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Abstract—The Dynamic Capacitated Arc Routing Problem
(DCARP) aims to update the service paths of vehicles in the
capacitated arc routing problem when uncertain factors deterio-
rate the current schedule of vehicles’ services. A DCARP scenario
comprises a series of DCARP instances that share similarities
with each other. Therefore, optimization experience gained from
solving the former DCARP instance can potentially facilitate
the optimization for a new DCARP instance. However, existing
optimization algorithms for solving DCARP seldom consider such
optimization experience and instead re-optimize the DCARP in-
stance from scratch. This paper proposes a dynamic optimization
framework with a solution building block adaptation strategy
(DO-SBBA) that extracts the optimization experience from the
former optimization process to facilitate the optimization of the
next DCARP instance. The framework introduces the concept of
building blocks for extracting the valuable experience contained
in historical solutions. The building block-based constructive
heuristic is proposed to handle DCARP scenarios with cost-
or task-changing dynamic events, and an insertion heuristic is
proposed to handle task-changing dynamic events. Experimental
studies demonstrate the effectiveness of DO-SBBA for extracting
and utilizing optimization experience in DCARP scenarios, sig-
nificantly improving the performance of dynamic optimization
compared to state-of-the-art DCARP methods.

Index Terms—Experience-based optimization, uncertain envi-
ronment, CARP, dynamic optimization, building blocks.

I. INTRODUCTION

The Capacitated Arc Routing Problem (CARP) is a classical
and important combinatorial optimization problem [1] that is
abstracted from a range of real-world applications, such as
waste-collection [2], [3] and road gritting [4]. The problem
aims to assign a fleet of vehicles with limited capacities,
starting from a depot, to serve a set of edges/arcs with demands
(also known as tasks) in a graph [5]. Algorithms [6] for solving
CARP instances aim to find a CARP solution scheduling
vehicles to serve a set of tasks in the graph with minimal
total costs, subject to the following constraints:

o Each vehicle must start and return to the depot.

o Each task must be served once and only once.

o The total demand of tasks served by one vehicle cannot
exceed the vehicle’s capacity.

In real-world applications, the service plan for vehicles
is typically obtained offline. However, unforeseen dynamic
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events often occur in uncertain environments when the CARP
solution is in deployment and vehicles are serving their tasks
[71, [8], [9], [10]. As a result, the original service plan would
be impacted and could become inferior or even infeasible. For
example, a road may be closed due to an accident, or new tasks
may emerge during the vehicles’ service. In such cases, a new
Dynamic Capacitated Arc Routing Problem (DCARP) instance
is formed, in which vehicles would start at different locations,
referred to as “outside vehicles” with varying amounts of
remaining capacities. The remaining service routes for vehicles
can be improved by re-optimizing the new DCARP instance.

A DCARP scenario is composed of a series of DCARP
instances. A new DCARP instance is generated based on the
preceding DCARP instance and a partially executed solution.
As a result, a new DCARP instance in a DCARP scenario
shares similarities with its preceding DCARP instance. Intu-
itively, the optimization experience and solution information
of the former DCARP instance could be extracted to promote
the optimization for the new DCARP instance in a DCARP
scenario. However, current existing works do not consider
and utilize such optimization experience [11], [12], [8], [13],
[9], [14], wasting valuable knowledge that could be used
to enhance the optimization process for DCARP instances.
Instead, they always optimize the new DCARP instance from
scratch once dynamic events happen.

Additionally, in the literature, the dynamic optimization
problems are prevalent in both continuous and combinatorial
problem domains, and numerous effective algorithms have
been developed to handle the dynamic changes in these
problems [15], [16], [17], [18]. However, most algorithms
leveraging the optimization experience for dynamic optimiza-
tion problems were specifically designed for continuous op-
timization problems or different combinatorial problems, and
are also not applicable for DCARP optimization.

Therefore, in this paper, we aim at answering the following
three Research Questions (RQs):

« RQ1: How to extract optimization experience in DCARP?

How effective is such an approach and why?

« RQ2:How to integrate optimization experience into a
meta-heuristic framework for enhanced performance?
How well does this framework perform compared to
existing DCARP algorithms?

« RQ3: How is the effectiveness of the experience-based
framework affected by DCARP instances with different
severity of dynamic changes?

To answer these questions, we propose a solution build-

ing block adaptation strategy to extract useful optimization
experience and incorporate it into a dynamic optimization



framework able to transfer valuable optimization experience
for the DCARP scenario, improving optimization performance.
Our methodological contributions are as follows:

« We propose a new DCARP optimization framework that
benefits from experience through knowledge transfer in
the DCARP scenario to improve optimization of DCARP
instances.

o We propose the new concept of building block for ex-
tracting optimization experience contained in historical
solutions. Based on the building block, we propose the so-
lution building block adaptation (SBBA) strategy to han-
dle two different DCARP scenarios including DCARP-
OC (containing only cost-changing dynamic events) and
DCARP-CT (containing both cost-changing and task-
changing dynamic events) scenarios.

We have evaluated our framework considering dynamic events
from only cost-changing dynamic events (OC) to both cost-
changing and task-changing dynamic events (CT). In particu-
lar, we consider two different types of DCARP scenarios, i.e.,
DCARP-OC and DCARP-CT scenarios. This evaluation led
to the following new findings:

o Our computational analysis shows that the adapted his-
torical solutions are significantly better than the solutions
generated by conventional constructive heuristics when
dynamic events are small and the high-quality solutions
generated by SBBA for the new environment are similar
to those of the previous environment.

e Our empirical results show that our SBBA-based dy-
namic optimization framework (DO-SBBA) significantly
improves the performance of the original algorithms on
these DCARP-OC and DCARP-CT scenarios, and 1is
particularly beneficial on the DCARP-OC scenarios.

o The robustness of the proposed DO-SBBA framework
was also investigated on DCARP instances with varying
severity of dynamic changes. The empirical results show
that our DO-SBBA framework was particularly effective
in DCARP-OC scenarios with various severity of dy-
namic changes and DCARP-CT scenarios without a large
change in the number of tasks.

The remainder of this paper is organized as follows. To
clearly introduce and explain the studied DCARP in our paper,
we firstly introduces the characteristics of the DCARP and
provides its formulation in Section II. Section III introduces
the related works about dynamic optimization and the moti-
vations of this work. Section IV describes the proposed DO-
SBBA framework and the details of SBBA strategy. Section
V presents experimental studies of evaluating the performance
of DO-SBBA. Conclusions and future work are provided in
Section VI.

II. PROBLEM DESCRIPTION
A. Characteristics of Dynamic Behavior in Studied DCARP

The DCARP studied in this paper focuses on tracking the
moving optimum and updating the schedule for completing the
remaining tasks when dynamic events deteriorate the current
deployed solution during vehicles’ services. Such dynamic
events include, for instance, unexpected closure of roads or

addition of new tasks occurring at random points in time
during deployment. They result in the generation of a new
DCAREP instance to formulate the problem in the new envi-
ronment, and the optimization for the new DCARP instance
is applied to update the vehicle routing during deployment.
As a result, a complete DCARP scenario is composed of a
series of discrete DCARP instances corresponding to each en-
vironmental change, and optimizing these DCARP instances to
update vehicle routing ensures that the vehicle routing remains
efficient throughout the service period. As the optimization
of a new problem instance happens during deployment, such
optimization needs to be performed within a limited amount
of time, given the specific problem domain being tackled.

In the literature, the uncertain CARP (UCARP) [19], [7]
also deals with uncertainties in CARP scenarios. However,
they are interested in finding robust solutions. These are
solutions that are obtained offline before deployment and that
one hopes will not deteriorate too much under different en-
vironment conditions that may be encountered during deploy-
ment. Therefore, UCARP is a considerably different problem
from the one tackled in this paper. Moreover, even though
the UCARP solutions are hoped not to deteriorate too much
under certain environment conditions (e.g., different amounts
of congestion), they are unlikely to be optimal for each
individual environment condition that may be encountered
during deployment. In DCARP, we are interested in updating
solutions so that they remain optimal under each individual
environment condition.

