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Abstract

Surrogate-assisted evolutionary algorithms (SAEAs), which use efficient surrogate models or meta-models to approx-
imate the fitness function in evolutionary algorithms (EAs), are effective and popular methods for solving compu-
tationally expensive optimization problems. During the past decades, a number of SAEAs have been proposed by
combining different surrogate models and EAs. This paper dedicates to providing a more systematical review and
comprehensive empirical study of surrogate models used in single-objective SAEAs. A new taxonomy of surrogate
models in SAEAs for single-objective optimization is introduced in this paper. Surrogate models are classified into
two major categories: absolute fitness models, which directly approximate the fitness function values of candidate
solutions, and relative fitness models, which estimates the relative rank or preference of candidates rather than their
fitness values. Then, the characteristics of different models are analyzed and compared by conducting a series of
experiments in terms of time complexity (execution time), model accuracy, parameter influence, and the overall per-
formance when used in EAs. The empirical results are helpful for researchers to select suitable surrogate models when
designing SAEAs. Open research questions and future work are discussed at the end of the paper.

Keywords: Evolutionary algorithms, Surrogate models, Absolute fitness models, Relative fitness models, Expensive
optimization problems

1. Introduction

Evolutionary Algorithms (EAs) require a so-called fitness function to evaluate the quality of candidate solutions
when solving a problem. A large number of fitness evaluations is usually required to obtain a satisfying solution.
However, in many real-world problems, the fitness function is very complex and expensive to compute. For example,
a single Navier-Stokes fitness evaluation will take several hours [1], and the fitness evaluation of vehicle shape design
optimisation [2] involves expensive simulation. Such problems are referred to as computationally expensive problems
(CEPs).

Computational cost is a crucial challenge in applying EAs to solve CEPs. Surrogate-assisted evolutionary al-
gorithms (SAEAs) are developed to reduce the computational cost of solving CEPs. In SAEAs, surrogate models
or meta-models are approximate models that can simulate the behaviour of the real or true fitness function, but can
be evaluated much faster and more cheaply. The easy-to-compute surrogates are used to evaluate some candidate
solutions instead of using the real fitness function, so that the computational cost of the optimization procedure is
reduced.

The use of surrogate models in EAs has attracted increasing attention over the past decades, and a large number
of SAEAs have been introduced. SAEAs have been applied to computationally expensive single-objective optimiza-
tion [3, 4, 5], multi-objective optimization [6, 7] and combinational optimization [8] problems. In addition, SAEAs
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have been applied to problems other than CEPs, including interactive optimization problems, dynamic optimiza-
tion [5], network architecture search [9] and others. SAEAs have also been successfully adopted to solve expensive
real-world optimization problems from different domains, including engineering design [2], health industry [10] and
interactive design [11, 12].

Many surrogate modelling approaches have been introduced to SAEAs over the past few years. Surrogate models
are usually used to predict new candidate solutions’ fitness values by approximating the real fitness function. For
this purpose, regression models, such as polynomial regression, Gaussian Process regression (a.k.a. Kriging model),
and radial basis functions, are commonly used in SAEAs [13]. This kind of surrogate model that directly predicts
candidates’ fitness values is referred to as absolute fitness models in this paper. In recent years, some new surrogate
models have been introduced to SAEAs by providing the relative rank or preference of candidate solutions rather than
predicting their fitness values [14, 15, 16, 17]. In this paper, such surrogate models are referred to as relative fitness
models. Both the modelling techniques and how the resulting relative fitness models use within SAEAs are different
from commonly used absolute fitness models. However, the existing surveys [13, 3, 5, 8] mostly focus on absolute
fitness models that provide absolute fitness value predictions. There is no comprehensive review that systematically
discusses both absolute and relative fitness models to the best of our knowledge. In addition, there is still no guideline
for choosing suitable surrogate models when designing SAEAs.

This motivates us to give a new and more comprehensive review that discusses both absolute and relative fitness
models used in SAEAs for single-objective optimization problems. The remainder of this paper is organized as
follows. Section 2 gives a brief introduction to the general SAEA framework and presents our new taxonomy for
surrogate models in SAEAs. Sections 3 and 4 review absolute fitness models and relative fitness models, respectively.
Section 5 compares different surrogate models from several perspectives, including time complexity, model accuracy,
parameter influence, and overall performance, through empirical studies. Section 6 closes the paper with conclusion
and future work.

2. General framework of single-objective SAEAs and categorisation of surrogate models

2.1. Overview

The general framework of SAEAs for single-objective optimization is illustrated in Fig. 1. Compared with canoni-
cal EAs, SAEAs introduce new steps or issues, including the construction of surrogate models, the interaction between
surrogate models and EA, and re-evaluation of some candidate solutions. The construction step involves building or
updating surrogate model(s), the interaction concerns the mechanism of incorporating surrogate model(s) into the
EA, and the re-evaluation refers to identifying some individuals (candidate solutions) to be evaluated by the real fit-
ness function in the optimization process. The interaction and re-evaluation steps together are also known as model
management or evolution control in the literature [3].
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Figure 1: The general framework of SAEAs. The crossover, mutation, evaluation and selection are common operators of a basic EA. The SAEA
integrates a surrogate model into the basic EA.
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Model Construction. Before using surrogate models in the evolutionary search, SAEAs need to construct such sur-
rogate models based on a set of candidate solutions or samples evaluated by the actual fitness function, which is also
called training data set. The initial training data set is used to train the initial surrogate model. It can be collected by
running the EA for several generations without using surrogate models or by applying some sampling strategies (also
known as Design Of Experiments, DOE), such as Latin Hypercube Sampling (LHS) [18]. Sampling strategies aim
at maximizing the amount of information gained from an experimental study while minimizing the amount of data
to be collected [19], and thus are commonly adopted in SAEAs. Building high-fidelity surrogate models that fit the
real fitness function well usually requires a more extensive training data set and involves a long training time. Hence,
models with different levels of fidelity can be used to help search for optimal solutions in SAEAs [20]. Nevertheless,
low-fidelity models can potentially misguide the algorithm towards solutions that are not real optimum, but would
seem optimal based on the model’s judgement. We refer to these solutions as “false optimal solutions or optimums”.
model selection or model ensemble can be adopted in SAEA to increase the accuracy of models and reduce the risk
of converging to a false optimum [21, 22]. Yu et al. [23] made a comparison of three model quality measurements
used for model selection concerning the model’s ability in evaluating and ranking the solutions. They found that the
convergence of SAEAs using the model selected by model quality measurements is not as good as SAEAs assisted by
the model with the highest fidelity.

Interaction (Pre-selection and Estimation). The constructed surrogate model can be used in the individual creation
(i.e., in crossover or mutation) and evaluation steps of an EA, as shown in Fig. 1. Using the surrogate model in the
creation of individuals is known as pre-selection, and using the surrogate model in the evaluation can be referred to
as estimation of the fitness (or relative fitness) of the solution. Generally, in pre-selection, several new individuals
(offspring) are generated by variation operators, and then the surrogate model is used to pre-select the most promising
offspring. After the pre-selection, the exact fitness values of the selected individuals are still computed using the actual
fitness function in the evaluation step, ensuring that the optimization process can converge to the true optimum. This
method reduces the computational cost by improving the quality of individuals evaluated by the true function.

When using surrogate models in the evaluation step of an EA, a portion of the fitness evaluations are provided by
the surrogate model rather than the actual fitness function. This is to reduce the high computational cost related to the
evaluation of all individuals, which can be very expensive when solving CEPs. By replacing expensive fitness eval-
uations with efficient surrogate model predictions, the computational cost can be reduced significantly [3]. However,
if all the individuals are evaluated by surrogates, the SAEA may converge to a false optimum. Therefore, surrogate
models should be used alongside the actual fitness function in fitness evaluation to prevent false convergence..

Re-evaluation. This is a key step that affects the convergence of SAEAs. Individual-based and generation-based
evolution control are the two commonly used strategies for determining individuals to be re-evaluated by the true
fitness function [5]. Individual-based evolution control re-evaluates some individuals in each generation. The most
intuitive strategy is selecting individuals which are the fittest according to the fitness predictions from the surrogate
model. For example, in Particle Swarm Optimization (PSO) [24], if the personal best and global best individuals are
challenged, the challengers have to be re-evaluated to determine whether the best individual should really be updated
or not. The uncertainty information is also considered together with the predicted fitness (or relative fitness) by using
methods such as Lower Confidence Bound (LCB) [25].

Similarly, recent re-evaluation strategies [22] also apply methods to determine which solutions are more valuable
to be re-evaluated, aiming at achieving a good trade-off between exploitation and exploration. Another different
approach is based on clustering techniques [26]. The population is clustered into several groups, and then, in each
group, the individual closest to the centre is re-evaluated. Different from individual-based control, generation-based
control re-evaluates the whole population (i.e., all individuals) in a generation [27]. The frequency of re-evaluation
for generation-based control can be fixed or adaptive. In fixed generation-based control, the whole population is
re-evaluated once in a fixed number of generations. In adaptive generation-based control, whether a generation is
controlled (re-evaluated) or not is determined based on the fidelity of the surrogate models.

