Benchmarking Dynamic Capacitated Arc Routing
Algorithms Using Real-World Traffic Simulation

Hao Tong*, Leandro L. Minku*, Stefan Menzel®, Bernhard Sendhoff and Xin Yao*}
*School of Computer Science, University of Birmingham, Birmingham, UK
tHonda Research Institute Europe GmbH, Offenbach, Germany
iDepalrtment of Computer Science and Engineering, SUSTech, Shenzhen, China
Emails: hxt922 @student.bham.ac.uk, L.L.Minku@bham.ac.uk,
stefan.menzel @honda-ri.de, bernhard.sendhoff @honda-ri.de, xiny @sustech.edu.cn

Abstract—The dynamic capacitated arc routing problem
(DCARP) aims at re-scheduling the service plans of agents, such
as vehicles in a city scenario, when dynamic events deteriorate
the quality of the current schedule. Various algorithms have been
proposed to solve DCARP instances in different dynamic sce-
narios. However, most existing work evaluated their algorithms’
performance based on artificially constructed dynamic environ-
ments instead of using more realistic traffic simulations which
are built on actual traffic data. In this paper, we constructed a
novel DCARP benchmarking framework based on the Simulation
of Urban MObility (SUMO) transportation simulation software,
which allows to include real-world traffic environments for gen-
erating a set of DCARP instances from dynamic events, such as
road congestion or task changes. The flexibility of the framework
allows to develop DCARP optimization algorithms and evaluate
their effectiveness more comprehensively. We use the benchmark-
ing framework to generate 12 different dynamic instances using
real-world traffic data of Dublin City. We then demonstrate the
value of our framework by using these instances to compare
our previously proposed hybrid local search algorithm (HyLS)
with a state-of-the-art meta-heuristic optimization algorithm. The
generated benchmark scenarios indicate that HyLS is a very
effective optimizer on DCARP scenarios with real traffic data
for reducing the total service cost. They also demonstrate the
importance of our DCARP benchmarking framework for the
development and benchmarking of optimization algorithms in
more realistic scenarios.

Index Terms—Dynamic capacitated arc routing problem, On-
line optimization, Real-world application, SUMO, Meta-heuristic
algorithms

I. INTRODUCTION

The dynamic capacitated arc routing problem (DCARP)
aims at re-routing the service paths of vehicles for the ca-
pacitated arc routing problem when one or more dynamic
events happen during vehicles’ services and influence the
current schedule [1], [2]. For example, a road may become
congested or even not accessible anymore because of a traffic
accident, which is likely to deteriorate the quality of the
current schedule [3], [4]. Newly added tasks are not considered
in the original service plan so that the vehicles are required to
be re-scheduled for serving all available tasks [4], [5]. Previous

Corresponding authors: Xin Yao (xiny@sustech.edu.cn) and Leandro L.
Minku (L.L.Minku@bham.ac.uk). Xin Yao is also with 1Research Institute
of Trustworthy Autonomous Systems (RITAS), SUSTech, China. 2Guangdong
Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China.
3School of Computer Science, University of Birmingham

work formulated the dynamic CARP (DCARP) to capture such
dynamic scenarios and proposed a practical framework based
on a virtual task strategy to handle the dynamic events [4], [6].
Uncertain CARP (UCARP) is another variation of CARP that
also considers dynamic events. However, it aims at finding a
robust solution to operate in uncertain environments by robust
optimization [7], instead of rescheduling the service plan.

Even though both DCARP and UCARP have taken dynamic
events into consideration when designing algorithms, a real
dynamic environment for testing the algorithms is lacking. In
UCARP, a benchmark was proposed based on the existing
static CARP benchmark [8], [9]. A Gaussian distributed ran-
dom variable was added into the static instance to simulate the
uncertain factor of the environment. For DCARP, a simulation
system that can simulate the vehicles’ service process and
randomly generate different dynamic events was designed [4].
However, the uncertain factors and dynamic events in the
existing work are all artificially generated based on various
distributions instead of any real scenarios. Effective algorithms
evaluated only in such conditions are likely to fail in real
traffic environments, especially for DCARP, in which the re-
scheduling highly depends on actual traffic conditions and
the status of instances. Therefore, a dynamic environment
containing real traffic data and conditions is required to test
the proposed algorithms.

