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Abstract—Meta-heuristic algorithms, especially evolutionary
algorithms, have been frequently used to find near optimal
solutions to combinatorial optimization problems. The evaluation
of such algorithms is often conducted through comparisons with
other algorithms on a set of benchmark problems. However,
even if one algorithm is the best among all those compared,
it still has difficulties in determining the true quality of the
solutions found because the true optima are unknown, especially
in dynamic environments. It would be desirable to evaluate
algorithms not only relatively through comparisons with others,
but also in absolute terms by estimating their quality compared
to the true global optima. Unfortunately, true global optima
are normally unknown or hard to find since the problems
being addressed are NP-hard. In this paper, instead of using
true global optima, lower bounds are derived to carry out an
objective evaluation of the solution quality. In particular, the
first approach capable of deriving a lower bound for dynamic
capacitated arc routing problem (DCARP) instances is proposed,
and two optimization algorithms for DCARP are evaluated
based on such a lower bound approach. An effective graph
pruning strategy is introduced to reduce the time complexity
of our proposed approach. Our experiments demonstrate that
our approach provides tight lower bounds for small DCARP
instances. Two optimization algorithms are evaluated on a set
of DCARP instances through the derived lower bounds in our
experimental studies, and the results reveal that the algorithms
still have room for improvement for large complex instances.

Index Terms—Performance evaluation, Meta-heuristic algo-
rithms, Lower bounds, Dynamic capacitated arc routing problem.

I. INTRODUCTION

Combinatorial optimization problems (COPs) are ubiquitous
across various industrial sectors [1]. They are hard to solve due
to their large search spaces and NP-hard nature. Meta-heuristic
algorithms, such as evolutionary algorithms and memetic al-
gorithms, are one of the most popular approaches for tackling
various COPs [2], especially in dynamic environments [3],
[4]. They are effective at finding near optimal solutions to
these problems by balancing the exploration and exploitation
through powerful search operators.

Performance measurement for a meta-heuristic algorithm
is crucially important in understanding its optimization ca-
pabilities [5]. Currently, in the literature, newly proposed
algorithms are commonly evaluated using a suite of benchmark
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problems, and the majority of studies focus on comparing
optimization results with a baseline algorithm using statistical
tests in terms of either the solution quality or the computational
time required [6]. However, such comparative evaluations only
provide insights into the relative performance of algorithms
compared to others, without providing an estimation of the
solution quality with respect to the global optimum. The
performance measurement in relation to the global optimum is
crucial for assessing the remaining potential for improvement
in the optimization algorithms.

In continuous optimization, the global optimum of the
artificially designed benchmark problems is typically known,
allowing for a straightforward assessment of the gap between
the obtained solution and the global optimum [7]. Unfortu-
nately, the theoretical optimum is usually either unknown or
exceedingly hard to find for most NP-hard COPs. Utilizing
lower bounds as an alternative to the theoretical optimum of-
fers a viable approach for measuring the performance of meta-
heuristic algorithm [8], and also for a better understanding
of the problem and its solution method when the theoretical
optimum is unknown in COPs.

The use of lower bounds for evaluating the performance
of heuristic algorithms is a well-established practice in the
literature, and several studies have employed this performance
metric to evaluate algorithms. For example, Chao et al. [9]
defined the approximate error rates to assess solutions in
bin-packing problem. Similarly, Jarboui et al. [10] defined a
“%gap” metric representing the average deviation of solution
value from the lower bound to measuring the algorithm for
the location routing problem. Lower bounds are particularly
useful for dynamic optimization problems, as changes in the
environment may make it even more challenging to know the
exact global optimum. In this context, as problem instances
change, the lower bound of the problem also shifts over
time at each time period [11]. Consequently, the lower bound
is required to be derived for the problem instance in each
environment to assess the performance of algorithms in the
new environment.

The Capacitated Arc Routing Problem (CARP) is a typical
challenging NP-hard [12] combinatorial optimization problem,
abstracted from many real-world problems [13], such as salt
gritting [14] and waste collection [15]. The static CARP
aims to assign a fleet of vehicles with limited capacities
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to serve a set of tasks in a graph [16]. All vehicles must
start and end their services at the depot. However, some
dynamic events, such as road congestion and newly added
tasks/demands [17], may occur during the vehicles’ services,
leading to a degradation in the original schedule or even
rendering it infeasible. Dynamic CARP (DCARP) instances
are generated in response to these dynamic events [18], [19],
[20], and the optimization for these DCARP instances is
highly challenging. A few effective algorithms for solving
DCARP have been proposed in the literature [18], [20], [21],
[22]. To the best of our knowledge, although performance
evaluation based on the lower bound has been widely used in
the literature, only a percentage deviation based on a posterior
lower bound has been proposed to estimate the performance
of optimization algorithms [22]. However, this posterior lower
bound corresponds to the static CARP instance instead of the
lower bound of each actual DCARP instance in a dynamic
environment.

Therefore, in this paper, a tight lower bound for DCARP
instances is derived. Then, the performance of meta-heuristic
algorithms for DCARP is evaluated through assessing the
quality of DCARP solutions based on the derived lower bound.
Our contributions are as follows:

• The first lower bound approach for DCARP, named node
matching lower bounds (NMLB), was proposed, which
considers the outside vehicles with different remaining
capacities and locating at different vertices. The lower
bound problem is converted into a minimum cost match-
ing problem (MCMP). A lower bound for a DCARP
instance is obtained by applying the Blossom algorithm
[23] to solve the MCMP. The tightness of lower bound is
analyzed on a set of DCARP instances whose theoretical
optima are known and the analysis concludes that the
obtained NMLB is very close to the theoretical optimum
on the testing DCARP instances.

• A graph pruning strategy was proposed to remove a sub-
set of redundant vertices in the MCMP, which increases
the computational efficiency of the proposed NMLB
approach. Its efficiency is demonstrated and analyzed in
our experimental studies.

• The derived lower bound is applied to evaluate the perfor-
mance of two meta-heuristic algorithms for DCARP on
a benchmark set of DCARP instances. The experimental
analysis reveals excellent performance on relatively small
instances and potential improvements on large complex
instances, which demonstrates how our lower bound ap-
proach could enhance our understanding of meta-heuristic
algorithms in solving hard problems.

The remainder of this paper is organized as follows. Section
II introduces the definition of the DCARP, the notations used
in this paper, and the lower bound approaches for static CARP
instances. Section III introduces our proposed node matching
lower bound approach and the graph pruning strategy. Section
IV presents the experimental results on the tightness of the
lower bound, the performance measurement of optimization
algorithm, and the efficacy of the pruning strategy. Conclu-
sions and future work are provided in Section V.
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Figure 1: The illustration of a DCARP scenario.