2.2. A New Categorisation of Surrogate Models in SAEAs

It is no doubt that the surrogate model is a key element in SAEAs. The construction, interaction, and re-evaluation
steps of SAEAs are all related to the surrogate model. In the literature, plenty of surrogate models have been adopted to
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assist EAs. In existing reviews, SAEAs and surrogate models are categorized based on different criteria. For example,
Jin et al. [13, 3] categorized SAEAs into individual-based, generation-based and population-based evolution control
assisted algorithms. Jin et al. [5] and Thomas et al. [8] discussed single- and multi-model(s) in SAEAs according
to the number of models used for fitness approximation. Lim et al. [4] researched the generalized evolutionary
framework focusing on curse of uncertainty and bless of uncertainty. Cheng et al. [28] discussed models used in
EAs in the literature, including models that estimate the distribution, models that map from the objective space to
the decision space, and surrogate models. In addition, there also exist many surveys about multi-objective SAEAs.
Chugh et al. [6] reviewed multi-objective evolutionary algorithms (MOEAs) for computationally expensive problems
based on the kind of approximation (i.e., function approximation, problem approximation and fitness approximation)
used in MOEAs. In Deb et al.’s work [7], six meta-modelling frameworks are summarised based on the cardinality
of meta-models for objectives and constraints in MOEAs. Jin et al. [29] also discussed SAEAs for some real-world
computationally expensive multi-objective problems.

Surrogate models in SAEAs can predict the fitness values or the preferences of candidate solutions generated
in evolutionary search. In some practical problems, such as interactive optimization where the fitness is given by
humans, the quality of solutions is hard to estimate as numerical value, and is usually captured by relative ranking.
In this case, only the surrogate models that predict the preferences or ranking of candidate solutions are suitable.
Thus, using surrogate models to predict absolute fitness values or relative fitness values is an important criterion for
choosing surrogate models in SAEAs. Moreover, relative fitness models define a new type of surrogates that can assist
EAs in solving expensive problems. It also introduces a series of new model management strategies that are different
from those used for absolute fitness models, as will be explained in Section 4. Therefore, whether the surrogate model
estimates absolute or relative fitness is an important consideration that widely influences the design of the SAEA.

With this in mind, this paper categorizes and systematically compares surrogate models in SAEAs based on the
following taxonomy:

• Absolute Fitness Models, which directly predict the fitness function values of candidate solutions in the opti-
mization process.

• Relative Fitness Models, which provide an estimation of rank or preference of candidates rather than the abso-
lute fitness values.

Each main category is further divided into two subcategories, as shown in Fig. 2. Absolute fitness models are
divided into regression-based and similarity-based models. Relative fitness models are divided into rank-based and
classification-based models. The next two sections will give a brief review of absolute and relative fitness models,
respectively.
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Figure 2: Categorisation of surrogate models in SAEAs
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3. Absolute Fitness Models

Absolute fitness models are commonly used in SAEAs. They aim at predicting the fitness values of individuals.
Let F denotes the actual fitness function. The goal of constructing an absolute fitness model is to learn a model F̂ from
some evaluated samples (called training data) to approximate the input-output relationship of the function F, so that
the model can predict the fitness value of any new individual. An illustrative flow diagram of SAEAs using absolute
fitness models is given in Fig. 3, in which the surrogate model constructed on the training set of evaluated samples
is used to predict the absolute fitness of new offspring. Then, some of the offspring are evaluated by the real fitness
function in the re-evaluation step and the re-evaluated individuals are added to the training data set. The selection
operation is performed based on the predicted and exact fitness values. According to modeling approaches, absolute
fitness models can be divided into two subcategories: regression-based and similarity-based models.

Parents Selection

Offspring
Absolute Fitness

Re-Evaluation
Model

Samples

Initial

Star
t

Figure 3: Illustration of SAEA using absolute fitness model.

3.1. Regression-based Models
Regression-based models are widely used to model the relationship between the input and output of a system [30,

13]. In SAEAs, a regression-based model is the approximate model F̂, which maps a solution vector (d dimensional
candidate solution or individual) x∈ Rd to its fitness value (output) y = F(x) ∈ R. Given the training data set
D = [(x1, y1), (x2, y2), · · · , (xn, yn)], the objective of training or constructing a regression model F̂ is to minimize the
error function (also called loss function) EF̂ , which represents the discrepancy between real fitness values and model
predictions. The most commonly adopted error function is the mean squared error (MSE) defined as

EF̂ =
1
n

n∑
i=1

(yi − F̂(xi))2 (1)

where n is the number of samples in training data set D, and yi and F̂(xi) denote the true and predicted fitness values
of individual xi ∈ D, respectively.

Based on regression techniques, many surrogate models are used to assist EAs in the literature [30], including
Polynomial Regression (PR), Support Vector Regression (SVR), Kriging Model, Radial Basis Function (RBF), etc.
SVR is an effective surrogate model which has some practical applications, such as the optimization of railway wind
barriers [31], but its training process will be expensive when the dimensionality of the problem is very high. Kriging
is a popular surrogate model in SAEAs because it can estimate the uncertainty as well as the fitness. RBF models
have also been used in SAEAs to solve many real-world problems [32].

However, there is no clear conclusion on which regression model is the best because each model has its own
strengths and weaknesses according to experimental studies [33]. Jin et al. [34] analyzed PR, Kriging and RBF on
fourteen test problems. They showed that RBF is the best for high-order non-linear problems both for small and large
scales. For low-order non-linear problems, PR is the best for local modeling, which is only used to predict the fitness
in a small area, and the Kriging method is the most suitable for global modeling, which can be used to predict the
fitness across the whole search space. The results also showed that the Kriging method is the most sensitive to noisy
data. Diaz et al. [35] obtained similar results, showing that the Kriging method is relatively better for low dimensional
problems. At the same time, RBF is more suitable for high-dimensional problems.
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3.2. Similarity-based Models

Similarity-based surrogate models are another sub-category of absolute fitness models [36]. Similar to regression-
based models, similarity-based models also involve a function F̂ which provides an approximate fitness value F̂(x) ∈
R to a solution x ∈ Rd. However, different from regression-based models, the model F̂ is constructed based on the
correlation between unevaluated and evaluated individuals. A general formulation of similarity-based models is as
follows:

F̂(x) =

Nc∑
i=1

Cor(x, xi)F(xi) (2)

where Nc denotes the number of individuals used to derive the fitness of a new individual x, Cor(x, xi) represents the
correlation between x and xi, and F(xi) denotes the true fitness of the individual xi.

In the literature, the commonly used similarity-based modelling techniques include Fitness Inheritance, k-Nearest
Neighbours regression (kNN-R) and Fitness Imitation. Fitness inheritance, which was first proposed in 1995 [37],
estimates the fitness of a new solution based on the fitness of its parents. Several SAEAs using fitness inheritance
have been proposed during the last decades. For example, Sun et al. [38] proposed an efficient algorithm that combined
fitness inheritance and the PSO algorithm to solve large-scale expensive problems. In kNN-R, the fitness of a new
individual is determined by its k nearest neighbour individuals, which can be seen as a generalized form of fitness
inheritance [36]. In fitness imitation, the population is clustered into several groups, and one individual is selected as
the representative of each group. The representative individuals are evaluated using the true fitness function, whereas
the fitness values of the remaining individuals are estimated based on the similarity measurements between themselves
and the representative individuals [3].

Similarity-based models are easy-to-construct since they are essentially based on the similarities between indi-
viduals. They do not require to pre-define specific formulas or to optimize the model parameters with training data.
Instead, they only need a method to calculate the similarities. Thanks to the limited size of sample data in expen-
sive problems, the time for finding related neighbours to predict offspring’s fitness in similarity-based models is not
particularly costly. Thus, the computational cost in creating and using similarity-based models is much cheaper than
regression-based models in most SAEAs. The similarity measurement is a key issue for similarity-based fitness ap-
proximation, which directly affects the performance of surrogates.

Nonetheless, the accuracy of similarity-based models deteriorates significantly when the problem is highly nonlin-
ear and/or the search space is enormous. As a result, it is better to employ similarity-based models as local surrogates.
Due to models’ structural characteristics, each similarity-based model has its range of applications. Taking the Artifi-
cial Immune System as a typical example, fitness inheritance is not appropriate because each offspring only has one
parent available [39].

3.3. Discussions

Absolute fitness models are straightforward methods for fitness approximation and play an essential role in
SAEAs. Both regression-based and similarity-based models provide approximate fitness values for individuals (solu-
tions), and then the predicted fitness values are used in population creation or individual selection in EAs.

Compared with regression-based models, similarity-based models are more straightforward and more comfort-
able to construct and use since only the similarity between individuals is considered for predictions. On the contrary,
regression-based models are more accurate than similarity-based models to some extent because they optimize pa-
rameters in the surrogate model to capture the potential patterns of actual fitness functions. Thus, regression-based
models are suitable for non-linear, multi-dimensional problems, while similarity-based models are commonly used as
a local approximation in small regions.