In this paper, we develop the first benchmarking framework
in literature to be able to use real traffic scenarios, based on
a traffic simulation software with a set of real traffic data.
We focus in this paper on DCARP. Nevertheless, our pro-
posed benchmarking framework is also suitable for evaluating
UCARP algorithms. Our contributions are as follows:

e We propose the first DCARP scenario benchmarking
framework containing real traffic data which can be used
to evaluate the efficacy of algorithms in a real-world
environment. The framework is able to integrate the solu-
tion produced by DCARP algorithms into a transportation
environment that simulates real traffic conditions.

o To demonstrate the generalization ability and flexibility
of the proposed benchmarking framework, we build 12
different dynamic scenarios with real traffic data in the
designed simulation platform including different locations
of depot, tasks and different service times of a day. These

dynamic scenarios can be used as a benchmark, contain-
ing the real traffic information in contrast to artificial
datasets for evaluating DCARP algorithms in the future.

o To demonstrate the utility of our newly proposed frame-
work, we evaluate and analyse the latest algorithm HyLS
[6] using this framework, comparing with a state-of-the-
art meta-heuristic algorithm [4], [10] in all constructed
dynamic scenarios. The results show the platform can
provide insightful information when comparing different
algorithms. The platform allowed us to explain when and
why HyLS outperforms the other algorithm.

The remainder of this paper is organized as follows. Section
IT discusses the related work and motivations. Section III
introduces the proposed benchmarking framework with online
optimization in detail. Section IV presents the constructed
scenarios based on the designed platform and the results of
using DCARP algorithms in all generated dynamic scenarios.
Finally, section V presents the conclusions and future work.

II. RELATED WORK AND MOTIVATION

In vehicle scheduling, dynamic events such as road con-
gestion or the occurrence of new tasks typically affect the
currently deployed schedule, which can deteriorate or become
infeasible. Thus, it is necessary to use dynamic optimization
algorithms to improve the quality of a solution when dynamic
events happen in DCARP scenarios [4]. In the literature, many
algorithms have been proposed to tackle different dynamic
events. For example, Monroy et al. [11] considered the failure
of vehicles, and Padungwech et al. [5] focused on new tasks.
In [4], a very general DCARP was considered, in which
most common dynamic events such as road congestion, road
closure, new tasks, etc., can be processed simultaneously.
A virtual task-based optimization framework to optimize the
DCAREP instance benefiting from the existing powerful meta-
heuristic algorithms for static CARP was also proposed [4].
Since the re-scheduling should be performed online during
the vehicles’ service process, the efficiency of the algorithm
is much more important in the real scenario. Therefore,
existing work proposed a more efficient dynamic optimization
algorithm, i.e. HyLS [6], which is capable of providing a better
solution within short time.

All above algorithms have been successfully evaluated in
DCARP scenarios with artificial traffic environments. For
example, Liu et al. [12] proposed a benchmark generator
which is able to generate the basic CARP graph and DCARP
instances based on a set of pre-defined parameters. In [4]-
[6], the DCARP instances were generated based on the static
CARP instances and adding dynamic features. However, it
is unclear whether such artificial generators produce problem
instances that are similar to real world ones. There is still
no benchmarking framework with real traffic conditions for
DCARP so that it is therefore necessary to design one for
evaluating the efficacy of DCARP algorithms.

Simulation of Urban MObility (SUMO) is an open-source!,

Thttps://sumo.dlr.de/docs/index.html

highly portable, and continuous traffic simulation software
[13]. There are three main parts in SUMO, including Network
building, Demand modeling and Simulation. The Networking
building and Demand modeling are defined by users, which
provide the road networks and the simulated vehicles (vehicle
types, and vehicles’ routes), respectively. Then, the Simulation
can simulate the traffic conditions according to the provided
network and traffic demands (i.e., vehicles). A traffic control
interface (TraCI)? is provided by SUMO which gives access
to retrieve values from the simulated objects and manipulate
their behavior online.

SUMO is able to simulate all traffic objects, such as
vehicles and traffic lights, according to the provided real road
network and real traffic, which constructs a traffic environment
reflecting the real-world traffic ! Thus, it is possible to use it
to build a virtual environment with real traffic conditions for
DCARP. Since Traci in SUMO can directly obtain the online
data and control the simulated object in an online manner, it
is possible to obtain the DCARP instance from the simulation
process and provide it to DCARP optimization algorithms for
an improved new schedule.