II. BACKGROUND

A. Characteristics of Dynamic Behavior in Studied DCARP

When dynamic events occur and deteriorate the current de-
ployed solution during vehicles’ services, it becomes necessary
to re-schedule the vehicles for the new environment. This can
be seen as a new DCARP instance in the new environment,
and optimization for the new DCARP instance is required
to update vehicle routing. Therefore, a complete DCARP
scenario consists of a series of discrete DCARP instances,
each of which corresponds to an environmental change, and
optimizing these DCARP instances is necessary to update
vehicle routing.

The process of a DCARP scenario studied in this paper is
presented in Figure 1, starting with an initial static CARP
instance. A meta-heuristic algorithm can be employed to
obtain the best solution for the static CARP instance, which
will be used to schedule vehicles to serve the pre-defined
tasks. There is a control center which can receive all traffic
and environment information, and it will detect changes in
the environment. Whenever any dynamic events occur while
vehicles are in service, the control center will report the
type of dynamic events and generate a new DCARP instance
according to the occurred dynamic events. The optimization
algorithm will then dynamically optimize the newly generated
DCARP instance. After the dynamic optimization process for
the new DCARP instance, an updated solution will be obtained
and deployed to the environment to update the service plan of
all vehicles. The DCARP scenario will terminate only when
all tasks have been served. This paper focuses on deriving
the lower bound for each DCARP instance within a DCARP
scenario.

In the literature, Uncertain CARP (UCARP) also focused
on addressing environmental uncertainties, but they primarily
focused on finding robust solutions prior to deployment that
are expected to perform well under various dynamic events
[17]. However, in some dynamic optimization problems, find-
ing solutions that are robust over time may not be sufficient. In
cases where dynamic changes have led to significant solution
deterioration, a “robust” solution with poor quality may not
be useful for many applications. In such cases, our studied
DCARP optimization is needed to ensure that the vehicle
routing remains efficient throughout the service period.

The DCARP studied in this work is also different from
typical dynamic optimization problems in the literature, where
uncertain factors only affect objective functions, causing a
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change of global optima. In our DCARP, the decision variable
space of the new DCARP instance changes after dynamic
events. In particular, the solution is first partially executed,
meaning that some tasks in the original problem may have
already been served, and this service is not required to be
repeated. Moreover, newly emerging tasks and potential road
closures are likely to render previous solutions infeasible. As a
result, the decision variable space for the new DCARP instance
differs from the previous DCARP instances, causing solutions
obtained for the previous DCARP instances unsuitable for the
new DCARP instances.

B. Problem Definition and Notations1

In this paper, an un-directed graph G = (V,E) for a CARP
instance was considered, where the vertex (node) v0 is the
depot. Each edge e ∈ E has a demand of dm(e) and a traverse
cost. Edges with dm(e) > 0 are tasks with a serving cost,
which are required to be served by vehicles, and all tasks
form a set ER = {e ∈ E|dm(e) > 0}. Each vehicle initially
starts from the depot v0 with a full capacity Q. During the
deployment of a solution, unforeseen dynamic events [20] may
occur at a random point in time t and generate a new DCARP
instance required to be optimized. Specifically, various types of
dynamic changes may occur, generating the DCARP instance.
However, most common dynamic events only affect the values
of the problem instance (i.e., arcs’ costs, tasks’ demands,
and the number of tasks) without altering the objective or
constraint formulas. For example, cost-change events only
modify the arcs’ costs, adding demands events only adjusts the
demands of existing tasks, and new task events only impact the
total number of tasks in the problem instance. Moreover, the
degree of dynamic events also primarily affects the magnitude
of the values in the problem instance, rather than the objective
or constraint formulas of the DCARP. Therefore, in this paper,
such general DCARP instances are considered, in which the
dynamic events and their degree solely affect values of the
problem instance.

Suppose the DCARP instance generated at a time point
t is denoted by It and assume that there are Nov outside
vehicles in the DCARP instance It. These vehicles were
either serving tasks or had served tasks when the dynamic
event occurred. Therefore, they are located at different vertices
Vov = {sp1, sp2, ..., spNov

} (nodes of outside vehicles) and
have different remaining capacities {q1, q2, ..., qNov

} [20]. The
optimization problem for the DCARP instance It targets an
optimal assignment of tasks for different vehicles, including
outside vehicles and those starting from the depot, with the
lowest total costs, which is the sum of total service costs and
traversing costs in a solution.

A solution to the DCARP instance It, is denoted as
St = {R1, R2, ..., RK}, where K is the number of routes
in the solution. Among these routes, Nov routes correspond
to outside vehicles, while the remaining K −Nov routes start
from the depot. A route Rk traversed by a given vehicle k
can be represented as Rk = (vk, tk,1, tk,2, ..., tk,lk , v0), where

1A full list of mathematical notations used in this paper are summarized
in the Appendix.

lk denotes the number of tasks in the kth route, vk represents
the starting point of the route Rk, and tk,i is the ith task
in route Rk. Assuming that the demand of a task tk,i is
dm(tk,i), the objective function for the DCARP instance It
can be formulated by the following equation [20], [24]:

Min TC(St) =

K∑
k=1

RCRk
(1)

s.t.

K∑
k=1

lk = Nt (2a)

tk1,i1 ̸= tk2,i2 , for all (k1, i1) ̸= (k2, i2) (2b)
lk∑
i=1

dm(tk,i) ≤ qk,∀k ∈ {1, 2, ...Nov} (2c)

lk∑
i=1

dm(tk,i) ≤ Q,∀k ∈ {Nov + 1, ...,K} (2d)

where RCRk
is the total cost of route Rk which is calculated

by Eq. (3):

RCRk
= mc(vk, headtk,1

) +mc(tailtk,lk
, v0)+

lk−1∑
i=1

mc(headtk,i
, tailtk,i+1

) +

lk∑
i=1

sc(tk,i)
(3)

where the headtk,i
, tailtk,i

denote the task’s head and tail
vertices. The direction of an arc is assumed to be from its tail
to its head. The minimal total traversing cost from node vi
to node vj is denoted as mc(vi, vj), and sc(tk,i) denotes the
serving cost of the task tk,i. The constraint (2a) guarantees that
the number of tasks in the solution equals to the number of
tasks of the instance. The constraints (2b) guarantee that any
two tasks in the solution are different, i.e., the solution does
not attempt to serve the same task more than once. Therefore,
these two constraints guarantee that all tasks are served exactly
once. Then, constraints (2c) and (2d) are formulated to satisfy
the vehicles’ capacity constraint.