Dynamic optimization is also ubiquitous in various domains
[15], [16]. Typically, for most dynamic optimization problems
investigated in the literature, uncertain factors only affect
the objective functions, causing the change of global optima.
However, in the case of our studied DCARP, dynamic events
influence the decision variable space as well, wherein the
problem’s dimension and the previous solution’s feasibility
is likely to change after dynamic events. In particular, in
our studied DCARP, the solution has already been partially
executed when a dynamic event occurs, such that some
tasks in the original problem have been served and are
not required to be served again. Moreover, newly emerged
tasks and potential road closure are likely to make previous
solutions infeasible. As a result, the decision variable space
for the newly generated DCARP instance is different with
the former DCARP instances causing solutions obtained for
former DCARP instances to be unsuitable for the new DCARP
instances. Tracking the moving optimum and updating the
schedule for the remaining tasks in the DCARP scenario is
a challenge due to significant changes in the decision space
after the environment changes. The introduction of unexpected
new tasks further complicates the rescheduling process, since
there is no prior knowledge about how to efficiently allocate
these new tasks within the new environment.

B. Problem Formulation

A DCARP scenario comprises a series of DCARP in-
stances: Z = [Ip, I1, ..., Ins]. Each DCARP instance, except
I, contains all the information about the map and the state



of outside vehicles, which is generated from the most recent
former DCARP instance and the deployed solution. The initial
problem instance [ is a conventional static CARP instance
[20]. An initial solution for a DCARP scenario is obtained by
optimizing Iy and then deployed to vehicles to serve tasks in
the graph that represents the map of the problem instance. Dur-
ing the service process, some unpredictable dynamic events [9]
may occur, leading to a change in the problem instance and
potentially requiring a new, better solution. Once the current
service plan is updated by a better solution obtained from
optimizing the DCARP instance, vehicles continue to serve
tasks according to the updated solution and start from the
positions where they had previously stopped. The DCARP
scenario terminates when all tasks have been served, and
all vehicles have returned to the depot. In this paper, the
maximum number of vehicles is not limited and we can
schedule as many vehicles as desired to serve the tasks.

Suppose the map of a DCARP instance I;, which is gen-
erated at a time point ¢, is given by graph G = (V, A), with
a set of vertices V and arcs (directed links) A. The graph
contains a depot vy € V. Each arc u € A in the graph has
an associated deadheading (traversing) cost de(u), a serving
cost sc(u), and a demand dm(u). The deadheading cost of
an arc represents the cost incurred when a vehicle traverses
this arc without serving, while the serving cost is the cost of
serving this arc. For an arc u with dm(u) > 0, it represents
a task that needs to be served, and all tasks in the graph
form a subset R C A. For generated DCARP instance Iy,
it will have outside vehicles with remaining capacities since
they are in service when dynamic events happen. Suppose
there are N,, outside vehicles with remaining capacities
{¢1,92, --.,qn,, } currently located at outside positions labeled
as OV = {vy,va,...,vn,, }. The optimization of the DCARP
instance [; aims to reschedule all the remaining tasks R with
minimal cost considering both outside and depot vehicles.
Suppose there are K routes in the solution S; = {r1,r2,...7x }
of the DCARP instance I;. The objective function of a DCARP
instance I; is given as follows:

=

Min TC(S;) =Y RC,,, (1)

k=1

subject to the following constraints:

s.t. ilk = |R| (2a)
tk;:;1 F by in, fOr all (k1,11) # (k2,i2) (2b)
idm(tkvi) < qi,Vk € {1,2,..No} (2¢)
i;1
> dm(tr;) < Q,Vk € {Noy +1,.., K}, (2d)

i=1

where t;;, I, and RC,, denote the i*" task, the number of
tasks and the total costs of the k' route (1), respectively.

The RC,, is computed according to Eq. 3:
RC,,, = mdc(v, taily, , ) + mde(heady, ,, ,vo)+

lp—1 Iy (3)
Z mdc(heady, ,,taily, . )+ Z sc(tr,i),
i=1 i=1

where head;, tail; denotes the head and tail vertices of the
task, mdc(v;,v;) denotes the minimal total deadheading cost
traversing from node v; to node v;, and sc(tx;) denotes
the serving cost of task ¢y ;. The constraints (2a) and (2b)
guarantee that all tasks are served once and only once. Since
outside vehicles and new vehicles starting from the depot have
different remaining capacities, the total demands of the route
corresponding to different kinds of vehicles have to satisfy
different capacity constraints as presented in the constraints
(2¢) and (2d). The constraint (2¢) is for outside vehicles, and
the constraint (2d) is for new vehicles from the depot.

III. RELATED WORKS AND MOTIVATIONS
A. Related Works

In the literature, the Dynamic Vehicle Routing Problem
(DVRP) also targets the rescheduling of vehicles in dynamic
environments, which is significantly similar to our studied
DCARP. Many different algorithms and strategies have been
proposed for solving the DVRP, mainly including swarm
intelligence and evolutionary algorithms [21], [16], [22]. For
example, Hanshar et al. [23] applied the genetic algorithm to
solve DVRP and Sabar et al. [24] proposed a self-adaptive
evolutionary algorithm to tackle DVRP. It is worth noting
that most works for DVRP focus on the Ant Colony Opti-
mization (ACO) algorithm [25], [26]. The ACO is naturally
suitable for tackling dynamic problems since the pheromone
model implements the memory strategy and inherit the past
experience [27]. Mavrovouniotis et al. [27] investigated the
behaviors of ACO in dynamic travelling salesperson problem
(DTSP) and concluding that the performance of ACO highly
relies on the pheromone update policy. Moreover, Eyckelhof et
al. [28] inherited the graph’s pheromone matrix and adjusted
the pheromones of a few edges to increase the exploration
ability for cost-changing dynamic events. Most works in the
literature focus on new-task dynamic events. For settings of
pheromone when adding new tasks in the DVRP, the restart
strategy is the most intuitive approach, which assigns an initial
pheromone value to the new task [29]. In addition, according
to the position of new tasks, n-strategy and 7-strategy are
proposed to adjust the pheromone values of new tasks [30].
Recently, there are also special learning-based strategies for
handling new tasks. For example, Xiang et al. [31] proposed
a pairwise proximity-based ACO for DVRP, which learns the
pair preference of tasks and applies such pair preferences when
constructing the new solution. However, these strategies are
only suitable for ACO algorithms and not for general meta-
heuristic optimization algorithms such as the ones that have
been obtaining state-of-the-art results in static and dynamic
CARP [20], [9].

Dynamic CARP optimization focuses on the rescheduling
of solutions that potentially become inferior or even infeasible



when dynamic events occur. Current approaches for solution
updates mostly involve re-optimizing the newly generated
DCARP instance from scratch. Liu et al. [8] proposed a
memetic algorithm consisting of a random key crossover
and three local search operators and with a distance-based
split scheme to re-optimize the new DCARP instance. This
algorithm restarts with both random solutions and solutions
generated by the path-scanning heuristic. In [9], Tong et al.
proposed two initialization strategies including restart and
sequence transfer strategies in the generalized optimization
framework for DCARP. The sequence transfer strategy con-
catenates all remaining routes and constructs an ordered list
of tasks. Then, the tasks that have been served are removed
from the list and new tasks are inserted into the list greedily.
Finally, a transferred solution is generated by using the split
scheme to convert the ordered list to a CARP solution.