Although absolute fitness models are powerful methods to approximate the fitness functions for CEPs, it is not
straightforward to use them in SAEAs, since some other aspects like fidelity and/or complexity of the model also need
to be taken into account. Therefore, in model management, it is important to balance the accuracy and efficiency of
absolute fitness models in SAEAs [5].
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4. Relative Fitness Models

Relative fitness models focus on predicting the relative preference between individuals rather than their absolute
fitness values. In EAs, the fitness of individuals, which represents the quality of candidate solutions, is the basis for
determining whether an individual is selected or eliminated in the selection operation. Generally, fitter individuals, i.e.,
individuals with better fitness values, are selected to enter the next generation. For some EAs, such as the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [40] and Self-Learning Particle Swarm Optimizer (SLPSO) [41],
selection depends on the ranking of individuals. In this case, the result of selection only related to the rank of
individuals. In other words, if the absolute fitness values of individuals changes, but their ranking remains the same,
the result of selection does not change. Moreover, there are some practical problems in which fitness values are hard to
be calculated, such as the human interactive problems [11]. Relative fitness methods, which focus on the comparative
result of the current population, are suitable in these cases. A general framework of relative fitness model assisted EAs
is shown in Fig. 4, in which the surrogate model predicts the relative fitness of new offspring. Then some individuals
are re-evaluated by the actual fitness function.

Relative Fitness

Parents Selection

Offspring

Re-Evaluation
Model

Samples

Initial

Star
t

Figure 4: Illustration of SAEA using relative fitness model.

Unlike absolute fitness approximation, a relative fitness model provides the preference of a new individual in a
specific group rather than its absolute fitness value. In the existing literature, the relative fitness approximation is
given as a rank label {r1, r2, · · · , rN} or a classification label {+1,−1}. According to this, relative fitness models are
further categorized into rank-based and classification-based models.

4.1. Rank-based Models
Rank-based models predict the relative rank of a new population-based on evaluated samples, and then the indi-

viduals with a higher rank survive to the next generation. Generally, a population of size N is ranked by a surrogate
model R(·) from best to worst as presented in Eq. (3),

R(x1, x2, · · · , xN) = (x1:N , . . . , xµ:N , . . . , xN:N) (3)

where x1, x2, · · · , xN represent individuals in a new population (without true fitness) and xµ:N represents the µ-th best
individual in the population ranked by the model.

For a rank-based model, the predicted order or rank is more important than the fitness value, so that a proper error
function named ranking preservation [23] as shown in Eq. (4) can be used as the loss function.

ER =
1

N2

N∑
i=1

N∑
j=1

θ(yi − y j,R(xi) − R(x j)) (4)

where θ(a, b) = (a ≤ 0) xor (b ≤ 0), yi, y j are true fitness of xi and x j , and R(xi),R(x j) are ranks predicted by the
surrogate model.

There are two different rank-based models motivated from different perspectives in the literature. The first one,
which we named as Rank on Transformation, transfers the original objective space into another equivalent but different
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space. In the new space, individuals’ rank is maintained but it is much easier to be approximated. Gong et al. [42]
transferred an expensive objective function into a probability density function and then built a cheap rank-based model
by approximating the probability density function. The second type of rank-based models directly predicts the rank of
individuals by using learning to rank algorithms. The first work was in 2006 when Runarsson [14] proposed a rank-
based surrogate model (by using ordinal regression) to assist an evolution strategy. After that, other work followed,
e.g., Loshchilov et al. [43] adopted RankSVM to enhance CMA-ES for solving CEPs and Lu et al. [17] employed
RankSVM to pre-select the high quality individuals in differential evolution algorithms. Huang et al. [44] adopted the
approximate ranking procedure based on a Kriging model to assist the search process of CMA-ES.

In rank-based models, it is particularly important to select appropriate training samples. If the training samples
are too close to each other, the discrepancy between them is hard to distinguish. If samples are too far away from
each other, the precision of the rank model may significantly deteriorate. As a result, it is hard to obtain a rank-based
surrogate model with high accuracy, which affects the convergence of SAEAs. Therefore, rank-based models are
usually applied for pre-selection in the literature [17].

4.2. Classification-based Models
Classification-based models were first discussed in 2003 [12] and have developed greatly in recent years. Different

from rank-based models, classification-based models just consider the comparison result between individuals and a
reference solution. The mechanism of classification-based models is shown in Fig. 5. A classifier is built based on a
single reference individual and its neighbours. If the neighbour’s fitness is greater than the reference, it is assigned
with label +1, otherwise, label -1 is assigned to it. A different classifier is built for each reference point. New
individuals are then assigned label +1 or -1 predicted by each classifier.

rank 1

rank 2

rank 3

 !

 "

Figure 5: Classification-based model. Star denotes the reference, triangle denotes the new individual, squares represent the samples with label -1,
circles represent the samples with label +1.

The task of building a classification-based model can be considered as: train a model for determining whether the
new individual is better than the reference solution or not. The classifier C : Rd → {+1,−1} provides a label +1 or −1
for any new individual x ∈ Rd, where label +1 and −1 represents that the new individual is better or worse than the
reference, respectively [12]. A straightforward error function to measure the quality of the classification model is the
following:

EC =
1
N

N∑
n=1

I(Ln,Cn) (5)

where I(a, b) is an indicator function which has value 1 if a equals b and the value 0 otherwise, Ln is the true label for
training data, Cn is the predicted label. Commonly used classification models in the literature include Support Vector
Classification [15], kNN classification [45], and etc. It is worth to mention that the kNN classification (kNN-C) model
predicts the label +1 or -1 of a new individual, while the kNN regression (kNN-R) model gives an approximate fitness
of the new individual.

Lu et al. [15] proposed a classical classification-based SAEA for single-objective optimization called classification-
assisted differential evolution (CADE). It applied soft-margin support vector classification (SVC) as the classifier and
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the parent is taken as the reference individual for each offspring in each generation. The CADE mainly contains three
steps, including training set choosing, classifier training and exact re-evaluation. If the predictive result for an indi-
vidual is better than its parent, this individual will be re-evaluated by the real function, Otherwise, it will be deleted
directly. Recently, some researchers applied a fuzzy-classification algorithm (Fuzzy-kNN) to filter out unpromising
individuals before the actual evaluation, because they consider fuzzy membership more reliable than only using the
labels [46]. Experiments showed that a common algorithm’s (DE’s) efficacy was significantly boosted after applying
the classification-based surrogate model.

In classification-based SAEAs, class imbalanced training data (i.e., the problem of a given class being underrepre-
sented in the training data compared to the other class) is often encountered when creating classifiers. The samples for
constructing a classification-based model are selected from the neighbours of a reference solution. As the evaluated
points are distributed sparsely in the search space, the situation where all the selected samples are worse or better than
the reference point may happen, forming a class-imbalanced dataset. Lu et al. [15] employed a threshold-moving
method to address the imbalance dataset problem.

4.3. Discussions

We have reviewed the relative fitness approximate models in SAEAs in this section. Compared with regression-
based absolute fitness models, relative fitness models are much simpler because they only focus on the rank or ordinal
relation of individuals rather than their absolute fitness values. As they are typically not very accurate, they are usually
used as local models in SAEAs for pre-selection. In contrast, regression-based models, in general, are more elaborate
and precise than relative fitness models. Thus, regression models are usually used as global models in SAEAs.

The application of relative fitness models so far has been limited to some EAs. The rank-based model was mainly
used in CMA-ES [43] and the main achievements of classification-based models are still limited to DE [16, 17] and
some special MOEAs [47]. It is necessary to mention that relative fitness models cannot describe the global trend
and provide information about the whole fitness landscape. They are only used as a local model around querying
individuals or solutions in SAEAs.

In summary, relative fitness approximation methods have some advantages and are suitable for some practical
problems. For example, in human interactive problems, the fitness strongly depends on the human sense and is difficult
to quantify [12], making relative fitness approximation methods more suitable than absolute ones. In constrained
CEPs, it is natural to consider the feasibility of solutions as a classification problem and the violation degree as rank
problems in relative fitness approximation.

However, there are still many issues under-explored in relative fitness models for SAEAs. For example, the model
management strategies for classification-based and rank-based models are currently very limited, which is a potential
direction for future research. Moreover, it is also valuable to research relative fitness models in other optimization
problems, not only in CEPs, such as constrained optimization problems. In constrained optimization problems, the
feasibility of an individual can be formulated as a classification problem with two classes, i.e. feasible or infeasible
[48].

5. Experimental Study and Analysis

In this section, we conduct a series of experiments to analyze the performance of absolute and relative fitness mod-
els. In the actual application, it is crucial to know the characteristic of candidate models before selecting the surrogates,
such as the construction efficiency and prediction accuracy of models. Besides, the performance of the corresponding
SAEA is the most important. Therefore, in this section, we will compare the performance of different surrogate mod-
els on single-objective optimization benchmark functions concerning the models’ construction efficiency, prediction
accuracy, the effect of hyper-parameters for each model and the corresponding SAEAs’ optimization ability.

5.1. Experimental setting

5.1.1. Surrogate models and model management strategies
To compare different surrogate models, we select one representative model from each category in our experiments.