For simplicity, the depot and all tasks are extracted in the
graph and a required graph GR = (VR, ER) is constructed,
which only includes the required edges ER for deriving the
lower bound. VR is a set of nodes, including the depot and
nodes incident with at least one task in V . Let d(vi) be the
degree of node vi in GR, which is equal to the number of tasks
that node vi is incident with in GR. The cost between two
nodes vi and vj in GR is set as equal to its cost mc(vi, vj) in
the original graph G. As the (D)CARP solution is only related
to tasks, all deductions made for the lower bound are based
on GR. CT and WT are the total serving costs and the total
demands for all tasks in a (D)CARP instance, respectively.

Suppose S∗ = {R∗
1, R

∗
2, ..., R

∗
K} is the optimal solution

for a DCARP instance, in which route R∗
k is denoted as

(vk, t
∗
k,1, t

∗
k,2, ..., t

∗
k,lk

, v0). As formulated in Eq. (1) and Eq.
(3), the total costs of the optimal solution are the summation
of all tasks’ service costs and the total deadheading costs
traversed between any two nodes in R∗

k. Thus, the traversed
path between two separate nodes which do not belong to the
same task in a solution are considered as the artificial link in
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GR. Since the service costs of all tasks are fixed for a given
DCARP instance, the sum of the total costs of these artificial
links determines the lower bound of a (D)CARP instance,
which will be shown how to compute in Section III.

C. Lower Bounds for Static CARP and DCARP

During the past decades, several lower-bound methods have
been introduced for static CARP instances. Two fundamental
approaches, including the matching lower bound (MLB) [12]
and the nodes scanning lower bound (NSLB) [25], have
stood out. MLB deduces the lower bound by adding artificial
edges to transform the graph into an Euler graph [12]. NSLB
considers that vehicles traverse a path from the depot to a given
node before serving any tasks and that the number of paths
linking to a node would not exceed the number of connected
tasks. Thus, NSLB adds artificial edges between the depot and
nodes to obtain a lower bound [25]. Further approaches have
been proposed based on these two basic methods. For example,
[26] proposed two lower bounds (LB1 and LB2) based on
NSLB, and [27] proposed the node duplication lower bound
(NDLB) method based on MLB. [28] combined MLB and
NSLB and proposed a tighter lower bound, called MCNDLB.
Besides, [29] used cut-and-column generation to get a new
improved lower bound for static CARP instances.

Although the current lower bounds for static CARP in-
stances have been reasonably tight, these existing lower bound
approaches are unsuitable for deriving the lower bound for
DCARP instances, as they assume all vehicles start at the
depot. This is because the lower bound approaches for static
CARP instances only consider routes starting from the de-
pot. However, since DCARP instances are generated due to
the dynamic events while vehicles are in their services, the
DCARP solution includes routes belonging to outside vehicles
which start from different locations instead of the depot. These
outside vehicles can continue serving some tasks and then
return to the depot, or they can also return to the depot
directly. These special cases have to be taken into account
when deriving the lower bound, but the static lower bound
approach is not capable of handling them.

In [20], a “virtual-task” strategy was proposed for convert-
ing a DCARP instance into a “virtual” static CARP instance,
enabling optimization algorithms designed for static CARP
to be applied to DCARP. The virtual-task strategy creates a
virtual task between the depot and the location where each
outside vehicle stops. Each virtual task is assigned the same
demand as that already served by a given outside vehicle.
Serving a virtual task once using a depot vehicle results in
the location and remaining capacity of this vehicle being
the same as that of the corresponding outside vehicle when
the change happened. Therefore, during optimization, each
outside vehicle can be treated as if it was a vehicle located
at the depot, but serving its corresponding virtual task once.
However, even though all vehicles are located at the depot
with the same capacity in the “virtual” static CARP instance,
it is still not suitable to apply the existing lower bound
approaches for static CARP instances to such “virtual” static
CARP instances. This is because the virtual task is constructed

for optimization with static CARP optimization algorithms,
and these virtual tasks have to be the first task in a route.
Furthermore, two virtual tasks cannot exist in the same route
in the final solution. Therefore, the outside vehicles are still
required to be considered specifically when deriving the lower
bound using the converted “virtual” static CARP instances
with static lower bound approaches.

Therefore, to fill the gap of deriving the lower bound for
DCARP instances, a node matching lower bound approach is
proposed, which was motivated by the NSLB [25] and NDLB
[27] approaches for static CARP instances. It is capable of
dealing with the outside vehicles by transforming the origin
lower bound problem into a matching problem. More details
of the proposed approaches are presented in Section III.

III. PERFORMANCE EVALUATION WITH NODE MATCHING
LOWER BOUND FOR DCARP

A. The Lower Bound Algorithm

For a given DCARP instance, a solution S is assumed to
be composed of several routes {R1, R2, ..., RK}. In each route
Rk : (vk, tk,1, tk,2, ..., tk,lk , v0), vk is the starting point of the
route, and tk,i is the ith task of the route. Suppose headtk,i

,
tailtk,i

denote the head and tail vertices of task tk,i, the route
Rk can be represented by a node sequence as follows:

Rk = (vk, tailtk,1
, headtk,1

, tailtk,2
, headtk,2

, ..., headtk,lk
, v0)

Therefore, a DCARP solution can be formed by adding the
following three types of artificial links:

1) Artificial links between the starting vertex of the route
and the head vertex of the first task.

2) Artificial links between the tail vertex of the first task and
the returning vertex of the route (the depot).

3) Artificial links between the tail vertex of one task and the
head vertex of its next task.

The total costs of a solution are determined by the costs of
these artificial links according to Eq. (1) and Eq. (3), because
the total service costs of all tasks are fixed. Thus, if the case of
adding artificial links between tasks and starting and returning
vertices with minimum total costs can be identified, a valid
lower bound for the DCARP instance can be obtained.

At first, the minimum number of routes required for the
given DCARP instance must be determined to calculate the
minimum number of starting and returning vertices required in
a DCARP solution. Due to the outside vehicles in the DCARP
instance, the solution of the DCARP instance consists of routes
starting not only from the depot but also from these outside
vehicles. These outside vehicles can also continue to serve
some tasks, thereby affecting the minimum number of vehicles
required to start from the depot, which can be calculated as:

k0 =

⌈
WT −

∑Nov

i=1 qi
Q

⌉
(4)

The number of routes belonging to the outside vehicles equals
the number of outside vehicles, i.e., Nov .

In a DCARP solution, the starting vertices of routes can
be either the depot or nodes associated with outside vehicles
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(outside vehicles’ nodes). The returning vertices are always the
depot. Thus, for adding artificial links related to the starting
and returning vertices, five constraints have to be satisfied in
a DCARP solution:

1) The depot in k0 routes associated with vehicles starting
from the depot must link to a task’s node vi ∈ VR.