In addition, a few works also focused on handling specific
dynamic events with corresponding strategies. For example,
Padungwech et al. [32] considered only new task dynamic
events and applied a random insertion operator to handle them.
New tasks were arranged in random order and inserted into the
current solution greedily, followed by Tabu search to improve
the newly generated solution. Nagy et al. [13] proposed a
novel re-routing algorithm that updates at most one or two
routes in the current solution. They focused on dealing with
new tasks, which are greedily added to the route that results
in the smallest increase in costs, ensuring that the resulting
route remains feasible. Otherwise, these new tasks form a
new route which is then assigned to a new vehicle. Based on
this strategy, they recently proposed an artificial bee colony
algorithm for dynamic CARP instances [14]. Monroy-Licht et
al. [33] considered only the disruption costs for optimizing the
DCAREP instance with broken-down vehicles. The remaining
tasks were divided into two sets: one consists of unserved tasks
belonging to active vehicles, and another comprising tasks
from failed vehicles. Subsequently, tasks from failed vehicles
were reassigned to the closest active vehicle’s task. Routes for
those active vehicles that received new tasks initially assigned
to failed vehicles were rescheduled, and remaining active
vehicles remained fixed.

B. Motivations

As reviewed above, current literature on dynamic opti-
mization for DCARP mostly involves re-optimizing the new
DCARP instance from scratch, except for some strategies
tailored to very specific dynamic events. However, for DCARP
scenarios with general dynamic events, the significant knowl-
edge contained in the solutions or search process of the
optimization for the former DCARP instance has not been
effectively utilized. The only previous DCARP work that
attempted to benefit from experience for general dynamic
events was the work that proposed a sequence transfer strategy
[9]. However, it only transferred knowledge captured by the
best solution (i.e., executed solution). This was beneficial
for individual-based optimization algorithms that maintain a
single solution over time. However, it would bring limited
to no benefit on population-based optimization algorithms,

where a diverse population is usually required to improve
optimization. Meta-heuristic algorithms typically search for
many high-quality solutions that are not selected to update
the service routes. These high-quality solutions of the former
DCARP instance are discarded in existing works, but they
also have the potential to promote dynamic optimization for
the new DCARP instance. Knowledge transfer strategies have
also been applied to assist in solving static CARP [34],
[35]. Nevertheless, they are also not suitable for DCARP
due to either their heavy computational burden for learning
the transfer model or the exclusive applicability to tree-based
representations. More recently, Ardeh et al. [36], [37] and
Wang et al. [38] also transferred knowledge from previously
solved problems when solving uncertain CARP using genetic
programming. However, they focused on the tree-based repre-
sentation making their knowledge transfer strategies currently
only applicable for genetic programming approaches. More-
over, evolutionary multitasking is also popular for transfer
useful knowledge among different tasks to improve the per-
formance of the algorithm on all tasks. For example, Qiao et
al. [39] transferred solutions among different tasks to enhance
the global and local diversity of the main task.

Therefore, in this paper, we propose a dynamic optimization
framework for the DCARP scenario with a solution build-
ing block adaptation strategy to extract valuable experience
contained in historical solutions generated by the previous
optimization update.

IV. DYNAMIC OPTIMIZATION FRAMEWORK BASED ON
SOLUTION BUILDING BLOCK ADAPTATION

A dynamic optimization framework based on a novel solu-
tion building block adaptive (SBBA) strategy is proposed in
this section. Its structure is presented in Figure 1.

The dynamic optimization process starts with an initial
static CARP instance. A meta-heuristic optimization algorithm
can be employed to obtain the best solution for the static
CARP instance, which will be used to schedule vehicles to
serve the pre-defined tasks. Subsequently, a control center
will detect changes in the environment [29]. Whenever any
dynamic events occur while vehicles are in service, the control
center will report the type of dynamic events and generate
a new DCARP instance according to the occurred dynamic
events. The meta-heuristic algorithm will then dynamically
optimize the newly generated DCARP instance. After the
dynamic optimization process for the new DCARP instance,
an updated solution will be obtained and deployed to the
environment to update the service plan of all vehicles. The
dynamic optimization will stop only when all tasks have been
served.

In our framework, the SBBA strategy adapts the historical
solutions and uses them as initial solutions for the meta-
heuristic algorithm. Since different types of dynamic events
can result in DCARP instances with varying degrees of
difficulty to solve [40], we consider two different types of
DCAREP instances in this paper:

1) DCARP instances with only cost-changing events

(DCARP-OC). Cost-changing dynamic events include the
increase and decrease of road deadheading costs.
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Fig. 1: The structure of the SBBA-based dynamic optimization framework for the DCARP scenario. The left part is an
illustration of the DCARP scenario, where dynamic optimization process starts with an initial static CARP instance and the
control center will detect changes in the environment and determine to generate DCARP instances or not. The dynamic strategy
at the right is used to assist the optimization for DCARP instances.

2) DCARP instances with both cost-changing and task-
changing dynamic events (DCARP-CT). Task-changing
dynamic events include added and deleted tasks.

To handle these different types of DCARP instances, specific
strategies in SBBA are applied to adapt the historical solutions
for promoting dynamic optimization. All these strategies are
based on the new concept of building block. Therefore, in the
following subsections, we will introduce the concept of the
building block first and then provide details on the specific
strategies.

A. Building Blocks as Experiences

The new DCARP instance is generated based on the former
DCAREP instance and the deployed solution. However, except
for the best solution obtained in the optimization process for
the former DCARP instance, historical high-quality solutions
cannot be used directly to schedule the vehicles’ service plans
in the new DCARP instance. Nevertheless, the information
contained in these solutions can be extracted and reused.
For instance, it is highly likely that two adjacent tasks in
high-quality historical solutions will still be neighbors in
the best solution of the new DCARP instance. Therefore,
such sequence patterns contained in historical solutions can
be extracted to assist in constructing feasible high-quality
solutions for the new DCARP instance.

In this paper, we propose the concept of the “building block”
to describe such sequence patterns. Since the CARP solution
is a set of routes, and the route is composed of a sequence of
tasks, if a sub-sequence of tasks in the previous CARP solution
is still required to be served in the new DCARP instance, we
combine this sub-sequence of tasks into a building block. We
assume that such a task sequence that exists in the high-quality
solutions of the former DCARP instance will still remain in
the high-quality solutions of the new DCARP instance.

The pseudo-code for constructing building blocks from a
historical solution is presented in Algorithm 1. It receives
as input a historical solution and the set of tasks to be
served in the new DCARP instance. Each building block
has five properties, including the block’s task sequence, head

node, tail node, total serving costs, and total demands. In
each historical solution, consecutive sequences of tasks still
required to be served in the current DCARP instance are
detected and combined into building blocks as shown in Line
4 ~ Line 16. These consecutive sequences of tasks are the
sequence of the building block. Once a task in the historical
solution is not required to be served in the current DCARP
instance, the construction of the current building block is
finished. The head node and tail node of this building block
are the head and tail nodes of this task sequence. The cost
and demand of the building block are equal to the total costs
of serving this task sequence and the total demands of all
tasks in this task sequence. Then, this building block is added
to the set of building blocks BLOCK (Line 12) and a new
building block is re-initialized (Line 13). In addition, if a task
in a route has both its predecessor and successor tasks served
or deleted in the new DCARP instance, we also make this
independent task a building task. Finally, the construction of
building blocks for a historical solution will terminate until all
tasks have been checked, and then, all detected building blocks
form a set of building blocks for the solution construction.
Additionally, no new parameter has been introduced for the
construction of building blocks.

0——t;——tp——t3— —ty— —0— —ts— —tg——t;— —tg——0

0~ —{lm )~ — 0~ fism e -0 fld 0

Building Block 1 Building Block 2 Building Block 3

() Building Block

Fig. 2: An example of building block construction from an
archived solution. The task sequence depicted above represents
an archived solution.

