk, which denotes a sub-route rijk;
18 Obtain the solution S by splitting the I by P .

Output: Solution S = {r1, r2, ..., rm}, Greedy cost: C

Assuming the ordered tasks {t1, t2, ..., tNt
}, we build an auxiliary graph ac-

cording to Algorithm 1 (Line 1). Then, we calculate the average cost for each
demand (ACD), for each edge eijk, as ACDijk, in Lines 2-3. In each step, the
greedy split scheme will select the edge with the minimal ACD from all edges
linking to the current node, in Lines 11-12. Similarly, in order to satisfy the con-
straints, when an edge belonging to one outside vehicle is selected in each step,
it will remove all edges corresponding to this vehicle in the later path-finding
process, in Line 15. Finally, the process terminates when the target is found, and
then the actual cost for the greedy path is calculated, considering the return cost
of any unused outside vehicles, in Lines 7-8.
Complexity Analysis: The greedy split scheme is much more efficient than
A-star-based optimal split scheme. Without considering the auxiliary graph con-
struction, its time complexity is only O(Nt).



Towards Novel Meta-heuristic Algorithms for Dynamic CARP 9

4 Experiments

The greedy split scheme has much lower time complexity than the optimal split
scheme, but may lead to splits of lower quality. Given that the split scheme will
be used as part of the fitness evaluation of individuals within a meta-heuristic
algorithm, it is desirable that better individuals according to the optimal split
scheme are still considered as better individuals according to the greedy split
scheme. In particular, if the ranking (relative accuracy) of individuals does not
change when adopting the greedy instead of the optimal split scheme, the lower
quality of the splits obtained by the greedy split scheme will not negatively affect
the meta-heuristic algorithm, depending on the selection mechanisms being used.
Therefore, in this section, we compare the relative accuracy of the greedy split
scheme (GSS) with that of the existing split scheme, the distance-based split
scheme (DSS) [9]. In addition, we also compare the fitness and computational
time for different split schemes.

4.1 Comparison on relative accuracy

At first, we test three difference split schemes in a series of problem instances
to show the relative accuracy of GSS and DSS, relative to optimal split schemes
(OSS). Two benchmark sets, referred as gdb set [3] and egl set [8], for static
CARP are used as basis map for DCARP in our experiments. Each benchmark
generates one scenario for simulating the situation of changes happening, where
the changes include broken down vehicles, closed roads, roads congestion, added
tasks and increased demands. After the changes, gdb and egl instances have
on average 174 and 37 tasks, representing a high and a low dimensional set of
instances, respectively. For each scenario after the changes, Np = 40 individuals
are randomly generated and evaluated by different split schemes.

In order to compare the relative accuracy, we use the Kendall rank correlation
coefficient (τ) as the measurement. Assuming that the fitnesses of individual i
are fOSS , fGSS and fDSS , τ can be calculated as

τ =
2

Np(Np − 1)

∑
i<j

sgn(fOSSi
− fOSSj

)sgn(fSSi
− fSSj

) (2)

where fSSi denotes fGSSi or fDSSi , and Np is the size of population. τ ∈ [−1, 1]
and a large τ indicates the relative accuracy of one split schemes is highly agreed
with the optimal split scheme.

The results on relative accuracy are presented in Figure 1. The left part be-
longs to the egl set of benchmarks, whose dimension, i.e. the number of tasks, is
larger than that of the gdb set in the right part. From the result, GSS is better
than DSS with respect to the relative accuracy, especially in high dimension. It
is mainly because DSS splits the individuals by random selection. The fitness
obtained highly depends on the random seed, which influences the relative accu-
racy deeply. For example, for two individuals, the OSS can provide the relative
fitness, but the better individual may be splitted into a low quality solution



10 H. Tong et al.

due to a ill-chosen random seed. By contrast, the GSS split an individual on a
deterministic way and there is no randomness in the split procedure, so that its
relative accuracy is higher than DSS.

e1
-A

e1
-B

e1
-C

e2
-A

e2
-B

e2
-C

e3
-A

e3
-B

e3
-C

e4
-A

e4
-B

e4
-C

s1
-A

s1
-B

s1
-C

s2
-A

s2
-B

s2
-C

s3
-A

s3
-B

s3
-C

s4
-A

s4
-B

s4
-C g1 g2 g3 g4 g5 g6 g7 g8 g9g1
0

g1
1

g1
2

g1
3

g1
4

g1
5

g1
6

g1
7

g1
8

g1
9

g2
0

g2
1

g2
2

g2
3

Instances

-0.2

0

0.2

0.4

0.6

0.8

1

K
en

da
ll 

ra
nk

 c
or

re
la

tio
n egl (High Dimension) gdb (Low Dimension)

Greedy Split
Distance-based Split

Fig. 1. Relative accuracy achieved by GSS and DSS.