2) The depot in Nov routes associated with outside vehicles
can link to a task’s node or directly link to a starting
vertex spi ∈ Vov .

3) The starting vertex spi ∈ Vov in Nov outside vehicles’
routes can link to a task’s node or directly link to a depot.

4) If a starting vertex spi ∈ Vov in Nov outside vehicles’
routes links to a task’s node, the returning vertices (depot)
in these routes must also need to link to a task’s node.

5) If a starting vertex spi ∈ Vov in Nov outside vehicles’
routes link to the depot, the returning vertex (depot) in
these routes cannot link to other tasks’ nodes anymore.

Algorithm 1: Pseudo-code of constructing the auxil-
iary graph

Input: Graph GR = (VR, ER)
1 Initialise four empty sets A,B,C,D.
2 Add 2k0 nodes into A representing 2k0 copies of the

depot v0. // Depots needed for new
vehicles to start at, and return
to.

3 Add Nov nodes into C representing Nov copies of the
depot v0. // Depots needed for outside
vehicles to return to.

4 Add all nodes in Vov into D, i.e., D = Vov .
// Nodes where outside vehicles
are located.

5 for each node vi ∈ VR do
6 Add d(vi) copies of node vi into B. // Nodes

which vehicles can pass through
when serving tasks

7 Set Vx = A
⋃

B
⋃

C
⋃

D, Ex = ∅.
8 Add links between A and B,

Ex = Ex

⋃
{(vi, vj)|vi ∈ A, vj ∈ B}.

9 Add links between B and C,
Ex = Ex

⋃
{(vi, vj)|vi ∈ B, vj ∈ C}.

10 Add links between B and D,
Ex = Ex

⋃
{(vi, vj)|vi ∈ B, vj ∈ D}.

11 Add links between C and D,
Ex = Ex

⋃
{(vi, vj)|vi ∈ C, vj ∈ D}.

12 Add links inside set B,
Ex = Ex

⋃
{(vi, vj)|vi ∈ B, vj ∈ B, vi ̸= vj}.

13 for each link (vi, vj) ∈ Ex do
14 Set its cost equal to the cost between the two

corresponding nodes in GR.
Output: Auxiliary graph Gx = (Vx, Ex)

Therefore, an auxiliary graph Gx can be constructed based
on the above constraints, and the pseudo-code for constructing
the auxiliary graph is presented in Algorithm 1. Four different
empty subsets, named as A, B, C, and D, are initialized to
include nodes with different roles in a DCARP solution, as

presented in Lines 1-6. Set A includes 2k0 nodes representing
the starting and returning vertices of k0 routes starting from
the depot, which are all depots (Line 2). Set C includes
Nov nodes representing the returning vertices of Nov routes
associated with the outside vehicles (Line 3). Set D includes
the starting vertices of Nov routes belonging to the outside
vehicles, i.e., the locations where outside vehicles stop (Line
4). Set B mainly consists of the vertices incident with the
tasks in GR. Since each task can only be served once in a
DCARP solution, any vertex vi cannot be linked over d(vi)
times (i.e., the degree in GR) when adding artificial links to
form the DCARP solution. Thus, d(vi) copies of each vertex
vi ∈ VR were added into set B (Lines 5-6). These four sets
are combined to form the set Vx (Line 7). Then, according to
the above five constraints, links between sets A and B, B and
C, B and D, and C and D, were added as presented in Lines
8-11. Links between nodes in set B, representing the links
between tasks in a solution were also added (Line 12). All
these links form a set Ex. For each link in Ex, its cost equals
to the corresponding minimum costs between two vertices in
GR (Lines 13-14). Finally, the auxiliary graph Gx = (Vx, Ex)
is constructed and used to calculate the instance’s lower bound.

Theorem 1. Let CMCMP be the cost of the optimal solution
of the minimum cost matching problem on Gx, and CT be
the total serving costs of all tasks. Then, NMLB = CT +
CMCMP provides a valid lower bound for a DCARP instance.

Proof. The optimal solution of the DCARP instance comprises
tasks, artificial links between tasks’ head and tail vertices,
and artificial links between tasks’ endpoints and the starting
and returning vertices of the routes. The total service costs
CT are fixed for a given DCARP instance. The case of all
artificial links in the optimal solution must be a matching of
the auxiliary graph Gx: each vertex in Gx must be linked
with exactly one other vertex, and each vertex can only be
linked once in Gx. Let C∗

links denote the total costs of all
artificial links in the optimal solution of the DCARP instance.
Then, C∗

links must be greater than or equal to the cost of the
solution to the minimum cost matching problem on Gx, which
is denoted as CMCMP . Thus, the following inequality must
be satisfied:

C∗ = CT + C∗
links ≥ CT + CMCMP = NMLB (5)

which completes the proof.

B. An Example of NMLB Approach

Example 1. An example of a DCARP instance is shown in
Figure 2, in which the node ‘0’ denotes the depot, and the
cost and demand of each edge are provided in brackets. In
the example, the traversing cost is equal to the serving cost
for all tasks. The vehicle capacity Q is 4. Two outside vehicles,
i.e., ov1 and ov2, stop at nodes ‘2’ and ‘3’, respectively, with
remaining capacities q1 = q2 = 2.

The optimal solution this instance has the following routes:
{1 : v2 ⇒ v1 − v0, 2 : v3 ⇒ v1 − v0, 3 : v0 ⇒ v1 − v4 ⇒
v2 − v1 − v0, 4 : v0 − v1 ⇒ v4 ⇒ v3 − v1 − v0}, where “⇒”
denotes that the edge between two nodes is a task, and the
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Figure 2: An example of a DCARP instance. Node ‘0’
represents the depot. Values in brackets denote the cost and
demand of the corresponding edge.
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(a) Graph Gx for example 1 as shown in Figure 2. It has links
between all pairs of nodes in sets A and B, sets B and C, sets
B and D, sets C and D, and between nodes in set B, as shown
with big grey arrows.
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(b) The solution of MCMP for the graph Gx of example 1.

Figure 3: Example of applying NMLB approach in a DCARP
instance.

“−” denotes the traversed edge between two nodes. Thus, the
optimal solution’s cost for this example is 14.

The total demand for all tasks is WT = 12. Thus, the
minimum number of new vehicles dispatched from the depot
is k0 = 2. Therefore, the auxiliary graph Gx for the given
instance can be constructed as shown in Figure 3a including
four different sets. Set A includes 2k0 = 4 copies of the depot.
Set B includes all nodes in GR, and each node is duplicated
by its degree copies. Set C includes Nov = 2 copies of the
depot. Set D includes the nodes where outside vehicles stop.
The big grey arrows indicate the links between all pairs of
nodes in the two sets.