As the existing benchmark for evaluating DCARP op-
timization algorithms’ efficacy are all artificially designed,
it is likely to miss partial problem characteristics of real-
world applications. Therefore, this motivated us to design a
benchmarking framework based on the SUMO for DCARP
which can be a standard simulation platform for evaluating
DCARP algorithms in real traffic conditions besides the ar-
tificial benchmarks once we have real road maps and traffic
data®. The proposed benchmarking framework builds a bridge
between DCARP optimization algorithms and SUMO such
that DCARP optimization algorithms can benefit from the real
traffic environment simulation in SUMO and be evaluated with
real traffic data. The generated test DCARP scenarios with real
traffic data contain characteristics that might not be captured
by artificially generated data so that researchers can benefit
from such insights and improve algorithms for the DCARP
optimization.

III. OUR SUMO-BASED BENCHMARKING FRAMEWORK

SUMO can retrieve the real road network and the online
traffic data and provide these information to (D)CARP opti-
mization algorithms for high-quality executable solutions. The
solutions obtained by optimization algorithms are required to
be assigned and updated to the transportation environment
in SUMO. Therefore, we proposed a SUMO-based bench-
marking framework comprising SUMO, optimization algo-
rithms, and the intermediate component linking the SUMO
and (D)CARP optimization algorithms. The structure of the
proposed SUMO-based benchmarking framework is presented
in Figure 1.

Three different components form the framework. First, the
data of the real environment for the simulation is required to

Zhttps:/sumo.dlr.de/docs/TraCIhtml
3SUMO provides approaches for getting road networks and traffic data.

Request Map f 1) Map information
- Initialization ..
Provide Map Module _ . Initial
Initial solution . .
Assign initial vehicles 1 optimizer
Request cost gCost-Detection
) Module
A real scenario Actual Cost Predefined Tasks
Network (map), No
Traffic,
Rescheduling? —
Yes
Request information l State information
: . o . DCARP
State information Re-scheduling . .
Module optimizer
New schedule New schedule
___ —
Controller

Fig. 1: The structure of SUMO-based benchmarking framework. Our main contribution is the “Controller” part.

be provided to SUMO, such as the road map and real traffic
data. Then, the middle component, named as “Controller”
in Figure 1, is the core component of this platform that
transmits information between SUMO and the optimization
algorithms. The final part of this benchmarking framework
is the optimizer. The initial optimizer can be any suitable
practical static CARP optimization algorithm for optimizing
the initial solution for the static CARP instance. The DCARP
optimizer is the algorithm whose performance is required to be
evaluated by the platform. The three components are indepen-
dent of each other. The communication between SUMO and
the controller is based on TraCl, and between the controller
and the optimizers is currently based on shared files. It is
worthy to mention the communication based on shared files is
not ideal especially when the optimizer takes a long time to
solve DCARP, as the controller would have to wait the new
schedule for a long time instead of deciding an acceptable
solution on its own during the optimization. Therefore, it
is valuable to employ message queue as the communication
method in the future to make it more flexible.

The intermediate component Controller is the main com-
ponent for driving the entire system. It mainly consists of
three modules including Initialization Module, Cost-Detection
Module, and Re-schedule Module:

a) Initialization Module: The initialization module is
first activated before the start of the simulation. It is mainly
responsible for requesting the map’s road network after SUMO
successfully loads the map, and then providing the network in-
formation to a predefined static CARP optimization algorithm.
The algorithm feedbacks an initial solution to the initialization
module. Then, the module activates the simulation process

in SUMO with starting the initial vehicles and setting their
service paths according to the solution.

b) Cost-Detection Module: After initial vehicles are as-
signed to serve tasks, and the simulation process starts running,
the cost-detection module activates. A selection of dynamic
events are likely to occur during the vehicles’ service process,
potentially affecting the cost of the current service plan.
Therefore, the cost-detection module is used to collect the
costs of the roads online during the simulation. Then, the
cost-detection module calculates the total costs of the current
service plan, which are transmitted to the next re-scheduling
module to determine whether the dynamic events are too
severe and deteriorate the current service plan a lot.

¢) Re-scheduling Module: The re-scheduling module is
activated if the difference between the current cost provided by
the cost-detection module and the last recorded cost exceeds a
pre-defined threshold, such as 10% increment. This indicates
that some dynamic events have happened and have severely
deteriorated the current service plan. The re-scheduling mod-
ule requests the necessary state information from SUMO,
including the current road map, the cost of each road, the
positions of in-service vehicles, the remaining capacities of
in-service vehicles and the remaining tasks, to construct a new
DCAREP instance. The module then passes the new DCARP
instance to the DCARP optimization algorithm for an updated
service plan. Finally, this module updates the paths of the
vehicles or assign new vehicles in SUMO based on the new
schedule obtained from the DCARP optimizer to continue
serving the remaining tasks.
The controller continues to run the cost-detection module
until the re-scheduling process is activated again. The whole

process terminates after all tasks have been served and all
vehicles return to the depot.