According to a recent paper comparing meta-modelling techniques in EAs [35], RBF is the most robust and scalable
regression model. So, we select the RBF model as the representative regression-based model. However, there is
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no paper comparing other kinds of surrogate models. Therefore, we choose the most commonly used and typical
models, that is, kNN-R, RankSVM, and SVC as the representative similarity-based model, rank-based model, and
classification-based model, respectively.

In addition to modelling techniques, there also exist several model management strategies in SAEAs. In our
experiments, we choose two typical strategies: individual-based evolution control and pre-selection. In individual-
based evolution control (IB), the number of individuals being re-evaluated by real fitness functions is determined
by parameter psm for an absolute fitness model, and by τth for a rank-based model, where τ is Kendall’s coefficient
[14]. For the pre-selection strategy (PS), the parameter generator factor λpre determines how many offspring are
generated by mutation and crossover operators for an absolute fitness model and a rank-based model. Classification-
based models are only used for pre-selection in the literature [15], and the generator factor is not necessary, because
the classification-based model is just used to select the better individual between an individual and its parent. The
surrogate models, model management strategies and associated parameters that are investigated in the experimental
study are list in Table 1.

Table 1: The surrogate models, model management strategies and parameters that are studies in experiments.

Model Category Representative Model IB Parameter of IB PS Parameter of PS

Regression-based Model RBF Yes psm Yes λpre

Similarity-based Model kNN-R Yes psm Yes λpre

Rank-based Model RankSVM Yes τth Yes λpre

Classification-based Model SVC No – Yes –

The genetic algorithm (GA) is selected as the basic EA to be combined with different surrogate models through
different model management strategies listed in Table 1. The pseudo-codes of GA assisted with different models
and model management strategies are presented in Algorithms 1 and 2. Algorithm 1 uses individual-based evolution
control (IB) as the model management strategy. The absolute fitness model predicts the fitness of all offspring obtained
from mutation and crossover operators and a portion of them, i.e., psm · N individuals, are re-evaluated by the real
fitness function. The rank-based model re-evaluates the offspring sequentially until the model accuracy, i.e., Kendall’s
τ, satisfies its threshold τth. Finally, the best N individuals are selected to form the new generation. The pre-selection
(PS) based SAEA, as shown in Algorithm 2, generates λpre offspring for each individual and select the best one as the
new offspring when using the absolute fitness model and rank-based model. The classification model, specifically, is
built for each parent and then used to determine if its offspring should be removed or re-evaluated.

5.1.2. Benchmark functions and running condition
Several typical functions selected from CEC2015 expensive optimization test suite [49] were used in the exper-

iments. Specifically, two unimodal ( f1 and f2), two multimodal ( f4 and f8) and two composition ( f13 and f15) test
functions with two dimensions d = 10 and d = 20 are tested. In all SAEA instances, the surrogate model is used
as a local model, that is, a model is constructed for each new individual. Nevertheless, the samples in the database
are uniformly distributed in the whole space in the early search stage so that the “local area” for such a model is the
whole search space. Therefore, the constructed model can also be regarded as a global model in the early search
stage to some extent. The model in later search stage is more close to a local model. In our experiments, we execute
independently each algorithm on each problem instance for 25 times and the number of fitness evaluations for each
run is set to 200d, where d denotes the dimensionality of the problem instance. A LHS with 5d samples is performed
to collect the initial training data set for each SAEA. The population size N is set to 40, crossover rate pc is set to 0.7,
and mutation rate pm is set to 0.3. The code used in the experiments will be made available in Github1, where the
RBF model is from a widely used toolbox2, kNN-R was implemented by ourselves based on the formulation in [36],
and the Rank-SVM model is from the author of [15], and SVC is provided by Matlab r2016b. All parameters for the
models were set to the default values provided by the toolboxes.

1https://github.com/HawkTom/CodeforSAEAsurvey
2https://sites.google.com/site/srgtstoolbox/
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Algorithm 1: SAEA using Individual-based Evolution Control

1 Initialize the first population with N individuals.
2 Evaluate N individuals.
3 Set FE = N.
4 while FE < maxFE do
5 • Perform Crossover and Mutation operators to generate N offspring.

6 / *** Absolute Fitness Surrogate Model *** /

7 if absolute fitness model then
8 Predict the fitness of each offspring.
9 Re-evaluate psm ∗ N best individuals.

10 FE = FE + psm ∗ N

11 / *** Rank-based Model *** /

12 if rank-based model then
13 Kendall’s τ = 0.
14 while τ ≤ τth do
15 Controlled individual← the highest rank individual.
16 Re-evaluate the controlled individual.
17 FE = FE + 1.
18 Caculate the Kendall’s τ.

19 • Select N best individuals from parents and offspring to enter into the next generation.

5.2. Analysis 1: computation time

First of all, we analyze the execution time of each investigated surrogate model. To this end, we recorded the CPU
time from the moment when the algorithm chooses the training data to the moment when it predicts fitness values or
ranks the offspring. The experiments were executed in a computer with Intel Core i5 CPU with 3.2 GHz and 8 GB
RAM using Matlab r2016b. The sizes of training data were set to 5d for all models. The average execution time for
training and using the surrogate model in different problems and dimensionalities are presented in Table 3.

Accoridng to the results listed in Table 3, kNN-R model is the most efficient surrogate model. This is because
kNN-R is a lazy model that does not learn a discriminative function from the training data but “memorizes” the training
data set. The only computational burden is calculating the similarity between a new individual against the memorized
training data and then predicting the fitness using the similarities. Usually, the size of training data set used in SAEAs
is relatively small, which makes kNN-R model’s predictions very quickly. The RBF model is also very efficient.
Its computational cost mainly comes from the computation of the distance matrix between training data points and
its inversion, which leads to longer execution time than kNN-R. The SVC model takes longer computing time than
RBF model. The main reason is that the SVC model involves a time-consuming quadratic programming optimization
process. RankSVM is the most expensive model among the four models investigated in this study, because it involves
the pairwise operation in training and testing procedures. As a result, the execution time of RankSVM was much
longer than the other three models.

5.3. Analysis 2: model accuracy

The performance of SAEAs is affected by how well the surrogate models can perform their predictions. An
inaccurate surrogate model will lead to harmful consequences for the SAEA. Existing surveys used the coefficient of
determination (R2) to evaluate the predictions given by different surrogate models [33, 35]. However, the ability to
maintain individuals’ rank information is much more important than how well the surrogate model fits the real fitness
function in EAs. So, we use rank correlation instead of R2 for comparing the four surrogate models in this section.
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Algorithm 2: SAEA using Pre-selection

1 Initialize the first population with N individuals.
2 Evaluate N individuals.
3 Set FE = N.
4 while FE < maxFE do

5 / *** Absolute Fitness Surrogate Model *** /

6 / *** or Rank-based Model ***/

7 if absolute fitness model or rank-based model then
8 for each individual do
9 Generate λpre offspring candidates.

10 Build the surrogate model.
11 if absolute fitness model then
12 Predict the fitness of all candidates.
13 Select the best candidate as the offspring.

14 if rank-based model then
15 Caculate the Kendall’s τ.
16 if τ > 0.5 then
17 Select the best candidate as the offspring.

18 else
19 Randomly select a candidate as the offspring.

20 Re-evaluate the offspring.
21 FE = FE + 1.

22 • Select N best individuals from parents and offspring to enter into the next generation.

23 / *** Classification-based Model *** /

24 if classification-based model then
25 • Perform Crossover and Mutation operators to generate N offspring.
26 for each individual do
27 Find its parent as the reference individual.
28 Build classification-based model.
29 Predict the label of offspring.
30 if predictive label is positive then
31 Re-evaluate the offspring.
32 FE = FE + 1.
33 Select best individual from parent and offspring to enter new generation.

34 else
35 Select parent into new generation.

36 • Select N best individuals from parents and offspring to enter into the next generation.
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Table 2: The details of benchmark functions [49]. F∗ denotes the optimal fitness of the problem instance.

Modality Problem F∗ Dimensionality (d)

Unimodal
f1 100

10, 20
f2 200

Simple Multimodal
f4 400

f8 800

Composition Function
f13 1300

f15 1500

Table 3: The average execution time for training and using the surrogate model when d = 10, 20. (Unit: ms)

d Problem RBF kNN-R RankSVM SVC

10

f1 0.957 0.280 7.852 4.436
f2 0.974 0.280 6.319 3.165
f4 0.966 0.279 6.825 3.341
f8 0.952 0.277 7.526 4.039
f13 0.957 0.279 7.754 4.146
f15 0.953 0.278 7.644 4.323

20

f1 2.265 0.383 65.923 5.184
f2 2.279 0.394 92.022 3.478
f4 2.305 0.400 90.002 4.881
f8 2.254 0.384 81.653 5.006
f13 2.253 0.386 79.875 5.231
f15 2.192 0.383 77.685 5.247

The bold values denote the best result among four SAEAs in one problem instance.
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In each generation, N parents generate N offspring by variation operators, and the whole set of parents plus off-
spring is denoted as P = {Indi|i = 1, 2, ..., 2N}. The new population selected based on true fitness function evaluation
is denoted as P f = {Indi|i = λ1, λ2, ..., λN}. And the new population selected with the use of surrogate model is
denoted as Pm = {Indi|i = µ1, µ2, ..., µN}. Then, the rank correlation Rcorr of the model is calculated using Eq. (6):

Rcorr =
|Pm ∩ P f |

N
(6)

The metric Rcorr is calculated for each surrogate model in each generation and the results are showed in Table 4. The
value in each cell is the average Rcorr value of all generations.