The solution to the MCMP on Gx is shown in Figure 3b with
solid lines. Thus, the total costs for the solution of MCMP, i.e.,
CMCMP , is equal to 7. Therefore, the lower bound NALB
for this example is 13, since the total service costs are CT = 6.

C. Graph Pruning Strategy

Even though the above approach can obtain a lower bound
for the DCARP instance, the process of solving the minimum
cost matching problem on Gx is computationally expensive
when the number of tasks in the instance is large. This is
because of the large number of nodes in the set B of Gx

for instances with many tasks and the time complexity of
“Blossom algorithm2” [23]. The Blossom algorithm focused
on dealing with odd-length cycles in the graph to progressively
improve the matching until it achieves optimality. While it is
effective in finding the optimal solution for the MCMP, its time
complexity of O(|Vx|3) makes solving our converted MCMP
computationally expensive. However, since the degree of many
nodes in GR is greater than 1, resulting in multiple copies of
these nodes being in set B, many nodes in set B probably
match their own copies in the final solution of MCMP. Thus,
it is possible to exclude nodes which definitely will match their
copies in the final solution of MCMP to reduce the number of
nodes in the set B. Therefore, a pruning strategy is proposed in
this subsection to mitigate the computational burden of solving
the MCMP.

To remove nodes which will definitely match their copies
in set B of Gx in the final MCMP solution, it is necessary
to identify those nodes in set B, which are possible to match
nodes in sets A, C, and D first. Then, the remaining nodes
in set B can be pruned to remove duplicates and reduce the
size of set B. The pruning algorithm for set B is presented
in Algorithm 2 for obtaining a new set B’ before solving the
MCMP.

First, to identify which nodes in set B could potentially
match nodes in sets A, C, and D, we consider the 2k0 +Nov

depots in sets A and C as well as the nodes of the outside
vehicles in set D are required to be considered. Therefore, in
Lines 2-3 of Algorithm 2, all nodes in B are sorted according
to their minimum costs from the depot and add the nearest
2(k0+Nov) nodes to B’ because the outside vehicles’ nodes at
most match to Nov nodes from the nearest 2(k0+Nov) nodes
in B, and the remaining 2k0+Nov nearest nodes are enough for
matching the 2k0 + Nov depots in A and C. Then, for each
outside vehicle node, the whole set B are sorted according
to their costs to the outside vehicle node (Line 5). For each
node in the nearest Nov nodes of the sorted B, if it has not
been included in set B’, then add it into the set B’, which
are presented in Line 6-8 of Algorithm 2. This is because the
remaining Nov−1 outside vehicles might match the first Nov−
1 nearest nodes, and each outside vehicle node at least will
match its N th

ov nearest node. Thus, the first Nov nearest nodes
were added to set B’, which could guarantee the remaining
nodes will not match the outside vehicles’ nodes in set D.

Then, a set X consisting of nodes is defined that definitely
match nodes in set B in the solution of MCMP. It is obtained

2The python library (Networkx) was used to solve the MCMP.
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Algorithm 2: Pseudo-code of pruning the set B.
Input: Graph GR, set B

1 Set B’ = ∅.
2 Sort nodes in B according to their minimum costs

from the depot.
3 Select the first 2(k0 +Nov) nodes in B and add them

to B’.
4 for each spi ∈ Vov do
5 Set Bsort by sorting nodes in B according to their

minimum costs to spi.
6 for each vi ∈ Bsort[1 : Nov] do
7 if vi /∈ B’ then
8 Add vi to B’

9 Set X = B \ B’.
10 for each vi ∈ X do
11 if vi has even number of copies then
12 Remove all vi in X .

13 if vi has odd number of copies then
14 Just keep one vi in X .

15 B’ = B’ ∪X .
Output: B’

by removing set B’ from the set B, as presented in Line 9.
Each node will first match the node, which is one copy of this
node, in the solution of MCMP. This is proved in Theorem
2. Thus, for each node in set X, if it has an even number of
copies, all copies of this node are removed, while if it has an
odd number of copies, only one copy of this node is kept in
X , as shown in Lines 10-14.

Finally, the sets X and B’ are combined to be the new set B
for constructing the auxiliary graph Gx and solving the MCMP
to obtain the lower bound.

Theorem 2. Let X = {v11 , v21 , ..., v
d1
1 , ..., v1n, v

2
n, ..., v

dn
n } be a

node set, in which the distance between each two nodes in the
subset {v1i , v2i , ..., v

di
i } is 0. Then, in the solution of MCMP

on the complete graph constructed based on X:

• If di is an even number, the pairs {(v1i , v2i ), ..., (v
di−1
i , vdi

i )}
must be in the MCMP’s solution.

• If di is an odd number, the pairs
{(v1i , v2i ), ..., (v

di−2
i , vdi−1

i )} must be in the MCMP’s
solution.

Proof. For the case that di is an even number, if one
pair (vpi , v

q1
j1) exists in the MCMP’s solution, it must

have another pair (vp+1
i , vq2j2) among the MCMP’s solution

(suppose p is the odd number). However, dis(vpi , v
q1
j1) +

dis(vp+1
i , vq2j2) is greater than dis(vpi , v

p+1
i ) + dis(vq1j1 , v

q2
j2)

due to the triangle inequality because dis(vpi , v
p+1
i ) =

0 so that they can be regarded as one point. There-
fore, the pairs {(vpi , v

p+1
i ), (vq1j1 , v

q2
j2)} must be better than

{(vpi , v
q1
j1), (v

p+1
i , vq2j2)}. This is shown with a demonstration

in Figure 4. Therefore, the nodes in {v1i , v2i , ..., v
di
i } must have

the pairs {(v1i , v2i ), ..., (v
di−1
i , vdi

i )} in the MCMP’s solution.

For the case that di is an odd number, if one node
is excluded, such as vdi

i , the number of nodes in set
{v1i , v2i , ..., v

di−1
i } becomes even, and it is the same as the

above case, which completes the proof.
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Figure 4: A demonstration of proof for Theorem 2.

IV. COMPUTATIONAL RESULTS

In this section, the tightness of the lower bound will be
evaluated first on a set of DCARP instances with known global
optima. Then, the performance of two optimization algorithms
will be evaluated based on NMLB on another set of more
complex DCARP instances, for which the global optima are
unknown. In addition, the efficiency of the proposed NMLB
approach with the graph pruning strategy is also evaluated on
these test instances.