‘iX) Task which has been served or deleted

To clearly illustrate how to construct building blocks from
a historical solution, Figure 2 provides an example where the
task sequence shown in the top is a historical solution. The



Algorithm 1: The pseudo-code of constructing building
blocks.

Input: The historical solution: S; The task set Er
1 Function ConstructBuildingBlocks (S, Fg)

2 Initialize an empty set for building blocks
BLOCK = @.
3 | Initialize a building block: bb, where bb.seq = [ ].
4 for each route vy, € S do
5 for i from 1 to I}, do
6 if ¢, ; ¢ ER then
7 if bb.seq is not empty then
8 Set bb.head = headyp. seq[0)-
9 Set bb.tail = tailbb.seq[fl]‘
10 Set bb.cost equals to the total
serving costs of bb.seq.
11 Set bb.demand equals to the total
demands of all tasks in bb.seq.
12 BLOCK = BLOCK U bb.
13 Re-initialize bb that bb.seq = [ ].
14 continue;
15 else
16 | bb.seq.append(ty ;).
17 return BLOCK,

Output: The set of building blocks: BLOCK

tasks 1, t4, and t7 have already been served or deleted, while
ta, t3, t5, tg, and tg are still required to be served in the
new DCARP instance. Consequently, building blocks (¢, t3],
[t5, ts], and [tg] are formed. Taking building block [to,t3] as
an example, its head node is the head node of ¢5, and its tail
node is the tail node of ¢3. The cost of this building block is
the sum of the total traversing costs from its head node to tail
node and the total service costs of ¢5 and £3. The demand of
this building block is equal to the total demands of ¢, and ¢3.

B. SBBA for DCARP-OC Instances

For DCARP-OC instances, the SBBA strategy generates a
new population of solutions for the new DCARP instances
from an archive of historical solutions. The pseudo-code of
SBBA for DCARP-OC instances is presented in Algorithm 2.

The archived solutions AS are a set of high-quality solutions
saved from the optimization process for the former DCARP
instance. Different definitions for ‘“high-quality” could be
adopted. In our experiments later on, we consider the top
las solutions as being high-quality solutions, where [4g
is a pre-defined parameter. For each historical solution .S;,
we first obtain a set of building blocks using Function
Construct BuildingBlocks(S, Er) in Algorithm 1, where
EpR is the task set for the new DCARP instance as shown
in Line 3. Since the path-scanning constructive heuristic was
effective for generating solutions for the set of tasks. There-
fore, we regarded each building block as a task which has
head node, tail node, cost and demand, and applied the path-
scanning to the obtained building blocks to generate a new

solution V.S; as shown in Line 4. If the current adaptive solu-
tion set does not contain IVS;, then it is added to the adaptive
solution set as one of the adaptive solutions as shown in Line 6.
Finally, the new adaptive solution set generated from archived
solutions which belong to the previous DCARP instance is
returned, and used to help the solution initialization for new
DCARP instance. For our SBBA strategy for DCARP-OC
instances, only a single parameter needs to be predetermined:
specifically, the size of the set of archived solution [ 4g.

Algorithm 2: SBBA for DCARP-OC instances

Input: The set of archived solutions: AS; The task
set: E'g.
1 Initialize an empty solution set P = &.
2 for each solution S; € AS do
3 BLOCK = ConstructBuildingBlocks (5;,
ERr).
4 Apply Path-Scanning algorithm to BLOCK and
obtain a new solution N S;.
5 if NS; ¢ P then
6 L P=PUNS,.

Oiltput: Adaptive solution set P

C. SBBA for DCARP-CT Instances

Different from the DCARP-OC instances, DCARP-CT in-
stances require considering changing tasks, especially newly
added tasks and how to assign them to existing or new routes.
Therefore, a building block based constructive strategy and
an insertion strategy are proposed to handle changing tasks in
SBBA. The pseudo-codes of SBBA for DCARP-CT instances
are presented in Algorithm 3.

First, the newly added tasks are filtered out from all tasks
ERr of the current DCARP instance to form a new task set
NEgr C Eg as shown in Line 1. Then, the building block
based constructive (Line 3 ~ Line 17) and insertion strategies
(Line 19 ~ Line 37) are used to adapt historical solutions to
the new environment from different perspectives.

The building block based constructive strategy (Line 3 ~
Line 17) is similar to SBBA for DCARP-OC instances, which
considers building blocks in historical solutions. However,
SBBA for DCARP-CT instances also considers each new task
as an independent building block as shown in Line 5 ~ Line
11. Therefore, both the sequence pattern in historical solutions
and the new tasks are considered for generating new solutions
as shown in Line 14. Finally, the path-scanning algorithm is
used to generate new solutions as shown in Line 15.

The insertion strategy considers the complete sequence
pattern of the historical solution and inserts the new task into
the historical solution to obtain the new solution (Line 19 ~
Line 37). For each historical solution, tasks that have been
served or deleted are first deleted from the solution’s task
sequence as shown in Line 23. This results in an incomplete
solution that contains information about the historical solution.
Since the minimal number of vehicles kg can be determined
based on the instance’s information (i.e., kg = {%—‘ where



Algorithm 3: SBBA for DCARP-CT instances
Input: The set of archived solutions: AS; The task
set: E'r; The capacity Q.
1 Filter the new task set NEr C ERg.

2 /* Building block based construction */

3 Initialize an empty set of building blocks
BLOCK = @.

4 Initialize a building block: bb, where bb.seq = [ ].

5 for each task tk € NEr do

6 Set bb.seq.append(tk).

7 Set bb.head = headyy,.

8 Set bb.tail = tailyy.

9 Set bb.cost = sc(tk).

10 Set bb.demand = dm(tk).

1 BLOCK = BLOCK U bb.

12 Initialize an empty set P = &.

13 for each solution S; € AS do

14 BLOCK' = BLOCKU
ConstructBuildingBlocks (S;, EFR).

15 Apply Path-Scanning algorithm to BLOCK' and
obtain a new solution N S;.

16 if NS; ¢ P then

17 L P=PUNS,.

18 /* Insertion */
19 Set W as the total demands of all tasks in E'g.

20 Set kg = {WT

a |-
21 for each solution S; € AS do

22 Set a new solution N S; = S;.

23 Remove all served tasks and deleted tasks in NV.S;.
24 Set K as the number of routes in N S;.

25 if K < ko then

26 | Add ko — K empty routes into NS;.

27 Set a copy of new task set CNEr = NEp.
28 while |[CNEg| > 0 do

29 t,r = task and route with the smallest
increasing cost for the insertion.

30 if {,r = NULL then

31 // No route is feasible for

any tasks in CNEg

32 Add a new empty route into N.S;.

33 else

34 Insert ¢ into r in N S;.

35 Remove ¢t from CN Eg.

36 | if NS; ¢ P then
3 | P=PUNS,.

Ojltput: Adaptive solution set P

W is the total demands of all tasks), we add several empty
routes to the current incomplete solution if the number of
routes in the current incomplete solution is smaller than the
minimum required number of vehicles as shown in Line 24 ~
Line 26. Then, the new tasks are inserted into the current
incomplete solution to obtain a new feasible solution in a

greedy way, such that the task resulting in the smallest increase
in solution cost is added first as shown in Line 28 ~ Line
35. If no route is feasible for any of the remaining tasks to
be inserted, a new empty route is inserted into the current
solution, and the greedy insertion process continues as shown
in Line 30 ~ Line 32.

After using the two different strategies, a new adaptive
solution set is obtained to assist the solution initialization for
the new DCARP instance. Similarly, our SBBA strategy for
DCARP-CT instances also only needs to predetermine the size
of the set of archived solution [45.