As the traffic data provided to SUMO only contains the
traffic conditions, the tasks of CARP need to be defined and
constructed by ourselves. For simplicity, in our benchmarking
framework, the initial tasks are required to be defined in a
separate file which is then provided to the initial optimizer for
an initial solution. The simulation for the new tasks event is
embedded in the re-scheduling module. For simplicity, in this
version, we added some new tasks into the simulated DCARP
scenario to simulate the new-task events in the real world,
once the re-scheduling module is activated. In the future, we
will update our simulator so that it could enable adding new
tasks separately from the increase in traffic events. The source
code of the proposed benchmarking framework is available in
Github*.

IV. EXPERIMENTAL STUDIES

In this section, in order to demonstrate the generalization
ability and flexibility of our proposed benchmarking frame-
work, we generate a series of DCARP scenarios using it based
on real open-source traffic data. Then, a DCARP optimization
algorithm, HyLS [6], is evaluated in all generated scenarios.
The empirical results and further analysis are then presented.

A. Generate different DCARP scenarios

The actual traffic data is the source of our DCARP sim-
ulation. In our experiment, we use a set of open-source 24-
hour traffic data from Dublin’. The traffic data comes from
the Dublin SCATS dataset4, which consists of vehicle counts
at every 6 minutes at 480 locations in the city center [14].
The road network of Dublin city is presented in Figure 2a,
which has 6633 edges and 2895 nodes in total. We divide the
whole map into five different areas including both city center
and suburb areas for generating different DCARP scenarios
according to the road’s distribution, as shown in Figure 2b.

5000 5000

4000 4000
3000 3000
2000 2000

1000 1000

0 1000 2000 3000 4000 5000 6000 7000 o 1000 2000 3000 4000 5000 6000 7000

(a) (b)

Fig. 2: (a) The road network of Dublin. (b) Area segmentation
of Dublin.

Based on the above road network, we generated 12 different
DCAREP scenarios with different settings for the location of the

“https://github.com/HawkTom/DCARP-SUMO-Simulation
Shttps://github.com/maxime- gueriau/ITSC2020_CAV_impact/tree/master/
Urban/Simulations/Base

depots, the distribution of tasks and service starting time. The
settings for each factor are as follows:

o Location of depots: busy area, uncrowded area.

¢ Distribution of tasks: whole city, busy area, uncrowded
area.

e Service starting time: off-peak hours, near-peak hours.

To determine the busy degree of each area in Figure 2b and
the peak/off-peak hours in provided traffic data, we define the
“crowded degree («)” for each road and the “busy degree (3)”
for an area, as formulated by Eq. (1) and Eq. (2):

a=1— v?:iw (1)
S Nreeds [(;>0.5)
B= N)
roads

where v; and v]*“* represent the average speed in the last
60 seconds and the limited maximum speed of one road i,
respectively, N,,q4s denotes the total number of roads in an
area and I(-) is the indicator function. Therefore, we calculated
the crowded degree of each road in the whole network for
every 60 seconds. Then, the busy degree of each area of Figure
2b can be estimated by Eq. (2). The dynamic busy degree of
each area for every 60 seconds is presented in Figure 3.

1.0
—— Areal
— Area2
—— Area3
0.8 1 Aread
— Area5
Start Time Point 2
9 0.6
o
GJ
°
) Start Time Point 1
a 0.4
0.2 1
0.0 T u — T T T T
0 200 400 600 800 1000 1200 1400
Time/min

Fig. 3: The dynamic busy degree of each area for every 60
seconds.

According to Figure 3, Area I and Area 3 are determined
as the uncrowded areas, and the remaining three areas are
regarded as busy areas (Figure 4). Therefore, we can select
depots and tasks in these divided areas. In Figure 4, we marked
two points as locations of the depot in our DCARP scenarios,
where one is in the uncrowded area, and another is in the busy
area. The peak and off-peak hours can also be obtained from
Figure 3, in which a small busy degree indicates the off-peak
hours. Therefore, we select two time-points, i.e., 540 and 720,
to be the starting time of the simulation, as pointed in Figure 3.
Both starting time points belong to the off-peak hours because
the service in the real-world application is usually provided

5000 1
4000 Uncroyvded Area <
3000 1

2000 -

1000 A

6 1600 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00
Fig. 4: The distribution of busy area and uncrowded area. The

two positions of the depot.