A. Experimental Settings

The DCARP instances used in our experiments are all
generated based on a static CARP benchmark instance using
a DCARP simulation system [20]. Firstly, to evaluate the
tightness of the NMLB, a set of DCARP instances with known
global optima is required. However, there currently exists
no exact solver for DCARP in the literature. Moreover, the
current formulation of DCARP, which defines its decision
space as the sequence of tasks, is incompatible with the use
of solvers such as CPLEX [32] or Gurobi [33]. Consequently,
it is challenging to calculate the exact global optimum for
most DCARP instances. Therefore, the gdb [34] static CARP
instances are employed whose problem dimensionalities are
relatively low, and their global optima have been established
in the literature, generating a set of special DCARP instances
whose global optima can be easily derived. For a static
CARP instance, its global optimal solution is executed in the
simulation system. Then, vehicles were stopped in random
time points to generate a new DCARP instance and keep all
traversing costs of edges in the map unchanged. The demands
of all tasks also remain the same. Thus, the service routes
of the global optimal solution for the new DCARP instance
remain consistent with those originally optimized from the
static CARP instance.

However, the above generated DCARP instances are con-
sidered relatively straightforward for the state-of-the-art op-
timization algorithm [30], [20]. Therefore, another two sets
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Table I: The gap between the obtained lower bound and the global optimum, i.e., Gap calculated by Eq. 6, on DCARP instances
created based on the gdb static dataset. Nv , Nn, and Nt denote the number of required vehicles, the number of nodes, and the
number of tasks, respectively. LB and OPT represent the NMLB and the global optimal solution’s total costs for the DCARP
instance.

Map Nv Nn Nt LB OPT Gap(%)

gdb1 5 12 18 239 245 2.4
gdb2 6 12 22 299 299 0
gdb3 5 12 18 222 222 0
gdb4 4 11 12 183 196 6.6
gdb5 6 13 20 294 294 0
gdb6 5 12 16 206 209 1.4
gdb7 5 12 15 228 241 5.4
gdb8 10 27 38 235 287 18.1
gdb9 10 26 43 215 241 10.8

gdb10 4 12 18 203 203 0
gdb11 5 22 35 303 303 0
gdb12 7 13 18 329 359 8.4
gdb13 6 10 20 421 421 0
gdb14 5 7 17 78 78 0
gdb15 4 7 15 42 42 0
gdb16 5 8 18 88 88 0
gdb17 5 8 20 64 64 0
gdb18 5 9 31 147 147 0
gdb19 3 8 8 47 47 0
gdb20 4 11 16 94 94 0
gdb21 6 11 28 137 137 0
gdb22 8 11 30 143 143 0
gdb23 10 11 52 230 230 0

Table II: The approximate percentage deviation performance, i.e., APD, for the MAENS [30], [20] and the RTS [31], [20]
on the val DCARP instances based on the proposed NMLB, calculated by Equation (7). Nv denotes the number of required
vehicles. Nn represents the number of nodes in the corresponding required graph. Nt represents the number of tasks on the
instance. LB represents the lower bound obtained by NMLB approach. Best∗ represents the best solution’s cost obtained by
the corresponding algorithm. TO and TP denote the computational time (unit: sec) for calculating the lower bound with and
without pruning strategy, respectively, where the bold one denotes the shorter time used for calculating the NMLB.

Map Nv Nn Nt TO TP LB
MAENS RTS

Best∗ APD(%) Best∗ APD(%)

val1A 4 24 34 0.219 0.015 171 175 2.3 176 2.9
val1B 3 23 28 0.177 0.022 142 148 4.2 148 4.2
val1C 7 19 22 0.148 0.072 123 143 16.3 143 16.3
val2A 2 21 20 0.061 0.013 137 137 0 137 0.0
val2B 2 21 17 0.051 0.017 148 157 6.1 157 6.1
val2C 6 19 18 0.053 0.03 178 267 50 267 50.0
val3A 2 16 15 0.033 0.007 40 46 15 46 15.0
val3B 4 23 30 0.227 0.014 76 89 17.1 91 19.7
val3C 5 19 17 0.058 0.016 60 90 50 90 50.0
val4A 4 32 35 0.339 0.059 247 258 4.5 259 4.9
val4B 3 32 36 0.386 0.052 201 220 9.5 221 10.0
val4C 5 35 38 0.524 0.071 217 264 21.7 264 21.7
val4D 11 37 42 0.834 0.176 355 455 28.2 474 33.5
val5A 6 33 48 0.729 0.078 339 361 6.5 385 13.6
val5B 3 31 38 0.313 0.026 254 256 0.8 256 0.8
val5C 4 32 36 0.402 0.054 254 262 3.1 262 3.1
val5D 7 31 39 0.531 0.085 352 382 8.5 382 8.5
val6A 3 26 33 0.272 0.031 162 166 2.5 166 2.5
val6B 3 27 28 0.196 0.02 139 152 9.4 152 9.4
val6C 9 29 33 0.439 0.106 199 246 23.6 246 23.6
val7A 3 33 31 0.298 0.07 151 170 12.6 171 13.2
val7B 3 32 36 0.396 0.046 179 190 6.1 190 6.1
val7C 8 32 42 0.803 0.136 225 227 0.9 227 0.9
val8A 8 30 57 1.495 0.082 438 475 8.4 486 11.0
val8B 4 29 38 0.525 0.034 264 268 1.5 268 1.5
val8C 10 29 40 0.725 0.139 349 416 19.2 429 22.9
val9A 2 46 51 0.876 0.042 193 193 0 193 0.0
val9B 3 45 55 1.016 0.051 185 187 1.1 187 1.1
val9C 4 42 44 0.648 0.063 167 175 4.8 175 4.8
val9D 9 48 60 1.24 0.168 252 266 5.6 266 5.6

val10A 5 48 64 1.507 0.152 362 368 1.7 375 3.6
val10B 3 45 54 1.018 0.069 243 245 0.8 245 0.8
val10C 6 44 55 1.201 0.108 284 301 6 304 7.0
val10D 12 49 68 2.366 0.257 352 402 14.2 414 17.6

of more complex DCARP instances are generated, based
on egl [35] and val [36] static CARP instances with more
tasks. For each static CARP instance, one DCARP instance

is generated by executing the solution on the instance’s map
using the DCARP simulation system [20]. The cost-change
events, adding demand events, and new task events happen
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Table III: The approximate percentage deviation performance, i.e., APD, for the MAENS [30], [20] and the RTS [31], [20]
on the egl DCARP instances based on the proposed NMLB, calculated by Equation (7). Nv denotes the number of required
vehicles. Nn represents the number of nodes in the corresponding required graph. Nt represents the number of tasks on the
instance. LB represents the lower bound obtained by NMLB approach. Best∗ represents the best solution’s cost obtained by
the corresponding algorithm. TO and TP denote the computational time (unit: sec) for calculating the lower bound with and
without pruning strategy, respectively, where the bold one denotes the shorter time used for calculating the NMLB.