D. Discussion

Our work shows that a relatively simple building block
strategy can be very effective to update solutions to dynamic
events under limited optimization time, as will be shown in
Section V. In particular, it is able to explicitly and efficiently
extract valuable information from historical solutions in the
former environment, particularly in DCARP-OC scenarios
where no new tasks are inserted. However, for DCARP-CT
scenarios involving the insertion of new tasks, our approach
currently has no optimization experience based mechanism
for assisting insert these new tasks to proper positions. As a
result, the proposed strategies might be less effective if there
are a large number of new tasks, which was demonstrated in
Section V-E. In addition, the SBBA strategy proposed in this
study is based on the building blocks which are subsequences
of tasks derived from the historical solution. Naturally, when
remaining tasks are dispersed throughout a historical solution,
the resulting building blocks tend to be shorter and contain
only a few tasks. Consequently, the SBBA strategy may not
benefit from such less informative building blocks. Therefore,
a valuable future direction is to investigate how to extract use-
ful implicit knowledge from past optimization to enhance the
insertion of new tasks. The efficacy of proposed strategies will
be demonstrated and analyzed in the following experimental
section.

V. EXPERIMENTAL STUDIES

In this section, the effectiveness of proposed SBBA strategy
are evaluated in a series of different DCARP scenarios. Then,
we embed two state-of-the-art meta-heuristic algorithms into
our proposed DO-SBBA framework and evaluate their perfor-
mance in a series of different DCARP scenarios as well. The
empirical results are presented and analyzed in this section.

A. Experimental Settings

All experiments were conducted on a series of DCARP
scenarios generated by the simulation system proposed in [9]
based on a static CARP benchmark, namely the EGL set!
[42]. The set consists of 22 different static CARP instances,
including 10 EGL-G instances with 200 initial tasks and 12
EGL-S instances with 100 initial tasks.

'The dimensionality of other existing benchmarks, such as GDB or VAL,
is too small to effectively assess the performance of our proposed strategy and
framework.



TABLE I: Results of generated solutions’ quality for SBBA, PS[41], GRD[20] and RR1[13] strategies on DCARP-OC (left
part) and DCARP-CT (right part) scenarios from the EGL dataset. The value in each cell represents “MEAN + STD” of
NC for all DCARP instances in 10 generated DCARP scenarios for each map. The highlighted values denote the best results
among strategies under the Friedman test with a significance level of 0.05.

DCARP-OC Scenarios

DCARP-CT Scenarios

SBBA

PS

GRD

RR1

MapName |
| SBBA PS GRD |

egl-gl-A 0.2259 £ 0.1001 0.5797 £ 0.0935  0.5075 £ 0.0883
egl-gl-B 0.2588 + 0.1347 0.6445 £ 0.0942  0.5637 £ 0.1060
egl-gl-C 0.2213 + 0.1254 0.6213 £ 0.0979  0.5504 + 0.0973
egl-gl-D 0.2330 £ 0.1159 0.6184 £ 0.1062  0.5431 + 0.1057
egl-gl-E 0.2664 + 0.1331 0.6432 £ 0.1166  0.5801 + 0.0984
egl-g2-A 0.2257 £+ 0.1249 0.5861 £ 0.1128  0.5222 + 0.1005
egl-g2-B 0.2560 + 0.1212 0.6065 £ 0.1014  0.5569 £ 0.0968
egl-g2-C 0.2248 £+ 0.1133 0.6027 £ 0.0982  0.5434 £ 0.0903
egl-g2-D 0.2296 £ 0.1102 0.6038 £ 0.1137  0.5296 £ 0.1146
egl-g2-E 0.2498 £ 0.1356 0.6574 £ 0.1159  0.5820 % 0.1266
egl-s1-A 0.1876 + 0.1350 0.6020 £ 0.1979  0.5710 % 0.1940
egl-s1-B 0.1396 + 0.0892 0.6955 £ 0.1437  0.6202 +£ 0.1565
egl-s1-C 0.0921 £ 0.0759 0.6481 £ 0.2181  0.5618 £ 0.2241
egl-s2-A 0.1966 + 0.1380 0.6167 £ 0.1843  0.5646 + 0.1790
egl-s2-B 0.1487 + 0.1321 0.6189 £ 0.2048  0.5579 % 0.2036
egl-s2-C 0.1601 £ 0.1022 0.6343 £ 0.1593  0.5651 £ 0.1835
egl-s3-A 0.2017 £ 0.1371 0.6428 £ 0.1519  0.5684 £ 0.1482
egl-s3-B 0.1258 £ 0.0913 0.6505 £ 0.1458  0.6086 £ 0.1483
egl-s3-C 0.1436 £ 0.1086 0.6656 £ 0.1634  0.5180 % 0.1762
egl-s4-A 0.1530 £ 0.1169 0.5596 £ 0.1678  0.4838 + 0.1606
egl-s4-B 0.1592 + 0.1081 0.5946 £ 0.1903  0.5573 +£ 0.1841
egl-s4-C 0.1468 + 0.1089 0.6061 £ 0.1597  0.5444 + 0.1613

0.3502 £ 0.0723
0.3989 + 0.0926
0.4288 + 0.1067
0.4728 £+ 0.1023
0.4750 £ 0.1143
0.3698 + 0.0907
0.4093 £ 0.0944
0.4201 £ 0.1069
0.4620 £ 0.1076
0.4586 + 0.1039
0.3935 + 0.1028
0.4228 + 0.1111
0.4655 + 0.1347
0.3654 £ 0.1100
0.4060 £ 0.1278
0.4640 £ 0.1375
0.3589 £ 0.1214
0.4109 £ 0.0976
0.4311 £ 0.1289
0.4026 + 0.1514
0.4126 + 0.1370
0.4320 £ 0.1157

0.5369 £ 0.0907
0.5551 £ 0.0964
0.5369 £ 0.0972
0.5826 +£ 0.0900
0.5898 + 0.1067
0.5140 £ 0.1039
0.5634 £ 0.0964
0.5728 £ 0.1129
0.5708 £ 0.0929
0.6288 £ 0.0926
0.5755 £ 0.1401
0.6352 +£ 0.1431
0.6461 +£ 0.1355
0.5616 £ 0.1372
0.5935 £ 0.1428
0.6672 £ 0.1520
0.5513 £ 0.1353
0.6257 £ 0.1278
0.6248 £ 0.1520
0.5943 £ 0.1513
0.6030 £ 0.1286
0.6205 +£ 0.1341

0.4729 £ 0.0732
0.4678 £ 0.0758
0.4995 + 0.0729
0.4981 + 0.0805
0.4904 + 0.0815
0.4166 £ 0.0879
0.4869 £ 0.0785
0.5017 £ 0.0802
0.5190 £ 0.0838
0.5305 £ 0.0852
0.5164 £ 0.1372
0.5743 +£ 0.1405
0.5924 + 0.1440
0.5008 £ 0.1132
0.5301 +£ 0.1454
0.6081 £ 0.1705
0.5015 £ 0.1304
0.5732 £ 0.1303
0.5546 + 0.1680
0.5179 +£ 0.1665
0.5199 + 0.1317
0.5411 £ 0.1133

0.4838 £ 0.1498
0.5499 + 0.1844
0.6239 £ 0.1787
0.6664 £ 0.2042
0.6364 £ 0.1699
0.5103 £ 0.1307
0.5605 £ 0.1688
0.5866 £ 0.1877
0.6781 £ 0.1768
0.6254 £ 0.1632
0.7152 £ 0.2875
0.6686 £ 0.2345
0.7597 £ 0.2716
0.6234 £ 0.2657
0.6694 £ 0.2506
0.7804 £ 0.2813
0.5623 £ 0.2471
0.6997 £ 0.2102
0.7405 £ 0.2511
0.6546 £ 0.2232
0.6731 £ 0.2580
0.7639 £ 0.2971

To simulate cost-changing dynamic events, a base cost
(base_cost) is assigned to each edge in the map to indicate
the minimal cost of the edge. When simulating the cost-
changing dynamic events, the deadheading cost (dc) of an edge
is determined by the following equation:

de, p < 0.25
dc = < base_cost x r, 0.25 <p <0.75 “4)
base_cost, p > 0.75

where p € U(0, 1) is a random number drawn from a standard
uniform distribution. For each edge in the map, if p < 0.25,
its cost remains the same, indicating there is no dynamic event
on the edge. If p > 0.75, the edge’s cost becomes base_cost.
Otherwise, the edge’s cost becomes r times the base cost,
where r € U(1,C) is also a random number drawn from a
uniform distribution with an upper bound value of C'. In our
experiments, C' is set to 5.