in off-peak time. Nevertheless, the service can last until the
peak hours, so we select a starting time point from which the
vehicles are likely to meet peak hours, i.e., near-peak hours.
Besides, it is also important to determine the tasks and the
service cost. As the whole map has been divided into busy
and uncrowded areas, we randomly selected 200 tasks from
one or multiple designated areas for each DCARP scenario.
A screenshot of a DCARP scenario simulation is presented in
Figure 5 for the scenario with a depot in the busy area, tasks
distributed in the whole city and service starting from the off-
peak time, containing all cars and vehicles defined in the traffic
data. However, only all unserved tasks and in-service vehicles
are highlighted. In the simulated traffic environment, the
traffic congestion highly influences the service time. Therefore,
the total time for completing all remaining tasks from the
current time is defined as the cost in our DCARP scenarios,
calculated by the cost-detection module every 30 seconds
during the whole service process. Then, the re-scheduling
module activates if the current estimated total cost is 10%
more than the last recorded cost. The main dynamic event in
our generated DCARP scenario is the road congestion due to
the limitation of used traffic data. To simulate newly added
tasks, we uniformly select 5 arcs which are not pre-defined
tasks within the same area as initial tasks to be new tasks
and add them into the simulation once the re-schedule module
activates. All generated scenarios are available in Github®.

B. Evaluating HyLS in DCARP scenarios

The DCARP optimization algorithms target to reduce the
total cost of serving tasks in the scenario with dynamic
events. We applied an efficient DCARP algorithm, i.e., HyLS
[6], to the 12 different DCARP scenarios to investigate the
influence of the dynamic optimization on DCARP scenarios
such that insight can be obtained as to why and when HyLS

Shttps://github.com/HawkTom/DCARP-SUMO-Simulation

Fig. 5: One screenshot of DCARP scenario simulation in
SUMO-based benchmarking framework in our experiment.
It contains all cars and vehicles defined in the Dublin real
traffic data, but only all unserved tasks (in blue) and in-service
vehicles (in red) are highlighted.

works well. HyLS focuses on rescheduling the service plan
within a very short time for a DCARP instance. It executes
several neighborhood moves in parallel to produce synergies
for rescheduling the current solution. One solution archive
is maintained in HyLS to store solutions, which potentially
guides the optimization to a better search area. We applied it to
all generated DCARP scenarios having real traffic conditions
to demonstrate that using optimization algorithms to tackle
dynamic events helps a lot in saving the total cost of the whole
service. The termination condition for HyLS in each round of
optimization is 5 seconds, to satisfy the requirement of a quick
response in the real scenario.

In all different generated DCARP scenarios, we recorded
the total used time for completing all tasks and all vehicles
returning to the depot, i.e., the total cost in our scenarios,
of using HyLS to re-schedule the service plan and without
using any re-scheduling strategy. The obtained results are
presented in Table I, in which there are 12 scenarios in total
with different settings of starting time, depot location, and
distribution of tasks. The number of instances in each DCARP
scenario is presented in column Ny. These instances were
produced as a result of the dynamic events that were severe
enough to cause the rescheduling module to activate. Tpo
and Twpo denote the total time used after using dynamic
optimization and without dynamic optimization, respectively.
The values in Table I are all deterministic because the HyLS
is a deterministic algorithm. We also calculated the time
difference between using and not using dynamic optimization
in column Tp;g as calculated by Eq. (3):

Twpo —Tpo

Tpify = x 100% 3)

Twpo

The number of DCARP instances of a DCARP scenario
reflects the degree of dynamic events that influence the service

TABLE I: The cost results of using dynamic optimization (HyLS algorithm) and without dynamic optimization in each generated

DCARP scenario.

Starting Time Depot Location Tasks’ Distribution Index Np Tpol(s) Twpo(s) Tpig(s)
whole city 1 7 5522 7209 23.40%
center busy area 2 10 5841 6498 10.11%
Off-peak hours uncrowded area 3 9 5345 5397 0.96%
whole city 4 2 2649 4102 35.42%
suburb busy area 5 10 5853 6560 10.78%
uncrowded area 6 1 1677 1981 15.35%
whole city 7 10 4903 8257 40.62%
center busy area 8 10 6576 9178 28.35%
uncrowded area 9 3 4052 4908 17.44%
Near-peak hours
whole city 10 10 4020 6258 35.76%
suburb busy area 11 10 7027 8530 17.62%
uncrowded area 12 0 1710 1710 0

N71: The number of instances in this DCARP scenario.