Table 4: The average rank correlation of surrogate models across all generations calculated based on Eq. 6 for d = 10 and 20.

d Problem RBF kNN-R RankSVM SVC

10

f1 0.836 0.676 0.937 0.489
f2 0.921 0.915 0.585 0.466
f4 0.863 0.843 0.574 0.501
f8 0.820 0.758 0.709 0.518
f13 0.801 0.751 0.690 0.539
f15 0.826 0.737 0.760 0.544

20

f1 0.908 0.600 0.938 0.472
f2 0.953 0.950 0.550 0.460
f4 0.895 0.829 0.621 0.614
f8 0.852 0.786 0.707 0.573
f13 0.830 0.655 0.829 0.532
f15 0.875 0.738 0.740 0.575

The bold values denote the best result among four SAEAs in one problem instance.

From Table 4, we can easily find that the surrogate models have the following relationship in terms of rank
correlation Rcorr:

RBF � kNN-R ≈ RankSVM � SVC

where a � b means that model a has larger average Rcorr than model b , and a ≈ b signifies model a and b have similar
average Rcorr.

Overall, the absolute fitness models (RBF and kNN-R) are more accurate than the relative fitness models (RankSVM
and SVC) considering the rank correlation, although the relative fitness model intuitively should be better than the
absolute fitness model. It is probably because the absolute fitness model aims at approximating the fitness landscape,
and if the approximation is accurate enough, the ranking accuracy is also high. From this perspective, we can claim
that the RBF model is better than the kNN-R model with respect to Rcorr. The RankSVM model performed rela-
tively well in general. Compared with the kNN-R model, it is sometimes better and sometimes worse over different
benchmark functions. In our experiments, the SVC model has the lowest rank correlation.

Even though the quality of the predictions given by surrogate models directly influences the performance of
SAEAs, this impact varies with different model management strategies. In particular, it has more significant influence
on the individual-based evolution control than on the pre-selection strategy. This is because poor predictions cause
many low-quality individuals to survive to the new generation and high-quality individuals to be obsolete in the
individual-based control strategy. In the pre-selection strategy, low-quality does not lead SAEA to false optima but
only deteriorates the convergence speed of SAEA, because all individuals entering into the selection operator have
actual fitness. Therefore, even though the SVC’s accuracy is not outstanding, the SAEA assisted by SVC can obtain
acceptable performance.
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5.4. Analysis 3: parameter influence
In SAEAs, the use of surrogate models brings in some new parameters, which affect the performance of SAEAs.

How to determine these newly introduced parameters is a crucial issue in designing SAEAs. However, to the best
of our knowledge, there is no comprehensive study on this issue in the literature. In [36], the authors only analyzed
the effect of database size and neighbourhood size in the kNN model. In [35], the authors studied the influence of
training samples’ size for local and global models, but they only focused on regression-based models. In order to
have a comprehensive understanding about the influence of the parameters of different kinds of surrogate models on
SAEAs’ performance, we conducted a series of experiments in this subsection.

We studied two important parameters for each surrogate model:

• For the individual-based evolution control, one is the size of training data K, and the other is the re-evaluation
ratio psm. In the rank-based model, individuals are re-evaluated until they satisfy a threshold of rank correlation
τth, thus τth determines the re-evaluation ratio.

• For the pre-selection strategy, one parameter is the size of training data K, and another is the generator factor
λpre that determines how many offspring are generated for one pair of parents. We employed a grid search to
study the parameters’ influence. The SAEAs and parameter settings investigated in our experiments are listed
in Table 5.

Table 5: SAEAs and parameters investigated to determine the effect of parameter choice on SAEAs’ performances.

Model Management Strategy Surrogate Model SAEA Parameters

Individual-based
Evolution Control

RBF IB-RBF K, psm

kNN-R IB-kNN-R K, psm

RankSVM IB-RankSVM K, τth

Pre-Selection Strategy

RBF PS-RBF K, λpre

kNN-R PS-kNN-R K, λpre

RankSVM PS-RankSVM K, λpre

SVC PS-SVC K

K {i × d|i = 1, 2, . . . , 10}
psm, τth {0.05(2i − 1)|i = 1, 2, . . . , 10}
λpre {i + 1|i = 1, 2, . . . , 10}

In order to study the overall performance and to avoid the difference of problems’ scale, we employ another
performance metric from literature [50]. For each SAEA, denoted as A, we have problem instances F = { fk |k =

1, 2, ..., n} and parameter settings C = {c j| j = 1, 2, ...,m}. The performance of each parameter setting PM(ci) over the
problem instances can be calculated using Eq. (7):

PM(ci) =
1

m − 1

m∑
j=1, j,i

P(Aci > Ac j ) (7)

The P(Aci > Ac j ) represents the probability of Aci outperforming Ac j , which can be calculated by Eq. (8):

P(Aci > Ac j ) =
1
n

n∑
k=1

P(qi,k < q j,k | fk) (8)

where qi,k denotes the quality of solution obtained by Aci on fk, and P(qi,k < q j,k | fk) can be estimated by the following
equation:

P(qi,k < q j,k | fk) =

∑si
s=1

∑s j

t=1 I(yi,k,s < y j,k,t)
si × s j

(9)
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where yi,k,s represents the fitness of the solution obtained by Aci in the sth trial for the problem fk, si and s j represent
the number of trials of each algorithm for one problem, and I(·) is the indicator function.

The experimental results of different SAEAs using different surrogate models and parameter settings are presented
in Fig. 6 ∼ 12. The number in each cell of heatmap represents the performance value PM(ci) of each parameter
configuration.

5.4.1. IB-RBF
The performance calculated based on Eq. 7 of IB-RBF (i.e., the SAEA using RBF model and individual-based

evolution control) with different values of K and psm is presented in Fig. 6. It can be observed that a large psm value
gets a worse performance when d = 10, but large psm for d = 20 makes the performance much better. It might because
the quality of the RBF model is higher in the case of d = 10. With the same maximal number of real fitness function
evaluations, a small psm indcates that the SAEA can evolve more generations. And when the surrogate model is
accurate enough, more generations make the SAEA obtain better solution. On the contrary, when the surrogate model
is not accurate, more generations probably lead SAEA to a false optimum so that the re-evaluation is much more
important. On the other hand, more re-evalation solutions could provide more information for constructing more
accurate local surrogate model, and it helps a lot in high dimensional cases. Therefore, a high psm can get a better
performance in the case of d = 20 for IB-RBF. The size of training data K has weak impact on IB-RBF’s performance.
According to the result, 3d to 4d would be the most suitable value for K in IB-RBF.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Ratio of Re-evalutaion psm

1d

2d

3d

4d

5d

6d

7d

8d

9d

10d

Si
ze

 o
f t

ra
in

in
g 

da
ta

0.4630 0.4857 0.5409 0.4940 0.4770 0.4675 0.4827 0.4082 0.4259 0.3640

0.4551 0.5392 0.5694 0.5576 0.5101 0.4819 0.4813 0.4450 0.4198 0.3826

0.6718 0.6252 0.5766 0.5477 0.5660 0.5388 0.5333 0.4791 0.4035 0.4010

0.5871 0.5419 0.5557 0.5470 0.5712 0.5247 0.5000 0.4434 0.3861 0.4083

0.5882 0.5761 0.5365 0.5645 0.5701 0.4973 0.4256 0.4288 0.4232 0.4173

0.5278 0.5420 0.5612 0.5802 0.5110 0.4580 0.4291 0.4352 0.4119 0.4095

0.5442 0.4859 0.5134 0.5592 0.5807 0.5450 0.5594 0.5129 0.4197 0.4006

0.5791 0.4721 0.5273 0.5596 0.6022 0.5810 0.5355 0.5006 0.4555 0.4025

0.5180 0.5031 0.5524 0.5461 0.5552 0.5399 0.4873 0.4758 0.4348 0.3830

0.5449 0.5348 0.5353 0.5654 0.5567 0.5042 0.4374 0.4111 0.4001 0.4171

RBF with Individual-based Evolution Control

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Ratio of Re-evalutaion psm

1d

2d

3d

4d

5d

6d

7d

8d

9d

10d

Si
ze

 o
f t

ra
in

in
g 

da
ta

0.3979 0.4940 0.4757 0.4642 0.3943 0.4238 0.4599 0.5044 0.5265 0.5299

0.4110 0.5028 0.5709 0.4946 0.4357 0.4655 0.4813 0.5364 0.5479 0.4962

0.5978 0.4923 0.4816 0.4994 0.4976 0.5259 0.5570 0.5454 0.5433 0.5371

0.4768 0.4232 0.4804 0.4929 0.5415 0.5456 0.5404 0.5518 0.5558 0.5284

0.4224 0.3771 0.4350 0.4828 0.5369 0.5579 0.5471 0.5848 0.5838 0.5213

0.4190 0.3828 0.4287 0.4734 0.5201 0.5315 0.5663 0.5812 0.5616 0.5287

0.4160 0.4223 0.4301 0.4822 0.5115 0.5426 0.5574 0.5595 0.5680 0.5450

0.4090 0.3672 0.4206 0.4815 0.5167 0.5559 0.5580 0.5643 0.5688 0.5206

0.3951 0.3804 0.4538 0.4896 0.5195 0.5346 0.5664 0.5674 0.5552 0.5382

0.3997 0.3828 0.4093 0.4418 0.5052 0.5214 0.5870 0.5600 0.5935 0.5283

RBF with Individual-based Evolution Control

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a) d = 10 b) d = 20

Figure 6: IB-RBF’s performance calculated based on Eq. 7 when using different values of K (size of training data) and psm (ratio of re-evaluation).