Then, to simulate task-changing dynamic events, a vanish-
ing probability of p, = 0.2 is assigned to each remaining task
when generating new DCARP instances. To simulate newly
added tasks, a predefined set of available arcs is used, and
NnEg arcs are randomly selected from the set to become the
new tasks for the new environment. The value of Nypg,, is
determined by the following equation:

NNEg = pt X Nrr, @)

where Npr denotes the number of remaining tasks when
dynamic events occur, and p; is a factor used to control the
size of the new task dynamic events. In our experiments, p;
is set to 0.2.

We generated 10 different DCARP scenarios independently
for each static CARP instance. In our simulation, after opti-
mization for a DCARP instance with limited time (1 minute
in our experiments), the best-obtained solution will be used
to update the schedule of vehicles. Then, the next DCARP
instance will be generated after the current solution has been
executed for a random duration. We generated up to 5 DCARP
instances in each DCARP scenario. If the number of tasks
in a new DCARP instance is less than 20, we also stopped
generating new instances.

Besides, to investigate the generalization ability of the pro-
posed SBBA, we also generated a series of DCARP scenarios
with varying severity of dynamic changes. Specifically, in
the DCARP-OC scenarios, the severity of cost changes is
controlled by the parameter C, and we investigate six different
settings with C' € {1,3,5,10,15,20}. For the DCARP-CT
scenarios, we focused on investigating different numbers of
added tasks in our analysis. Thus, we generate six different
severity of added tasks with p; € {0.1,0.2,0.4,0.5,0.6,0.8}.
For simplicity, we only used the static CARP instance egl —
gl — A for this analysis. In the DCARP-CT scenarios, the
parameter C' for cost changes is set to 5.

In our experiment, two optimization algorithms are embed-



ded into the proposed DO-SBBA framework, including the
memetic algorithm with extended neighbor search (MAENS)
[20] and the global repair operator-based Tabu search algo-
rithm (RTS) [43] embedded with the virtual task strategy
[9], which are state-of-the-art optimization algorithms for
solving DCARP. MAENS is a population-based meta-heuristic
algorithm and its population size is set as psize = 30
which is same as its original paper [20]. The number of
archived top solutions [ 45 is also set as 30 in our experiments.
For MAENS, if the number of adaptive solutions is higher
than the predefined population size psize, the best psize
solutions are selected as the initial solutions. Otherwise, if
the number of adaptive solutions is smaller than the pre-
defined population size due to removing repeated solutions,
the necessary number of additional solutions is generated by
the optimization algorithm’s initialization scheme to form a
complete population. Conversely, RTS is an individual-based
meta-heuristic algorithm and only the best among all adaptive
solutions is used, as psize = 1. All parameters for these two
algorithms are set as specified in their original papers [20],
[43].

To make a fair comparison in our experiments, for each
DCAREP instance optimized by all meta-heuristic algorithms,
the maximum optimization time was set to 1 minute [14], as
it is desirable to update the DCARP solution quickly in real
world DCARP problems when dynamic events influence the
current solution ensuring efficient service continuity. Addition-
ally, we executed 25 independent runs in our experiments. All
programs were implemented in C language and ran on a Linux
server with an AMD Ryzen Threadripper PRO 3995WX 64-
Cores 2.7GHZ processor. All static CARP instances, generated
DCARP scenarios, and algorithms’ source codes are available
online'.

Upon completion of the optimization process, the best-
obtained solution will be employed to update the vehicle
schedules. In our simulation, a new DCARP instance is
generated after the current solution has been executed for a
specified duration.

B. Performance Measurement

Since the generated DCARP instances in a DCARP scenario
can vary significantly in scale, we defined a normalized cost
(NC) for each DCARP instance using the following equation:

TC —TCpin

Ne= TCmaa: - Tszn (6)
where T'C is the cost of the solution that needs to be normal-
ized, and T'C,, ., and T'C,,,;,, are the maximum and minimum
costs, respectively, used for normalization in the corresponding
DCAREP instance. The specific values for T'C,,,4, and T'Ciip,
depend on the set of experiments, which will be discussed in
Section V-C.

Furthermore, since a DCARP scenario comprises a series of
DCAREP instances, we have employed an average normalized
cost (ANC) for dynamic optimization [15] to compare the
performance of different algorithms/strategies for a DCARP

Ihttps://github.com/HawkTom/DCARP-SBBA

scenario. The ANC' of an algorithm/strategy for a DCARP
scenario is calculated using the following equation:

1 M
ANC = — 7; NC,, (7)

where M is the number of instances, and NC,, is the
normalized cost of the corresponding algorithm/strategy in the
mt" instance of the DCARP scenario. In our experiments,
smaller values of NC' and ANC indicate better performance.

C. Effectiveness of the SBBA Strategy

The SBBA strategy was proposed to adapt historical solu-
tions for extracting and leveraging the optimization experience
in DCARP, addressing the first part of RQI. In this section,
we compare the quality of solutions obtained by the SBBA
strategy with several constructive heuristics to answer the
second part of RQ1, investigating how effective is the proposed
SBBA and the reason for its effectiveness. The path-scanning
(PS) [44], greedy generation (GRD) [20], and one recent
strategy: rerouting algorithm (RR1) [13] are employed for
comparison. We use the same parameters as given in the
original papers [20], [43] for these strategies. The former
two conventional strategies are still the most popular and
widely-adopted initialization mechanisms in the meta-heuristic
algorithms for optimizing (D)CARP in the literature [9].
The RR1 algorithm only incorporates a strategy to address
task-changing dynamic events, without any mechanisms for
dynamic changes in costs. Nevertheless, it is still applicable to
DCARP-CT scenarios in our work as cost-changing dynamic
events only affect the cost values in the DCARP instance,
such that the algorithm can still evaluate the quality of a
solution. Therefore, in our experiments, our SBBA strategy is
compared with RR1 algorithm only in DCARP-CT scenarios.
The MAENS algorithm was used to optimize each DCARP
instance, and the [4g best solutions of the former DCARP
instance were saved for the new DCARP instance. Thus,
for a new DCARP instance, we could obtain at most [4g
solutions from the SBBA strategy, one solution from the
PS strategy, and psize solutions from the GRD strategy. To
make a fair comparison, we set [45 equal to psize = 30 in
our experiments. The performance of the three strategies was
evaluated by comparing their best-generated solutions.

NC performance measurement was used to compare the
performance of three strategies. For each DCARP instance,
in Eq.(6), T'C represents the cost of the best solution obtained
by the corresponding strategy, 17'C,;, represents the cost of
the best solution obtained by MAENS after optimization, and
TC\naz represents the cost of the worst solution among all
solutions obtained by all strategies. We generated 20 different
DCARP scenarios for each map, including 10 DCARP-OC
scenarios and 10 DCARP-CT scenarios. For each type of
DCARP scenario for each map, the mean and standard devia-
tion (mean = std) of all NC values for all DCARP instances of
the these strategies are presented in Table I. For each map, we
applied the Friedman test with a significance level of 0.05 to
all NC values corresponding to the obtained solutions of the
three strategies in all DCARP instances of the 10 generated



DCARP scenarios. The best results under the hypothesis test
are highlighted in bold values with a gray background. From
Table I, it is clear that the quality of solutions obtained
by SBBA is significantly better than the other constructive
strategies, both in DCARP-OC and DCARP-CT scenarios.