Tpo: Total time used after dynamic optimization. Twpo: Total time used without dynamic optimization.
Tpig: The time difference between using and not using dynamic optimization.

plan. If one scenario has more DCARP instances, this means
that the dynamic events were more severe and easier to
deteriorate the currently deployed service plan. In contrast,
a scenario with fewer DCARP instances indicates that fewer
dynamic events significantly affected the current deployed
service plan. As presented in Table I, scenarios with tasks
distributed in the busy area contain the most DCARP instances
compared with scenarios with other tasks’ distributions. For
scenarios with starting times at off-peak hours, dynamic events
are more likely to affect the service plan in the scenario
with the depot located in the city center (i.e., busy area).
Nevertheless, for scenarios with starting times at near-peak
hours, the depot location has no significant influence on the
number of DCARP instances. Therefore, we can conclude that
if tasks are distributed in busy areas or the service is likely to
last until peak hours, the service is more likely to be affected
by dynamic events.

Furthermore, the time difference between using dynamic
optimization and without dynamic optimization reflects the
effectiveness of dynamic optimization algorithms. A big time
difference indicates that the corresponding DCRAP scenario is
highly affected by the dynamic events, and such scenarios can
significantly benefit from dynamic optimization algorithms.
As presented in Table I, scenarios with tasks distributed over
the whole city have the largest time difference compared with
scenarios with tasks distributed just in one specific area. It is
because the vehicles need to drive much farther to serve tasks
over the whole city. On the other hand, vehicles’ service are
also more likely to be affected by dynamic events occurring
over the whole city. The starting service time also has a
significant influence on the time difference, as shown in Table
I. The service starting from a time point that is possible to
last until the peak hours is more likely to be affected by
the severe peak-hour traffic. Finally, the influence of depot
location highly depends on the starting time because the traffic

difference between busy areas and uncrowded areas in off-
peak hours is smaller than that of peak hours. Therefore, we
can conclude that the scenarios with tasks distributed in a large
area, including both busy and uncrowded areas, are much more
suitable to be tackled by dynamic optimization, and the total
cost can be greatly saved.

N
49001 - . L 4900

3900 3900

2900 2900 R

1900 1900 = M

900 900

-100 -100
~100 1900 3900 5900 -1

00 1900 3900 5900

(a) Route 1 (b) Route 2

49001 i el 4900

3900 3900

2900 2900

1900

1900 25 oty

900 900

—-100 -100,
=i

—100 1900 3900 5900 00 1900 3900 5900

(c) Route 3 (d) Route 4

Fig. 6: An example of one vehicle’s route’s updates in the
scenario 1 of Table I.

Besides, we also present an example of one vehicle’s route’s
updates by dynamic optimization in a DCARP scenario in
Figure 6. Route 1 is its initial route, and three updates are
applied to this vehicle. After the simulation begins, this vehicle
starts its service according to its initially assigned route.
However, the cost-detection module detects that the current

service plan is affected by dynamic events, so that the re-
schedule module activates. As a result, this vehicle is assigned
with a new service path to save the total cost. The further
observation reveals that its service route is mainly affected by
road congestion.

C. Comparing algorithms with real DCARP instances

The effectiveness of using DCARP optimization algorithm
(HyLS) has been evaluated in the DCARP scenario with real
traffic conditions in the previous subsection. Now, we compare
different DCARP optimization algorithms using all generated
DCARP instances. The meta-heuristic algorithm, Memetic
Algorithm with Extended Neighborhood Search (MAENS)
[10] with the virtual-task framework has been demonstrated
as the most powerful algorithm for DCARP optimization if
there is no requirement for a quick response in previous work
[4]. However, if the time limitation is very strict, the HyLS
was shown to be more suitable than MAENS in previous work
[6]. To further evaluate their performance in the real DCARP
instances, we applied them to optimize all generated DCARP
instances (82 instances) in our experiment. The results are
presented in Table II, which presents the mean cost of MAENS
over 25 independent runs and the unique obtained cost of
HyLS as it is a deterministic algorithm. The better results for
each DCARP instance are highlighted in Table II. We only
present the obtained results on all instances generated in the
first DCARP scenario of Table I due to the page limitation.

TABLE II: The obtained cost of HyLS and mean cost of
MAENS over 25 independent runs on DCARP instances
generated in the first scenario of Table I. The better results
are highlighted for each DCARP instance.