5.4.2. IB-kNN-R
For the IB-kNN-R, i.e., the SAEA using kNN-R model with individual-based evolution control, we can easily find

that the size of training data K does not has strong influence on SAEA’s performance for both d = 10 and d = 20, as
shown in Fig. 7. We can analyze the reason from the kNN-R predictive model, which is represented by Eq. (10):

F̂(x) =

∑k
j=1 s

(
x, x j

)2
F

(
x j

)
∑k

j=1 s
(
x, x j

)2 (10)

where s
(
x, x j

)
= 1 − d(x,x j)

d(xU ,xL) is the similarity between x and x j, d
(
x, x j

)
is the distance between x and x j, xU and

xL are the upper and lower bounds of x, respectively. From Eq. (10), it can be seen that the sample points x j that
are far from the new candidate solution x contribute little to the predicted fitness F̂(x) since the similarity s

(
x, x j

)
is very small. The predicted fitness F̂(x) mainly depends on the near neighbors of x. As a result, IB-kNN-R with
the small and large K value obtains similar performance. From the results, it can be found that the generator factor
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psm significantly affects the performance of IB-kNN-R. When psm takes value between 0.55 and 0.75, IB-kNN-R can
achieve good performance on both d = 10 and d = 20 test problems. This is because that a small psm is likely to
lead the SAEA to false optima and a large psm will result more individuals being evaluated by real fitness function in
each generation so that the number of generation will decrease when the maximum number of the real fitness function
evaluation is fixed. The psm values of 0.55 to 0.75 lead to a good balance between the model accuracy (avoid leading
to false optima) and the number of evolution generations.
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Figure 7: IB-kNN-R’s performance calculated based on Eq. 7 when using different values of K (size of training data) and psm (ratio of re-evaluation).

5.4.3. IB-RankSVM
According to the performance calculated by Eq. 7 of IB-RankSVM (the SAEA using RankSVM model with

individual-based evolution control) with different values of k and τth in Fig. 8, the influence of training data size K on
SAEA’s performance is more significant than that of rank correlation threshold τth. From the result, the K values of 3d
to 4d are good choices. When K is small, the training data is not sufficient to construct accurate rank models. On the
other hand, when K is large and it has a large training data set, the Kendall’s τ will be small if the rank model is not
accurate enough because the Kendall’s τ is computed using the relative ordering of the ranks of all K(K−1)/2 possible
pairs [14]. Therefore, it requires a larger number of re-evaluation to satisfy the threshold τth in each generation so that
IB-RankSVM’s performance deteriorates due to the the decrease of number of evolutionary generations. As a result, a
moderate value of K is suitable for the rank-based model. For the rank correlation threshold τth, a large value is better
because it means a more accurate rank-based model. From the results, τth values bigger than 0.95 might be suitable
choices both for d = 10 and d = 20.

5.4.4. PS-RBF
For the result of PS-RBF (the SAEA using RBF model with pre-selection strategy) in Fig. 9, the upper part of the

heatmap is shallower than the lower part for d = 10 as well as for d = 20. This indicates that a bigger training data size
results in better performance of PS-RBF. This is because more data can make the RBF model more accurate and the
pre-selection can select potentially better solutions. A K value of 3d to 4d is enough because more data than 4d may
not increase the quality of RBF significantly. For pre-selection factor λpre, a bigger value leads to better performance,
but the performance does not increase prominently as the increasing of λpre. From the results, the pre-selection factor
value of λpre = 8 is suitable for PS-RBF.

5.4.5. PS-kNN-R
For PS-kNN-R, i.e., the SAEA using kNN-R model with pre-selection strategy, the difference of performance

between different parameter settings is very small as shown in Fig. 10. In the case of d = 10, the performance of
PS-kNN-R is slightly improved when λpre increases. This is probably because the number of offspring generated
by mutation or crossover operators increases λpre increasing, which results in an increase of diversity in the search
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Figure 8: IB-RankSVM’s performance calculated based on Eq. 7 when using different values of K (size of training data) and τth (rank correlation
threshold).
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Figure 9: PS-RBF’s performance calculated based on Eq. 7 when using different values of K (size of training data) and λpre (pre-selection factor).
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process. And, when d = 20, the recommended parameter setting for PS-kNN-R would be a small K and a large λpre,
even though the performance does not vary significantly.
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Figure 10: PS-kNN-R’s performance calculated based on Eq. 7 when using different values of K (size of training data) and λpre (pre-selection
factor).

5.4.6. PS-RankSVM
The performance of PS-RankSVM (the SAEA using RankSVM model with pre-selection strategy) with different

parameter settings is shown in Fig. 11. The performance of different parameters are very similar to each other,
especially in the case of d = 20. For d = 10, a small K, i.e., K = 1d, achieves better performance than larger values
of K. The main reason for the similar performance is the low accuracy of RankSVM which makes a small value of
Kendall’s τ. Especially, when K and λpre take large values, the training data for each rank-based model is K · λpre,
and the τ which is computed using the relative ordering of the ranks of all K · λpre(K · λpre − 1)/2 possible pairs
will be very small. Thus, PS-RankSVM will randomly select the candidate as the offspring in most cases since τ is
small, i.e., the model accuracy is low. On the other hand, the individuals to be ranked in PS-Rank are generated from
the same parents so that these individuals might be close to each other. Therefore, a small number of training data
can distinguish these individuals more precisely. The parameter λpre has almost no influence on the performance of
PS-RankSVM.
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Figure 11: PS-RankSVM’s performance calculated based on Eq. 7 when using different values of K (size of training data) and λpre (pre-selection
factor).
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5.4.7. PS-SVC
For the SAEA using SVC model with pre-selection strategy (PS-SVC), due to its special algorithm structure, only

one parameter (training data size) has an effect on PS-SVC’s performance. The performance of PS-SCV with different
values of training data size K is presented in Fig. 12. It is very clear that the training data size value of 6d is enough
in the case of d = 10. SAEA’s performance is improved slightly when K continues to increase. The training data size
K does not have critical influence on SAEA’s performance when d = 20. The likely reason is that the limited and
imbalanced training data cannot satisfy the requirement for training an accurate SVC model in the case of d = 20.
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Figure 12: PS-SVC’s performance calculated based on Eq. 7 when using different values of K (size of training data).

5.5. Analysis 4: performance comparison

In this subsection, we will analyze the performance of SAEAs using different kinds of surrogate models and model
management strategies on the test problem instances. For a fair comparison, we compare the performance of each
SAEA with its best parameter configuration obtained from the experiments in previous subsection.

5.5.1. Overall performance
The results are presented in Table 6. Numbers in each cell denote average best fitness and standard deviation over

25 independent runs. The bold ones are the best results among all algorithms on the corresponding problem. The last
column presents the obtained result of the EA without using surrogate models, i.e., No Surrogate (NS). The ranking
of each algorithm instance is calculated on the basis of statistical hypothesis tests (i.e., Wilcoxon rank-sum test with
a 0.05 significance level), in which if two results have no significant difference according to the hypothesis test, they
will be given the same ranking. The number in brackets of each cell represents the algorithm’s ranking for a given
problem instance. Besides, the average ranking of algorithms across all problem instances for d = 10 and d = 20 are
also provided in the table.