We also calculate the difference in solution’s quality be-
tween the SBBA and each of the other strategies in all
DCAREP instances for DCARP-OC and DCARP-CT scenarios
(Figure 3). A higher difference implies a higher improvement
in NC using the SBBA strategy. As we can see, the im-
provements were present in both scenarios, but were of larger
magnitude for the DCARP-OC scenarios. In other words, the
building blocks were particularly helpful when coping with
cost-related dynamic events. The reason for the difference
of algorithm’s performance in these two types of DCARP
scenarios is probably that the building block strategy extracts
the optimization experience through utilizing task sequences
belonging to former DCARP instances. As new tasks do not
exist in these building blocks, the building block strategy
becomes less useful when there are new tasks, as is the case
in the DCARP-CT instances.
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_ 8 1.251 mm sBBA-PS
0.751 B SBBA-GRD
o 1.00 | mm sBBA-RR1
Y 050 0.75
& .
L 0.254 050
QL
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0.001
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B PS-GAP —0.25
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DCARP-OC Scenarios DCARP-Cf Scenarios

Fig. 3: The difference of the generated solution’s quality be-
tween the SBBA and other strategies in all DCARP instances
for DCARP-OC and DCARP-CT scenarios.

We also hypothesized that SBBA outperforms the other
strategies because SBBA managed to obtain solutions that are
more similar to the best solution for a DCARP instance. To
test this hypothesis, a type of “similarity” (Sim) between one
solution and the “best” solution was defined. The best solution
is set as the best among all solutions obtained after applying
MAENS to optimize the DCARP instance. The similarity was
calculated using the following equation:

_ #SameLinks
~ #TotalLinks

where #TotalLinks is the number of links between two
consecutive tasks in the best solution, and #SameLinks is
the number of links that exist in both the given solution and
the best solution. If more links in the best solution also exist
in the given solution, the Sim value will be higher, indicating
that the given solution is more similar to the best solution.
We calculated the NC and Sim values for all solutions
generated by the three strategies in all DCARP scenarios and
maps, and the results are presented in Figure 4. The grey points
in the figure represent the data of all solutions, while the white
contours represent the estimated distribution. From the figure,
it is evident that the value of NC' decreases as the Sim value

Sim (8)
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Fig. 4: Results of the NC and Sim for all solutions generated
by three strategies in all DCARP scenarios of all maps. White
contours represent the estimated distribution for all data.

increases. Therefore, a strategy that can generate solutions that
are more similar to the best solution will have higher-quality
solutions.
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(a) Solutions’ distributions in DCARP-OC scenarios
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Fig. 5: The distribution of solutions’ Sim and NC for path-

scanning (PS), greedy generation (GRD), SBBA and rerouting
(RR1) strategies.



Then, we calculated the NC' and Sim values of the best
solutions obtained by each strategy in different types of
DCARP scenarios (Figure 5). Figure 5a and Figure 5b show
the distributions of solutions for DCARP-OC and DCARP-CT
scenarios, respectively. It is evident that the solutions obtained
by SBBA are located in the bottom right part for both types
of DCARP scenarios, and especially for DCARP-OC. This
indicates that the solutions generated by SBBA are overall
more similar to the best solution and have a higher quality
than the other strategies in both DCARP-OC and DCARP-
CT scenarios, and especially for DCARP-OC. This is in line
with the improvements in NC, which were present for both
DCARP-OC and DCARP-CT, but were relatively larger for
DCARP-OC (Figure 3) as discussed earlier in this section.

Additionally, our motivation for the SBBA is to retain the
high-quality solutions’ characteristics of the former DCARP
instance by the building block so that the new DCARP
instance can benefit from such characteristics and generate
better solutions. The above results between the solution’s
similarity to the best solution and the solution’s quality also
demonstrated that our proposed SBBA indeed retains the
valuable characteristics of the high-quality solutions of the
former DCARP instance. SBBA is effective for generating
high-quality solutions, especially in DCARP-OC scenarios
(Figure 3).

D. Effectiveness of the SBBA-based Dynamic Optimization
Framework

The SBBA-based dynamic optimization framework em-
ployed the SBBA strategy as the initialization strategy to
promote the dynamic optimization, addressing the first part
of RQ2. In this section, we applied the generated solutions
by SBBA strategy to be used as the initial solutions for the
meta-heuristic algorithm. Through comparing the quality of
solutions obtained using these adapted meta-heuristic algo-
rithms, we are going to answer the second part of RQ2,
investigating the effectiveness of the SBBA-based dynamic
optimization framework. As mentioned in Section V-A, two
meta-heuristic algorithms, i.e., MAENS (population-based)
[20] and RTS (individual-based) [43] with the state-of-the-art
virtual task strategy for DCARP [9], are employed to evaluate
the performance of proposed DO-SBBA framework.

Given that the RR1 algorithm only focuses on adapting the
best solution from the previous DCARP instance to the new
one, we only integrated SBBA and GRD strategies into the
meta-heuristic algorithm, employing them as the initialization
strategy. The meta-heuristic algorithm with SBBA strategy
was compared to the same algorithm with GRD strategy in
both DCARP-OC and DCARP-CT scenarios. For each type of
DCARP scenario, we generated 10 different DCARP scenarios
for each map, and each optimization algorithm optimized each
DCARP instance for 25 independent runs. The ANC' was used
for the performance measurement. We calculated the ANC
value in each independent run for meta-heuristic algorithms
with different strategies. Then, for each DCARP scenario,
the Wilcoxon signed-rank test with a significance level of
0.05 was applied to all ANC values from 25 independent

TABLE II: Comparison of MAENS and RTS meta-heuristic
algorithms using SBBA against GRD in DCARP-OC and
DCARP-CT scenarios. The values in each cell represent the
number of “win-draw-lose” for the SBBA strategy based on
Wilcoxon signed-rank tests with a significance level of 0.05
in 10 DCARP scenarios of each map.

M ‘ DCARP-OC Scenarios ‘ DCARP-CT Scenarios
apName

| MAENS RTS | MAENS RTS
egl-gl-A 10-0-0 8-2-0 6-4-0 7-1-2
egl-g1-B 10-0-0 7-1-2 3-7-0 6-2-2
egl-gl-C 10-0-0 8-0-2 2-6-2 4-3-3
egl-g1-D 10-0-0 8-2-0 4-5-1 2-3-5
egl-gl-E 10-0-0 8-2-0 4-5-1 1-5-4
egl-g2-A 10-0-0 7-1-2 3-5-2 8-1-1
egl-g2-B 10-0-0 6-2-2 4-6-0 4-3-3
egl-g2-C 10-0-0 10-0-0 5-5-0 5-2-3
egl-g2-D 10-0-0 7-0-3 5-5-0 6-1-3
egl-g2-E 10-0-0 6-3-1 6-4-0 4-3-3
egl-s1-A 4-4-2 9-1-0 4-5-1 5-1-4
egl-s1-B 3-7-0 10-0-0 4-4-2 7-0-3
egl-s1-C 8-1-1 10-0-0 2-7-1 3-4-3
egl-s2-A 8-2-0 3-5-2 1-8-1 2-7-1
egl-s2-B 5-5-0 4-5-1 1-7-2 2-7-1
egl-s2-C 3-6-1 2-8-0 2-6-2 2-8-0
egl-s3-A 6-4-0 7-3-0 3-5-2 2-5-3
egl-s3-B 7-3-0 4-6-0 3-6-1 1-8-1
egl-s3-C 5-4-1 5-5-0 2-7-1 1-9-0
egl-s4-A 5-5-0 6-4-0 2-8-0 1-6-3
egl-s4-B 5-5-0 2-5-3 0-10-0 2-7-1
egl-s4-C 4-5-1 4-6-0 4-6-0 1-7-2

runs for two strategies. The results of MAENS and RTS
algorithms with the SBBA and GRD strategies in DCARP-
OC and DCARP-CT scenarios are presented in Table II%.
The values in each cell represent the number of “win-draw-
lose” of the SBBA strategy versus the GRD strategy under the
hypothesis test over 10 different DCARP scenarios for each
map. Besides, we also plotted the convergence curves of meta-
heuristic algorithms with different strategies in DCARP sce-
narios, and some of them are presented in Figure 6. Each plot
represents a complete DCARP scenario including all DCARP
instances. Each segment in the plot represent the algorithm’s
convergence curve within the maximum optimization time in
the corresponding DCARP instance.