Index Nr HyLS MAENS
1 184 21961 22584
2 162 21484 22120
3 80 16036 16098
4 11 7362 7362
5 12 6069 5610
6 16 6211 6196
7 18 6323 6270

As shown in Table II, HyLS outperforms MAENS in the
first three DCARP instances while MAENS obtains better
results in the last three DCARP instances. Both algorithms
obtain the same final cost in the 4* instance. The main factor
influencing the algorithm’s performance is the number of tasks.
We have listed the number of tasks of each DCARP instance in
Table II, i.e., Nr. From the table, the instances in which HyLS
outperforms MAENS have a large number of tasks. In contrast,
the number of tasks of instances where MAENS outperforms
or is similar to HyLS is very small.

To demonstrate the above observation, we divided all
DCAREP instances into three categories according to the two
algorithms’ relative performance and then calculated the num-
ber of tasks of each DCARP instance in each category. The

175 A

150 A

125 A

100 A

~
=2
75 1 ¢
¢ i
50 1 ¢
¢ ¢
25 1
T
04 —— v

HyLS > MAENS HyLS = MAENS HyLS < MAENS

Fig. 7: The distribution of number tasks of DCARP instances
in three categories: HyLS wins over (>~) MAENS, HyLS draws
against (=) MAENS and HyLS loses to (<) MAENS.

results are shown in Figure 7. We performed a Kruskal-Wallis
test with a 0.05 significance level to compare the number
of tasks in the three categories shown in the figure. The p-
value is equal to 5.20e-11, indicating the three categories are
significantly different from each other. The number of tasks in
the category where HyLS outperforms MAENS is significantly
larger than that of the other two categories. Therefore, we can
conclude that the HyLS is much better than MAENS in the
real DCARP instances which have a large number of tasks
and require a quick response.

The reason behind the conclusion is the size of the search
space and the effectiveness of search operators. The instances
with a large number of tasks have a huge search space such
that it is very hard to find a high-quality solution. Therefore,
the effectiveness of the search operators plays an important
role for the short time limitation. Even though MAENS is
very powerful for the DCARP instances, its effective operators
are very time-consuming and are hard to find a good solution
within such a short time. The HyLS applies an exhaustive local
search and executes multiple local search operators in parallel
to boost its performance. Therefore, HyLS is significantly
better than MAENS on DCARP instances with a large number
of tasks. If an instance only has a few tasks, the local search
operators in MAENS are capable of handling a small number
of tasks within a short time so that MAENS can reach or even
outperform HyLS.

V. CONCLUSION

In this paper, we designed a dynamic CARP benchmarking
framework based on a traffic simulation software, i.e., SUMO,
providing a more realistic environment to evaluate DCARP
optimization algorithms. The core component in this platform
is a Controller linking the SUMO and (D)CARP optimization
algorithms. The actual traffic data is fed to the SUMO for
transportation simulation. The Controller retrieves the traffic
data from SUMO to construct a DCARP instance which is then
transmitted to a dynamic optimization algorithm, and it is also

responsible for updating the current service plan according to
the optimization result.

Based on such benchmarking framework, we constructed
different DCARP scenarios with the road network and the
traffic data from the real transportation environment. In this
paper, we embedded a set of real 24-hour traffic data of
Dublin city into our benchmarking framework and provided 12
different DCARP scenarios according to the different settings
of the service starting time, depot location, and tasks’ distri-
bution. Therefore, the efficacy of DCARP optimization algo-
rithm also can be evaluated in our benchmarking framework
on different DCARP scenarios. We evaluated a previously
proposed DCARP optimization algorithm, i.e., HyLS, in all
constructed scenarios in our experiment. The empirical results
demonstrated that HyLS is very effective on DCARP scenarios
with the real traffic data for reducing the total service cost,
especially on scenarios with tasks distributed in a large area,
including busy and uncrowded areas. The experiments on the
benchmarking framework also demonstrated the necessity of
using dynamic optimization for DCARP scenarios.

Since the platform is able to simulate a complete service un-
til all tasks are served, the benchmarking framework can also
facilitate DCARP optimization algorithm comparisons and
help to analyze the characteristics of different algorithms by
comparing them on DCARP instances with different features.
In our experiment, we compared the algorithm HyLS with the
state-of-the-art meta-heuristic algorithm, i.e., MAENS [10],
in our platform. The results showed that HyLS significantly
outperformed MAENS in the DCARP instances with a large
number of tasks due to the quick response but its performance
became worse than that of MAENS for instances containing
only a few tasks, which was not found in previous work.