First of all, it is obvious that PS-RBF and IB-RBF performed best among all algorithms on most problem instances,
as reflected by the average ranking. This indicates that the RBF model is the best one among the absolute and
relative fitness models that are investigated in our experiments. The kNN-R model is the second-best surrogate model
according to the results in Table 6, with the ranking of PS-kNN-R and IB-kNN-R follows that of the RBF model. The
RankSVM and SVC models performed much worse than the previous two kinds of models, where the SVC model
was the worst in our experiments. Overall, we can get a basic conclusion in terms of the average performance:

RBF � kNN-R � RankSVM � SVC

where M1 � M2 represents M1 performs better than M2 in terms of the optimization performance. This is the same
as the ranking of model accuracy in section 5.3. This indicates that the model’s accuracy, with respect to the rank
correlation, directly influences the performance of the corresponding SAEAs.
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Table 6: Average best fitness and standard deviation (AVR ± STD) for each algorithm on each problem instances over 25 runs. The boldface values
are the best fitness for each problem instance according to the Wilcoxon rank-sum test with a 0.05 significance level. The rank obtained by pairwise
comparison using Wilcoxon rank-sum test is listed in the bracket after each value.

d Problem PS-RBF PS-kNN-R PS-Rank PS-SVC

10

f1 6.3189e+03 ± 2.7100e+03 (1) 6.2222e+03 ± 3.0985e+03 (1) 1.3269e+05 ± 1.0201e+05 (4) 5.4414e+05 ± 1.3998e+06 (4)
f2 1.9534e+04 ± 7.8264e+03 (1) 2.1284e+04 ± 8.9185e+03 (3) 2.2319e+04 ± 7.4356e+03 (3) 2.5320e+04 ± 8.5496e+03 (5)
f4 6.7013e+02 ± 2.0807e+02 (1) 6.6177e+02 ± 1.5887e+02 (2) 8.3013e+02 ± 2.2133e+02 (5) 9.5162e+02 ± 1.9861e+02 (6)
f8 8.0299e+02 ± 8.5518e-01 (4) 8.0247e+02 ± 8.2028e-01 (3) 8.0352e+02 ± 6.9876e-01 (5) 8.0415e+02 ± 8.2992e-01 (6)
f13 1.6178e+03 ± 1.3178e+00 (1) 1.6197e+03 ± 3.0017e+00 (5) 1.6189e+03 ± 1.6564e+00 (3) 1.6235e+03 ± 4.5621e+00 (8)
f15 1.6750e+03 ± 1.7918e+02 (1) 1.8295e+03 ± 7.0078e+01 (3) 1.6913e+03 ± 1.8190e+02 (2) 1.8804e+03 ± 9.5120e+01 (6)

Average-Ranking (d = 10) 1.5 2.83 3.67 5.83

20

f1 3.3580e+07 ± 2.7307e+07 (1) 4.1484e+07 ± 2.5689e+07 (2) 6.3646e+07 ± 4.5747e+07 (3) 1.3027e+08 ± 1.1491e+08 (6)
f2 3.2654e+04 ± 7.0460e+03 (2) 3.5837e+04 ± 8.0113e+03 (4) 3.5188e+04 ± 8.6006e+03 (3) 3.8394e+04 ± 8.9980e+03 (5)
f4 1.2969e+03 ± 3.7046e+02 (2) 1.3536e+03 ± 3.4626e+02 (3) 1.6349e+03 ± 4.9787e+02 (4) 2.1249e+03 ± 5.7958e+02 (6)
f8 8.0852e+02 ± 3.2504e+00 (1) 8.0886e+02 ± 3.4550e+00 (2) 8.1621e+02 ± 8.5271e+00 (4) 8.1727e+02 ± 4.5242e+00 (6)
f13 1.5958e+03 ± 5.9549e+00 (1) 1.5998e+03 ± 9.1526e+00 (4) 1.5990e+03 ± 6.9405e+00 (3) 1.6070e+03 ± 1.5230e+01 (6)
f15 1.9238e+03 ± 3.5793e+01 (1) 1.9449e+03 ± 4.1802e+01 (2) 1.9652e+03 ± 3.7121e+01 (4) 2.0253e+03 ± 4.0137e+01 (6)

Average-Ranking (d = 20) 1.33 2.83 3.5 5.83

Average-Ranking 1.42 2.83 3.58 5.83

d Problem IB-RBF IB-kNN-R IB-Rank NS

10

f1 7.8707e+03 ± 5.3762e+03 (2) 3.5295e+04 ± 1.0491e+05 (3) 9.4191e+03 ± 1.0561e+04 (2) 8.8084e+05 ± 8.8456e+05 (5)
f2 1.9742e+04 ± 6.3255e+03 (1) 2.1131e+04 ± 8.1986e+03 (2) 2.5569e+04 ± 1.0216e+04 (4) 3.0945e+04 ± 1.1908e+04 (6)
f4 5.7690e+02 ± 1.0756e+02 (1) 6.4679e+02 ± 1.3257e+02 (2) 7.3147e+02 ± 1.6015e+02 (3) 7.5388e+02 ± 1.4102e+02 (4)
f8 8.0180e+02 ± 9.8822e-01 (1) 8.0190e+02 ± 1.0296e+00 (1) 8.0210e+02 ± 1.0909e+00 (2) 8.0403e+02 ± 8.4194e-01 (6)
f13 1.6184e+03 ± 1.3885e+00 (2) 1.6189e+03 ± 1.7946e+00 (4) 1.6202e+03 ± 2.2969e+00 (7) 1.6204e+03 ± 2.9060e+00 (6)
f15 1.6409e+03 ± 1.6444e+02 (1) 1.8809e+03 ± 4.6203e+01 (5) 1.9048e+03 ± 8.3818e+01 (7) 1.7931e+03 ± 1.9014e+02 (4)

Average-Ranking (d = 10) 1.33 2.83 4.17 5.17

20

f1 6.1769e+07 ± 5.3520e+07 (3) 8.9753e+07 ± 1.2423e+08 (4) 1.3174e+08 ± 1.0504e+08 (6) 1.0890e+08 ± 9.5198e+07 (5)
f2 3.1528e+04 ± 7.6819e+03 (1) 3.5311e+04 ± 1.2032e+04 (3) 3.9266e+04 ± 1.3019e+04 (5) 3.8990e+04 ± 8.1845e+03 (5)
f4 1.1292e+03 ± 3.8573e+02 (1) 1.3336e+03 ± 4.6006e+02 (2) 1.8292e+03 ± 5.0367e+02 (5) 1.9917e+03 ± 4.2165e+02 (6)
f8 8.0917e+02 ± 3.9245e+00 (2) 8.1215e+02 ± 5.9572e+00 (3) 8.6065e+02 ± 5.8219e+01 (7) 8.1685e+02 ± 4.9504e+00 (5)
f13 1.5972e+03 ± 6.1122e+00 (2) 1.5991e+03 ± 8.8844e+00 (3) 1.6113e+03 ± 2.1264e+01 (4) 1.6041e+03 ± 1.5099e+01 (5)
f15 1.9368e+03 ± 2.2315e+01 (2) 1.9600e+03 ± 4.8161e+01 (3) 2.0581e+03 ± 7.5934e+01 (6) 1.9873e+03 ± 4.1149e+01 (5)

Average-Ranking (d = 20) 1.83 3 5.5 5.17

Average-Ranking 1.58 2.92 4.83 5.17

The bold values denote the best result among all SAEAs in one problem instance.
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Figure 13: The convergence curves of algorithm instances on problem instances with d = 10, 20.
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Furthermore, it is easy to see that absolute fitness models (RBF, kNN-R) obtained better results than relative fitness
models (RankSVM, SVC) from the perspective of the obtained solution’s quality. The accuracy of each model mainly
affects the performance of SAEAs. Besides, another important reason is that absolute fitness models are much more
robust than relative fitness models. The absolute fitness model is trained to fit the actual fitness function, and even
if there is some prediction error, the rank of predicted individuals can be maintained. However, the target of relative
fitness models is to predict the rank information and its prediction error will influence the rank directly. Therefore,
the absolute fitness model can tolerate a larger prediction error than the relative fitness model. Obviously, the absolute
fitness model is much easier to lead to an acceptable model, which can maintain the same amount of rank information,
than the relative fitness model. As a result, the absolute fitness model generally has higher accuracy than relative
fitness model, and the corresponding SAEAs perform much better.

By analysing the same model with two different model management strategies, we can find that the pre-selection
strategy is slightly better than the individual-based evolution control. As discussed in Section 2, the pre-selection
strategy reduces the computational cost by improving the quality of the individuals, and it can ensure that the opti-
mization converges to the true optimum. The individual-based evolution control cannot guarantee the right direction
of the optimisation process. Therefore, in most cases, the pre-selection strategy is better than individual-based evo-
lution control. In some cases, especially when the model is accurate enough to capture the overall trend of fitness
function, SAEAs using individual-based control may perform better than SAEAs using pre-selection since the former
can evolve more generations than the latter when the consumed number of fitness function evaluations are the same.

The relative performance of each model for d = 10 and d = 20 has no big difference. This is probably because the
increase of dimensionality has a similar influence on all kinds of surrogate models.

5.5.2. Discussion for each model
We plot the average evolutionary curves of each algorithm on each problem instance in Fig. 13. By using the

evolutionary curves together with the numerical results in Table 6, we will discuss the characteristics of each model
by analysing the corresponding SAEA’s performance in this subsection.

As analyzed before, the RBF model is the best model among the four surrogate models investigated in this
study. On almost all problem instances, RBF obtains the best result, as shown in f1, f2, f4, f13, f15 with d = 10
and f1, f8, f13, f15 with d = 20 in Table 6. From the evolutionary curves, we can see that PS-RBF and IB-RBF show
a steady convergence. In most cases, PS-RBF and IB-RBF converge faster than others during the whole optimization
process. The main reason for the RBF model’s excellent performance is its high accuracy. Therefore, we can easily
conclude that SAEAs can benefit from the RBF model when solving CEPs and obtain a good final result.