However, when the problem is of low dimension, the difference in relative
accuracy is small, because the search space for split becomes small. The result
of one random split is close to another random split, so that the influence of
randomness decreases.

4.2 Comparison on obtained fitness

For the same individual, GSS and DSS obtain different solutions, with differ-
ent fitness values, i.e total cost. Therefore, in this subsection, we compare the
performance of GSS and DSS, with respect to the fitness values. For each pop-
ulation with Np individuals, as shown in the previous subsection, we compare
every fitness obtained by GDD and DSS. Wilcoxon Sign Rank tests with a 0.05
significance level were carried out to compare the fitness values of the individuals
and the ratio of individuals where GSS was better than DSS in the population
is shown in Figure 2, where the blue(red) solid stems represent that GSS(DSS)
performs significantly better than DSS(GSS) and the dash stems represents that
both split schemes have no significant difference. In conclusion, GSS performs
better than DSS significantly in most DCARP cases.

We can see that in all high dimensional cases, the fitness values obtained
by GSS are almost all better than those of DSS in each population. However,
GSS’s performance decreases compared with that of DSS in low dimensional
cases. There are two main reasons to explain the results. First, as discussed
in the previous subsection, the solution obtained by DSS highly depends on the
random seed. When the problem dimension is very low, the random split is likely
to obtain a very good solution thanks to its diversity and the small search space.



Towards Novel Meta-heuristic Algorithms for Dynamic CARP 11

egl (High dimension) | gdb (Low dimension)
Instances

0

50%

100%

P
er

fo
rm

an
ce

 R
at

io

Fig. 2. Ratio of individuals where GSS is better than DSS in the population. Solid
stems represent DSS and GSS have significant difference and dash stems represent
they have no significant difference.

However, it cannot help a lot in the high dimensional cases. Second, when a
given vehicle’s capacity is exceeded due to a change, DSS uses a repair operator
to make the vehicle return to the depot first and then continue to serve the
remaining tasks from the depot. This typically results in higher costs than if
new sub-routes starting from the depot could be created during the split process
as done by our approaches, given that new sub-routes not only directly help to
satisfy the capacity constraints, but also are optimized together with the sub-
routes starting from outside, which makes our split more flexible and efficient.

4.3 Comparison on computational time

Finally, in this subsection, we will compare the computational time for three
split schemes. We select 8 maps for each dataset as test scenario. As discussed in
Section 3, OSS might require much time to obtain the solution. Therefore, in the
previous experiments, the scenarios we generated were suitable for OSS to obtain
the result within 300 seconds, to have enough results for the comparisons. In this
section, we randomly generate the test scenarios. If OSS is unable to find the
optimal solution within 300 seconds, the experiment is considered as a failure
and the computational time is not considered. The computational results are
presented in Table 1 , in which the time for GSS and OSS contains the time for
auxiliary graph construction.

GSS is the most efficient method among the three split schemes, and OSS
is the most computationally expensive in all test scenarios. GSS starts from
the first node in the auxiliary graph, and selects the edge with minimal ACD.
DSS splits the individuals randomly. Although the random split is very efficient,
the repair operator is required to obtain the total cost, which is a relatively
computationally expensive process. OSS has a very large search space, and the
A-star algorithm will save all explored nodes, which causes its computational
time to be very large in some cases. From the results, we can also observe that



12 H. Tong et al.

Table 1. The computational time (in seconds) for OSS, GSS, DSS. For OSS, the
success rate is shown in brackets. Nt is the number of tasks (dimension) and K is the
number of outside vehicles.

Instances Nt K tGSS tDSS tOSS

egl-e1-A 35 2 0.03 0.70 0.22 (40/40)
egl-e2-A 39 3 0.03 0.66 0.77 (40/40)
egl-e3-A 29 4 0.03 0.42 9.91 (2/40)
egl-e4-A 38 6 0.04 0.64 27.3 (8/40)
egl-s1-A 70 7 0.07 1.38 N/A (0/40)
egl-s2-A 86 13 0.11 1.49 N/A (0/40)
egl-s3-A 66 9 0.08 1.08 N/A (0/40)
egl-s4-A 64 4 0.04 0.88 6.78 (1/40)

Instances Nt K tGSS tDSS tOSS

gdb2 3 3 0.04 0.08 0.13 (6/6)
gdb5 2 3 0.02 0.06 0.03 (2/2)
gdb8 20 7 0.03 0.29 11.4 (6/40)
gdb9 16 5 0.02 0.29 0.86 (39/40)
gdb16 7 1 0.02 0.15 0.05 (40/40)
gdb18 14 3 0.02 0.27 0.07 (40/40)
gdb22 15 5 0.02 0.28 4.58 (38/40)
gdb23 21 4 0.02 0.36 26.5 (36/40)

the number of tasks and outside vehicles have a big impact on the computational
time for OSS. When there are many outside vehicles, the search space becomes
very large, so that it is very hard to find the optimal split results for OSS. This
is because the tasks and outside vehicles directly determine the search space as
shown in Eq. (23).