It is worth noting that it is essential to evaluate algorithms
on a diverse set of dynamic scenarios in order to avoid
drawing biased or wrong conclusions from only a limited
set of dynamic scenarios [15]. Our proposed benchmarking
framework in this paper will help us to increase the diverse
range of dynamic scenarios.

In the future, we are going to build a set of user-friendly
interfaces for this benchmarking framework so that more
researchers can use it to evaluate their algorithms. Further-
more, it is also valuable to construct more DCARP scenarios
including small, medium and large numbers of cities for
analyzing the effectiveness of each optimization algorithm in
different DCARP scenarios.

ACKNOWLEDGMENT

Hao Tong gratefully acknowledges the financial support
from Honda Research Institute Europe (HRI-EU). This work

was also support by Research Institute of Trustworthy Au-
tonomous Systems (RITAS), the Guangdong Provincial Key
Laboratory (Grant No. 2020B121201001), the Program for
Guangdong Introducing Innovative and Enterpreneurial Teams
(Grant No. 2017ZT07X386), the Shenzhen Science and Tech-
nology Program (Grant No. KQTD2016112514355531).

REFERENCES

[1] M. C. Mourio and L. S. Pinto, “An updated annotated bibliography on
arc routing problems,” Networks, vol. 70, no. 3, pp. 144-194, Aug. 2017.

[2] A. Corberan, R. Eglese, G. Hasle, 1. Plana, and J. M. Sanchis, “Arc
routing problems: A review of the past, present, and future,” Networks,
Jun. 2020.

[3] M. Liu, H. K. Singh, and T. Ray, “A memetic algorithm with a new split
scheme for solving dynamic capacitated arc routing problems,” in 2014
IEEE Congress on Evolutionary Computation (CEC). 1EEE, 2014, pp.
595-602.

[4] H. Tong, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, “A
novel generalised meta-heuristic framework for dynamic capacitated arc
routing problems,” IEEE Transactions on Evolutionary Computation, pp.
1-15, 2022, doi:10.1109/teve.2022.3147509.

[5] W.Padungwech, J. Thompson, and R. Lewis, “Effects of update frequen-
cies in a dynamic capacitated arc routing problem,” Networks, vol. 76,
no. 4, pp. 522-538, 2020.

[6] H. Tong, L. L. Minku, S. Menzel, B. Sendhoff, and X. Yao, “A
hybrid local search framework for the dynamic capacitated arc routing
problem,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, 2021, pp. 139-140.

[7] J. Liu, K. Tang, and X. Yao, “Robust optimization in uncertain ca-
pacitated arc routing problems: Progresses and perspectives,” [EEE
Computational Intelligence Magazine, vol. 16, no. 1, pp. 63-82, 2021.

[8] Y. Mei, K. Tang, and X. Yao, “Capacitated arc routing problem in un-
certain environments,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1-8.

[9] J. Wang, K. Tang, J. A. Lozano, and X. Yao, “Estimation of the distri-

bution algorithm with a stochastic local search for uncertain capacitated

arc routing problems,” IEEE Transactions on Evolutionary Computation,

vol. 20, no. 1, pp. 96-109, 2015.

K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended neigh-

borhood search for capacitated arc routing problems,” IEEE Transactions

on Evolutionary Computation, vol. 13, no. 5, pp. 1151-1166, 2009.

M. Monroy-Licht, C. A. Amaya, A. Langevin, and L.-M. Rousseau,

“The rescheduling arc routing problem,” International Transactions in

Operational Research, vol. 24, no. 6, pp. 1325-1346, 2017.

M. Liu, H. K. Singh, and T. Ray, “A benchmark generator for dynamic

capacitated arc routing problems,” in 2014 IEEE Congress on Evolu-

tionary Computation (CEC). 1EEE, 2014, pp. 579-586.

P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flotterod,

R. Hilbrich, L. Liicken, J. Rummel, P. Wagner, and E. WieBner,

“Microscopic traffic simulation using sumo,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). 1EEE, 2018,

pp. 2575-2582.

M. Guériau and I. Dusparic, “Quantifying the impact of connected and

autonomous vehicles on traffic efficiency and safety in mixed traffic,” in

2020 IEEE 23rd International Conference on Intelligent Transportation

Systems (ITSC). 1EEE, 2020, pp. 1-8.

D. Herring, M. Kirley, and X. Yao, “Reproducibility and baseline re-

porting for dynamic multi-objective benchmark problems,” Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO),

2022, doi: 10.1145/3512290.3528791.

[10]

(11]

[12]

[13]

[14]

[15]