Map Nv Nn Nt TO TP LB
MAENS RTS

Best∗ APD(%) Best∗ APD(%)

egl-e1-A 6 59 47 0.861 0.237 2247 3466 54.3 3564 58.6
egl-e1-B 8 56 42 0.937 0.476 4158 5106 22.8 5672 36.4
egl-e1-C 14 64 54 1.833 0.862 6045 7985 32.1 9386 55.3
egl-e2-A 6 59 49 0.969 0.247 2199 3639 65.5 3729 69.6
egl-e2-B 11 61 53 1.835 0.666 7695 12312 60 14728 91.4
egl-e2-C 15 63 56 2.149 1.019 11846 15900 34.2 18256 54.1
egl-e3-A 9 69 64 2.52 0.648 3997 5181 29.6 5742 43.7
egl-e3-B 13 64 60 2.267 0.918 5286 7113 34.6 9497 79.7
egl-e3-C 22 69 66 3.723 1.758 7878 12468 58.3 15095 91.6
egl-e4-A 10 67 66 2.699 0.547 4652 6208 33.4 6312 35.7
egl-e4-B 16 66 66 3.363 1.108 5882 9889 68.1 12139 106.4
egl-e4-C 22 62 62 3.249 1.744 10152 16386 61.4 20402 101.0
egl-s1-A 10 98 77 4.594 1.263 3949 5412 37 6628 67.8
egl-s1-B 15 100 79 5.466 1.757 5027 7837 55.9 10217 103.2
egl-s1-C 20 88 59 3.264 2.372 5697 10052 76.4 12621 121.5
egl-s2-A 22 118 110 14.729 3.677 9178 17022 85.5 21488 134.1
egl-s2-B 35 118 118 21.728 8.162 13789 23062 67.2 30672 122.4
egl-s2-C 40 120 112 19.756 9.259 19898 29896 50.2 38065 91.3
egl-s3-A 22 116 116 17.712 3.713 7124 13524 89.8 18144 154.7
egl-s3-B 30 122 115 17.746 6.014 13872 22219 60.2 31095 124.2
egl-s3-C 33 114 100 13.538 7.103 12479 19922 59.6 23303 86.7
egl-s4-A 34 116 122 22.258 6.193 14401 21939 52.3 30219 109.8
egl-s4-B 37 119 123 22.778 8.866 14873 23080 55.2 33886 127.8
egl-s4-C 40 119 113 18.204 10.38 16298 25979 59.4 34462 111.4

concurrently to generate the testing DCARP instances. The
details of dynamic changes in each DCARP instances have
been thoroughly documented in our repository of generated
DCARP instances, which are all available on Github3.

The proposed NMLB approach and the graph pruning
strategy were both implemented in Python using NetworkX
library [37] in our experiments since the algorithm for solving
MCMP is available in the NetworkX library. The generated
instances and the source code of the proposed algorithms are
available on Github3. The experimental results were obtained
using an Intel Core i7 3.5 GHz with 16G RAM.

B. The Tightness of NMLB

The tightness of the proposed NMLB is evaluated on a
set of DCARP instances with known global optima based on
the static CARP instances (gdb). To measure the tightness of
this lower bound, the “Gap” metric is used to represent the
disparity between the NMLB and the global optimum, and is
calculated using the following equation:

Gap =
|LB −OPT |

OPT
× 100%. (6)

The computational results are summarized in Table I. It
is clear that on most created DCARP instances, the gap is
zero. Only two instances, i.e., gdb8 and gdb9, have a gap
greater than 10%, and the gap of remaining instances are all
smaller than 10%. Thus, we can conclude that our proposed
NMLB can obtain a tight lower bound in comparison to the
global optimal value on these small DCARP instances. To
investigate the relation between the tightness of the lower

3https://github.com/HawkTom/NMLB

bound and various characteristics of DCARP instances, the
number of nodes in the corresponding required graph (Gr),
the number of tasks on the instance, the least number of
required vehicles, and the Gap are presented in the Figure
5. From the figure, instances featuring more nodes in the
required graph, more number of tasks, and more number
of vehicles generally have larger gaps between the NMLB
and the global optimum. For the tightness of the proposed
lower bound on more complex DCARP instances, especially
those on larger instances, identifying the theoretical global
optimum is essential. However, as mentioned before, the
current formulation of DCARP, which defines its decision
space as a sequence of tasks, is incompatible with the use
of exact solvers such as CPLEX [32] or Gurobi [33]. Thus,
in the future, it is valuable to adapt existing exact solver to
precisely solve DCARP instances, enabling the evaluation of
tightness of proposed lower bound on large instances.

C. Performance Measurement for the Optimization Algorithm

In our study, two meta-heuristic optimization algorithms
for DCARP instances, known as the memetic algorithm with
extended neighborhood search (MAENS) [30] and the repair
operator based tabu search (RTS) [31] combined with a gener-
alized DCARP optimization framework [20], were evaluated.
The objective here is to demonstrate how lower bound ap-
proaches proposed in this paper can be used to evaluate meta-
heuristic algorithms and provide insight. MAENS is a memetic
algorithm equipped with a specialized merge-split operator
enabling big exploration steps within the search space of the
CARP [30]. RTS is a tabu search algorithm with a specific
global repair operator capable of repairing infeasible solutions
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Figure 5: The demonstration of the relation between the
tightness of the lower bound and the characteristics of the
DCARP instance. Points with bigger size indicate instances
with larger value of Gap.

to facilitate the optimization [31]. These algorithms are applied
to a set of more complex DCARP instances generated from
egl and val static datasets. Enough computational resources
was provided for both meta-heuristic algorithms to obtain the
best solution.

On the basis of the proposed NMLB, the following perfor-
mance metric, termed as Approximate Percentage Deviation4

was used, as presented in the Equation (7), where the Best∗

is the best objective value obtained by the optimization algo-
rithm.

APD =
|Best∗ − LB|

LB
×100%. (7)

The computational results on the generated DCARP in-
stances are presented in Tables II and III. The APD of
MAENS for val (Table II) is relatively small with around 5%
for most instances. Notably, there are two instances with APD
equal to 0 and three instances with APD less than 1%. This
suggests that MAENS is effective for these DCARP instances.
RTS obtained the same results on 12 instances and had a
slightly larger APD on the remaining instances. It indicates
that RTS performs comparably to MEANS and proves to
be effective for these val instances as well. Concurrently, it
provides additional evidence indicating that our lower bound is
tight in these DCARP instances. This is because, even though
the optimality on these instances is unknown, MAENS and
RTS would not have been possible to find solutions close to
the lower bound if the lower bound was not tight.