5 Conclusion

The split scheme is essential for fitness evaluation in DCARP. However, the
existing split scheme for static CARP is unsuitable for DCARP, and the existing
DCARP splitting scheme highly depends on the random seed, being unable to
provide stable results. Therefore, in this paper, we propose two new split schemes.
The first split scheme is an optimal split scheme based on the A-star search. It is
capable to provide an optimal solution for an ordered list of tasks. However, it is
computationally expensive in many scenarios due to the huge search space. The
second is a greedy split scheme, which is much more efficient than the optimal
split scheme and even than the existing random split scheme. Our experiments
show that the greedy split scheme is capable of leading to similar individual
rankings to the optimal split scheme, and its fitness is much better than that
of the existing random split scheme for DCARP, especially in high dimensional
test cases.

Future work includes the testing of proposed split schemes in more real in-
stances and the design of meta-heuristic methods to solve DCARP using the
proposed split schemes.

Acknowledgements

Hao Tong gratefully acknowledges the financial support from Honda Research
Institute Europe (HRI-EU).



Towards Novel Meta-heuristic Algorithms for Dynamic CARP 13

References

1. Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated
arc routing problem. Computers & Operations Research 35(4), 1112–1126 (2008)

2. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part ii: The rural
postman problem. Operations research 43(3), 399–414 (1995)

3. Golden, B.L., DeArmon, J.S., Baker, E.K.: Computational experiments with algo-
rithms for a class of routing problems. Computers & Operations Research 10(1),
47–59 (1983)

4. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3),
305–315 (1981)

5. Handa, H., Chapman, L., Yao, X.: Dynamic salting route optimisation using evo-
lutionary computation. In: 2005 IEEE Congress on Evolutionary Computation.
vol. 1, pp. 158–165. IEEE (2005)

6. Handa, H., Chapman, L., Yao, X.: Robust route optimization for gritting/salting
trucks: A cercia experience. IEEE Computational Intelligence Magazine 1(1), 6–9
(2006)

7. Lacomme, P., Prins, C., Ramdane-Chérif, W.: Evolutionary algorithms for periodic
arc routing problems. European Journal of Operational Research 165(2), 535–553
(2005)

8. Li, L.Y., Eglese, R.W.: An interactive algorithm for vehicle routeing for win-
ter—gritting. Journal of the Operational Research Society 47(2), 217–228 (1996)

9. Liu, M., Singh, H.K., Ray, T.: A benchmark generator for dynamic capacitated arc
routing problems. In: 2014 IEEE Congress on Evolutionary Computation (CEC).
pp. 579–586. IEEE (2014)

10. Liu, M., Singh, H.K., Ray, T.: A memetic algorithm with a new split scheme for
solving dynamic capacitated arc routing problems. In: 2014 IEEE Congress on
Evolutionary Computation (CEC). pp. 595–602. IEEE (2014)

11. Mei, Y., Li, X., Yao, X.: Cooperative coevolution with route distance grouping for
large-scale capacitated arc routing problems. IEEE Transactions on Evolutionary
Computation 18(3), 435–449 (2013)

12. Mei, Y., Tang, K., Yao, X.: A global repair operator for capacitated arc routing
problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics) 39(3), 723–734 (2009)

13. Monroy-Licht, M., Amaya, C.A., Langevin, A., Rousseau, L.M.: The rescheduling
arc routing problem. International Transactions in Operational Research 24(6),
1325–1346 (2017)

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (3rd Edition).
Prentice Hall, third edn. (2010)

15. Tagmouti, M., Gendreau, M., Potvin, J.Y.: A dynamic capacitated arc rout-
ing problem with time-dependent service costs. Transportation Research Part C:
Emerging Technologies 19(1), 20–28 (2011)

16. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search
for capacitated arc routing problems. IEEE Transactions on Evolutionary Compu-
tation 13(5), 1151–1166 (2009)

17. Tang, K., Wang, J., Li, X., Yao, X.: A scalable approach to capacitated arc routing
problems based on hierarchical decomposition. IEEE Transactions on Cybernetics
47(11), 3928–3940 (2016)

18. Ulusoy, G., et al.: The fleet size and mix problem for capacitated arc routing.
European Journal of Operational Research 22(3), 329–337 (1985)



14 H. Tong et al.

19. Xing, L., Rohlfshagen, P., Chen, Y., Yao, X.: An evolutionary approach to the
multidepot capacitated arc routing problem. IEEE Transactions on Evolutionary
Computation 14(3), 356–374 (2009)