The kNN-R model also predicts the fitness of individual and obtains relative good performance, as shown in
Table 6. However, we can see in the result table that kNN-R model’s performance deteriorates on composite functions,
i.e., f13 and f15. This is because the composite function is highly non-linear, and the accuracy of the kNN-R model
decreases dramatically, which is reflected in Table 4. Besides, the convergence speed of kNN-R assisted EA is not
very fast, as shown in the convergence curves. This is because the predicted fitness of an individual highly depends
on its nearest neighbours, and the prediction error of kNN-R will be large in the area which has not been explored.
Therefore, even though a much better individual is generated, which is distant from the mainly explored area, it will
probably be predicted as a worse individual and be discarded. As a result, the convergence step of kNN-R assisted EA
will be small.

For the SAEA using the RankSVM model, its performance is better than that of the EA without any surrogate
model in our experiments. However, its performance is still limited and inferior to that of SAEAs using the RBF and
kNN-R models. Unlike the previous two models, i.e., RBF and kNN-R, the performance of PS-RankSVM and IB-
RankSVM has a big difference, and PS-RankSVM performs much better than IB-RankSVM. It is probably because
the accuracy of the obtained RankSVM model is low and influences individual-based evolution control much more
than the pre-selection strategy.

The overall performance of SAEAs using RankSVM is not competitive to SAEAs using RBF and kNN-R. How-
ever, we find that IB-RankSVM converges very fast in the early stage of the search process, but the final results are not
good on almost all functions according to Fig. 13. To analyze the reason for this phenomenon, We record the number
of generations at every 25 real fitness evaluations during the whole optimization process of IB-RankSVM and plot it
in Fig. 14. From Fig. 14, it can be found that, in the early stage, few individuals are re-evaluated in each generation
of IB-RankSVM so that the search process improves quickly. While in latter stage, more individuals are re-evaluated
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in each generation, and thus the convergence speed of IB-RankSVM slows down. This also indicates that in the early
stage, the accuracy of RankSVM model is relatively high, and it can guide the search process of SAEAs properly and
improve the search efficiency. As the search proceeding, the model accuracy deteriorates, more individuals need to be
evaluated to obtain a high-quality RankSVM model. Thus, the efficiency of IB-RankSVM reduces in the latter stage.
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Figure 14: The increase of number of generations during the optimization process of IB-RankSVM on f1 with d = 20.

The SVC model is the worst one among the four models investigated in this study. The performance of SAEAs
using SVC is even worse than EAs without any surrogate models in our experiments. Compared with other models
with a pre-selection strategy, PS-SVC does not generate additional offspring during mutation and crossover so that
the search diversity is much lower than other models with pre-selection strategies. From the evolutionary curves, the
SVC model assisted SAEA also obtains good convergence at the early stage but its speed slows down very quickly.
This is probably because of the decrease of the SVC model’s accuracy in the later stage of optimization, as showed in
Fig. 15, in which we plot the change of accuracy in the optimization process.
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Figure 15: The dynamic change of average accuracy for SVC model in PS-SVC on f1 with d = 20.

It is worth mentioning that the performance of SAEA with PS-SVC is even worse than EAs without any surrogate
models. The problem of low diversity is one reason, but the most important is that the SVC model is not suitable in
our EA framework. In the first work of classification-based model [15], the authors used SVC in a DE algorithm,
in which one parent generates one offspring and the new parent is selected between these two individuals, which
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we named as parent-offspring tournament selection (POTS). However, in our experiment, the basic framework for
selection is to choose the better individuals in the individual pool ,which includes parent and offspring population.
The SVC model is constructed on the basis of a single individual rather than a population. Furthermore, we compared
the performance of SVC assisted EA with POTS-based no-surrogate EA (POTS-NSEA) for d = 10. The results are
showed in Fig. 16, where the blue box shows SVC-SAEA’s fitness and the orange box shows POTS-NSEA’s fitness.
In this case, SVC-SAEA performs better than EA without any surrogate models in almost all functions. Therefore,
we can conclude that the classification model is more suitable for POTS-based EAs.
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Figure 16: The comparison between SVC-SAEA and POTS-NSEA on test functions with d = 10

5.6. Summary

In summary, from the above experiments and analysis, we can obtain a series of conclusions about different
models:

• Comparison in terms of efficiency of model construction and prediction (execution time): kNN-R � RBF �
SVC � RankSVM;

• Comparison in terms of model predictive performance (rank correlation): RBF � kNN-R ≈ RankSVM � SVC;

• We showed the best parameter settings related to model management when using our algorithms;

• The performance of SAEAs using absolute fitness models are generally better than that using relative fitness
models because of the larger prediction error tolerance for absolute fitness model;

• Pre-selection strategy is slightly better than individual-based evolution control in terms of the convergence of
SAEAs;

• RBF (regression-based model) is the best model and is recommended for SAEAs to solve CEPs in terms of the
convergence of SAEAs;

• The convergence step of kNN-R (similarity-based model) with individual-based evolution control is very small;

• RankSVM (rank-based model) is better to be used as the global model due to its requirements for the uniformly
distributed training data;

• SVC (classification-based model) is more suitable to POTS (parent-offspring tournament selection) based EAs.
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6. Conclusion and future work

This paper provided a new taxonomy and a comprehensive comparison of surrogate models used in SAEAs for
single-objective optimization problems. Different from existing surveys [13, 3, 5, 8], our taxonomy divides the ex-
isting surrogate models in SAEAs into two main classes: absolute and relative fitness models. Based on this taxon-
omy, a comprehensive survey of surrogate models used in SAEAs is given. Then, a systematical comparative study
among different models is conducted, which will provide valuable guidance to select suitable surrogate models used
in SAEAs.

Absolute fitness models provide approximate fitness values of new individuals to replace the actual expensive fit-
ness evaluation. According to modelling approaches, absolute fitness models could be further divided into regression-
based and similarity-based models. Regression-based models construct a mathematical function to model the actual
fitness function. They have higher accuracy in approximating the fitness function. Besides, regression-based mod-
els could provide comprehensive information about the real fitness function, which is valuable for optimisation and
problem analysis. The similarity-based models derive the fitness of unevaluated new individuals by measuring the
correlation between the new individuals and their neighbours. It was the most convenient method among the four
kinds of models, but it usually has low accuracy, especially when the fitness landscape is complex.

Relative fitness approximation models have recently been introduced to SAEAs. This relatively new kind of
method focuses on the preference or rank of individuals rather than their absolute fitness values. Relative fitness
models could be categorized into two sub-classes: rank-based and classification-based surrogate models. Rank-based
models provide the rank information of the current population for selection, and classification-based methods compare
individuals with one reference solution. These two models were both designed explicitly for EAs that only used the
rank information in the selection process. Due to the special mechanism, they were only used in limited studies.

Comparison studies of different surrogate models were conducted from different perspectives, including execution
time, model accuracy, parameter influence, and the performance of SAEAs. We selected RBF, kNN-R, RankSVM and
SVC as the representative surrogate models and embedded them into a general EA, i.e., genetic algorithm. Firstly, the
computation time of model construction and the prediction was compared, and kNN-R and RBF models were more
efficient than RankSVM and SVC models, while RankSVM was the most time-consuming model. Then, the model
accuracy was compared by using rank correlation as the metric. We found that the RBF model was more accurate
than the other three surrogate models on most problem instances. Finally, we compared their efficacy by running
the SAEAs assisted by different models and model management strategies. The results indicate that the pre-selection
strategy is better than individual-based evolution control given the same surrogate model. The RBF model is still the
most effective surrogate model among absolute and relative fitness models. In addition, we also found that the SVC
model was only suitable for EAs with POTS.

For each surrogate model used in our experiment, we investigated the influence of some critical model parameters.
The size of training data K did not make a big difference to the SAEA’s performance when using RBF and kNN-R
models, but it was very important when using RankSVM and SVC models. For individual-based evolution control, the
parameter determining the re-evaluation ratio was important when using any of the four surrogate models. Low psm is
more suitable for the RBF model; moderate psm is more suitable for the kNN-R model and large τth is more suitable
for the RankSVM model. For the pre-selection strategy, the pre-selection factor’s influence was not very obvious, and
the results suggest that a moderate λpre is suitable for all surrogate models.

For future work, it is well worth to review the surrogate models applied in multi-objective optimization, es-
pecially the relative fitness surrogate models. Although there have been some reviews about surrogate models in
multi-objective evolutionary algorithms [6, 7], there is still no work comparing different kinds of models by exper-
imental analysis. And there is also no research studying the influence of parameter choice for different models in
multi-objective evolutionary algorithms. Therefore, it is valuable to do such research on this topic.

Finally, we also found during our literature review that most works in SAEAs are concerned with unconstrained
single-objective optimization. However, many real-world problems have constraints, multiple objectives and may be
dynamic and contain uncertainty. There are only a few studies on SAEAs for constrained optimization, multi-objective
optimization and dynamic optimization. These are interesting directions for future research.
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