Based on the results presented in Table II and Figure 6,
it can be observed that the SBBA strategy improves the opti-
mization performance of both MAENS and RTS algorithms in
most DCARP scenarios, especially in DCARP-OC scenarios.
However, in most DCARP-CT scenarios, the MAENS/RTS
with the SBBA strategy performs similarly to MAENS/RTS
with the GRD strategy. This is understandable, since the
SBBA analysis shown in Section V-C showed that this strategy
usually leads to larger improvements in the initial solutions for

2Due to the page limitation, the "Mean % Std” of ANC values for each
DCARP scenario of each map are presented in the supplementary material.
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DCARP-OC than for DCARP-CT. The convergence speed is
also faster with the SBBA strategy, as shown in Figure 6.
This is due to the higher-quality and higher-similarity initial
solutions generated by the SBBA strategy (Figure 5). The
higher-quality solutions used for optimization can lead to faster
convergence, and solutions with higher similarity indicate they
are closer to the best solution, which can also lead to faster
convergence of meta-heuristic algorithms.

The SBBA strategy is shown to be effective in promoting
the performance of meta-heuristic algorithms in DCARP sce-
narios, especially in DCARP-OC scenarios. This indicates that
the SBBA is much more effective for DCARP-OC scenarios

without task changing. Additionally, in Table II, MAENS with
SBBA strategy outperforms the GRD strategy in all DCARP-
OC scenarios of EGL-G maps, which has larger number of
tasks. This indicates that the MAENS with SBBA strategy
significantly outperforms the GRD strategy in DCARP scenar-
ios with more tasks because scenarios with a smaller number
of tasks are too easy for MAENS so that the effectiveness
of SBBA is not obvious. For RTS, since it only uses one
adaptive solution for optimization, the effectiveness of SBBA
is also not obvious. However, it still provides a performance
boost for RTS if the adaptive solution has a higher quality
according to Figure 6b and 6d.



Therefore, we can conclude from our experimental re-
sults that DO-SBBA can promote the dynamic optimization
performance of meta-heuristic algorithms within a limited
optimization time. Specifically, the DO-SBBA is much more
effective in DCARP-OC scenarios and DCARP scenarios that
are harder for the original meta-heuristic algorithms to handle.

E. SBBA Strategy’s Performance Under Different Severities of
Dynamic Changes

To investigate the generalization ability of the proposed
SBBA for answering the RQ3, we applied it to the DCARP
scenarios with varying severity of dynamic changes listed in
Section V-A. We employed the MAENS algorithm to optimize
each DCARP instance in the dynamic optimization framework.
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Fig. 7: The performance comparison between path-scanning
(PS), greedy generation (GRD), rerouting (RR1) and SBBA
strategies on DCARP scenarios with different severity of
dynamic changes.

For each setting of C' and p;, which control the severity of
dynamic changes, we generated 10 different DCARP scenarios
independently. Smaller C' and p, indicate that smaller changes

in edges’ deadheading costs and fewer number of added tasks,
respectively. We calculated the NC' of solutions generated by
different strategies in all DCARP instances of the 10 scenarios.
The results are presented in the boxplots in Figure 7. For
the DCARP-OC scenarios in Figure 7a, our SBBA strategy
outperforms the other two algorithms, even when the severity
of dynamic changes is larger. However, the performance gap
between SBBA and the other two algorithms decreases as
the severity of dynamic changes increases. For the DCARP-
CT scenarios in Figure 7b, our SBBA strategy is slightly
better than the other three constructive heuristic algorithms
when the number of added tasks is small. However, when the
number of added tasks becomes larger, the performance of
SBBA decreases substantially and is even worse than the two
conventional constructive strategies when p; > 0.6, but it is
still better than the RR1 algorithm.

Therefore, based on the experimental results, our proposed
SBBA strategy is more effective when the severity of dynamic
changes is small. This is because small dynamic changes
make the new DCARP instance more similar to the previously
optimized DCARP instance, causing high-quality solutions for
both DCARP instances to also be similar. The SBBA strategy
utilizes these similarities to generate solutions for new DCARP
instances. Therefore, small dynamic changes are more suitable
for our SBBA strategy. When the severity of dynamic changes
becomes large, our SBBA strategy is more robust in DCARP-
OC scenarios than in DCARP-CT scenarios. Furthermore, the
SBBA strategy performs even worse than two conventional
constructive strategies when the number of added tasks is large
in DCARP-CT scenarios. This is because in good solutions of
new DCARP instances, the newly added tasks and remaining
tasks might form a new building block, and so the building
blocks for the former DCARP instances are likely to cause a
bad solution.

VI. CONCLUSION

In this paper, we focused on dynamic optimization for
the DCARP scenarios, which considers unforeseen dynamic
events occurring during the deployment of a CARP solution.
We leveraged the optimization experience from the previous
instance to facilitate dynamic optimization for the new in-
stance. The building blocks adaptive strategy (SBBA) was
proposed to extract such valuable experience from historical
solutions. Then, the solution building block adaptive strategy
based dynamic optimization framework (DO-SBBA) was pro-
posed to assist meta-heuristic algorithms in solving two dif-
ferent DCARP scenarios: the DCARP-OC scenario containing
instances generated only from cost-changing dynamic events,
and the DCARP-CT scenario containing instances generated
from both cost-changing and task-changing dynamic events.

To evaluate the efficacy of the proposed SBBA strategy
and the optimization framework, we applied them to a series
of DCARP-OC and DCARP-CT scenarios. The experimental
results demonstrated that the SBBA benefits a lot from the
experience contained in historical solutions and significantly
outperforms conventional constructive strategies in terms of
solution quality. Empirical analysis indicated that solutions



constructed by the SBBA are more similar to the best solutions
with the help of the extracted experience. Furthermore, we
analyzed the performance of the DO-SBBA framework for
dynamic optimization by embedding two meta-heuristic algo-
rithms, MAENS [20] and RTS [43]. The experimental results
showed that the DO-SBBA framework led to fast convergence
and helped the original algorithm obtain better solutions
for both algorithms in both DCARP-OC and DCARP-CT
scenarios. The proposed framework was particularly helpful
for DCARP-OC scenarios, with improvements in performance
being observed across different severity of change in cost.
For DCARP-CT scenarios, improvements in performance were
larger for smaller changes in the number of added tasks.

In the future, more effective strategies could be proposed
for DCARP-CT instances. Since SBBA directly inherits task
sequences from historical solutions, it would be valuable to
extract more indirect experience from historical solutions to
help generate higher-quality solutions for DCARP scenarios in
the future. Furthermore, considering the observed performance
degradation of our algorithm on complex DCARP scenarios,
it would also be worthwhile to propose novel approaches for
complex and large-scale DCARP.
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