In contrast, the APD of MAENS and RTS is consistently
larger for egl DCARP instances (Table III) compared to those
for val DCARP instances. Specifically, most egl DCARP
instances have an APD greater than 50% for both MAENS
and RTS, with the smallest APD being 29.6% for MEANS
and 35.7% for RTS. This suggests that there exists room for

4In the literature, there is no a standardized term for using lower bounds
to evaluate meta-heuristic algorithms. Therefore, for convenience, we termed
it as Approximate Percentage Deviation here.

further optimization enhancement for both MAENS and RTS
on egl DCARP instances, although such results could also
be due to a potentially large gap between the lower bound
and the (unknown) exact global optima on these instances.
The correlation between the APD and the characteristics of
the DCARP instances, including the number of nodes in Gr,
the number of tasks, and the number of required vehicles are
illustrated in Figure 6. Each point denotes an instance and
points with a bigger size indicate instances with a larger value
of APD. From Figure 6, instances with more tasks, more
nodes in Gr, and more required vehicles have larger APD.
This suggests the performance of both MAENS and RTS on
these complex DCARP instances can still be improved.
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Figure 6: Relationship between the algorithm’s performance
(APD) and the characteristics of DCARP instances. Points
with bigger sizes indicate instances with larger values of
APD5.

D. Efficiency of the Graph Pruning Strategy
The computational time for the original NMLB approach

(TO) and the NMLB approach with the graph pruning strategy
(TP ) to calculate the lower bound are also presented in
Tables II and III. It is clear that the graph pruning strategy
significantly reduces the computational time for calculating the
lower bound on almost all tested DCARP instances, especially
for instances in the egl dataset.

In our proposed graph pruning strategy, a subset of nodes
in the constructed auxiliary graph are removed, which will
definitely match its copies in the solution of MCMP. Thus, if
a vertex has more copies in the auxiliary graph, more vertices
will be removed by the pruning strategy. For each vertex in
GR, the number of its copies in the auxiliary graph is equal
to its degree in GR. Since one vertex is likely to be pruned
only if it has at least two copies in the auxiliary graph, the
number of vertices whose degrees are greater than 2 in GR

are calculated. The results are presented in Figure 7, in which
the time difference is more or less linearly correlated with the
number of vertices whose degrees are greater than 2.

5The data points for MAENS and RTS overlap because each point
corresponds to a specific instance.
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Figure 7: Relationship between the difference of computational
time and the number of vertices in GR whose degree are
greater than 2.

V. CONCLUSION

This paper mainly focuses on measuring the absolute per-
formance of meta-heuristic algorithms for DCARP in terms of
closeness to the global optimum. Since the theoretical global
optimum of most DCARP instances is not known, a node
matching lower bound (NMLB) was derived as the alternative
to the unknown global optimum to assess the quality of
solutions. Then, the metric Approximate Percentage Deviation
(APD) based on the derived lower bound was used to evaluate
the performance of meta-heuristic algorithms for DCARP.

To derive a tight lower bound for DCARP instances, the
required graph, which is a complete graph constructed by the
depot and all nodes linking at least one task in the original
DCARP instance was considered. Then, NMLB was proposed
based on the idea that the number of times a node can
be assigned to link different tasks, starting point, or ending
point of a route cannot exceed its degree in the required
graph. To handle routes belonging to the outside vehicles,
which either directly return to the depot without serving any
tasks or continue serving remaining tasks, the lower bound
derivation was modeled as a minimum cost matching problem
(MCMP). The solution to the constructed MCMP is the case
with minimum costs for adding artificial links in the required
graph. In addition, to enhance the computational efficiency of
our proposed NMLB, a pruning strategy was further proposed.

Our experimental studies evaluated the tightness of NMLB,
i.e., the gap between obtained lower bound and the global
optimum, on some specifically designed DCARP instances.
The results demonstrate that the proposed NMLB provides
tight lower bounds on small DCARP instances. Then, the
performance of two optimization algorithms was evaluated
through APD on large complex DCARP instances. The results
show that there are still large gaps between the optimized
solutions found by these two algorithms and the lower bounds,
indicating much room for further improvement to the algo-
rithms. In addition, our experimental studies also demonstrated

that the NMLB approach benefits a lot from the pruning
strategy for DCARP instances with more vertices whose
degrees are greater than 2 in the required graph.

In the future, more DCARP meta-heuristic algorithms can
be evaluated using our lower bound approach to analyze
their optimization abilities relative to the global optimum,
thereby enhancing the understanding of these methods. In
addition, since the gap between NMLB and the theoretical
global optimum is still large for some instances, it is valuable
to investigate more about the specific influence of instance
characteristics on the NMLB and develop tighter lower bounds
for DCARP instances.
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APPENDIX

Table IV: The notations related to the problem formulation.

Notation Meaning

G Graph G = (V,E).
V Set of nodes.
E Set of edges.
GR Required graph GR = (VR, ER). (A complete graph)
VR Set of nodes including the depot and nodes which are incident

with at least one task.
ER Set of tasks.
It The DCARP instance at the time point t.
v0 The depot.

dm(e) The demand of an edge e ∈ E.
sc(t) The serving cost of a task t ∈ ER.

mc(vi, vj) The minimal total deadheading cost from vertex vi to vj .
headt The head node of task t.
tailt The tail node of task t.
Nt The number of tasks, Nt = |ER|.
Q The capacity of empty vehicles.
Vov The set of outside vehicles’ stopping nodes.
Nov The number of outside vehicles, Nov = |Vov |.
qk The remaining capacity of the kth outside vehicle.
S A DCARP solution, i.e., a set of routes.
Rk The kth route in the S.
lk The number of tasks in the Rk .
tk,i The ith task in the Rk .

RCRk
The total cost of the route Rk .

TC(S) The total cost of solution S.

Table V: The notations related to the problem’s lower bound.

Notation Meaning

CT The total serving costs of all tasks.
WT The total demands of all tasks.
k0 The minimum number of vehicles required for a (D)CARP

instance.
C∗ The cost of the optimal (D)CARP instance.
S∗ The optimal solution for a DCARP instance.
R∗

k The kth route in the S∗.
t∗k,i The ith task in the R∗

k .
d(vi) The degree of the node vi ∈ VR in GR.
C1 The total costs of artificial edges directly linking to the depot

in a (D)CARP solution.
C2 The total costs of artificial edges linking tasks in a (D)CARP

solution.
Gx The auxiliary graph Gx = (Vx, Ex).
Vx Set of nodes for building Gx.
Ex Set of edges for building Gx.

A,B,C,D Subsets of nodes in Vx and Vx = A ∪ B ∪ C ∪ D
CMCMP The cost of optimal solution of the minimum cost matching

problem on Gx.
C∗

links The total costs of all artificial links in S∗ of a DCARP
instance.


