
1

Cross-Project Online Just-In-Time Software
Defect Prediction

Sadia Tabassum, Leandro L. Minku, Senior Member, IEEE, Danyi Feng

Abstract—Cross-Project (CP) Just-In-Time Software Defect Prediction (JIT-SDP) makes use of CP data to overcome the lack of data
necessary to train well performing JIT-SDP classifiers at the beginning of software projects. However, such approaches have never
been investigated in realistic online learning scenarios, where Within-Project (WP) software changes naturally arrive over time and can
be used to automatically update the classifiers. We provide the first investigation of when and to what extent CP data are useful for
JIT-SDP in such realistic scenarios. For that, we propose three different online CP JIT-SDP approaches that can be updated with
incoming CP and WP training examples over time. We also collect data on 9 proprietary software projects and use 10 open source
software projects to analyse these approaches. We find that training classifiers with incoming CP+WP data can lead to absolute
improvements in G-mean of up to 53.89% and up to 35.02% at the initial stage of the projects compared to classifiers using WP-only
and CP-only data, respectively. Using CP+WP data was also shown to be beneficial after a large number of WP data were received.
Using CP data to supplement WP data helped the classifiers to reduce or prevent large drops in predictive performance that may occur
over time, leading to absolute G-Mean improvements of up to 37.35% and 48.16% compared to WP-only and CP-only data during such
periods, respectively. During periods of stable predictive performance, absolute improvements were of up to 29.03% and up to 41.25%
compared to WP-only and CP-only classifiers, respectively. Our results highlight the importance of using both CP and WP data
together in realistic online JIT-SDP scenarios.

Index Terms—Software defect prediction, cross-project learning, transfer learning, online learning, verification latency, concept drift.

✦

1 INTRODUCTION

THE primary objective of software quality assurance ac-
tivities is to reduce the number of defects in software

products [2]. It is a challenging problem considering the
limitation of budget and time allocation for such activi-
ties. Software Defect Prediction (SDP) helps to reduce the
time and effort required for testing software products by
predicting which parts of the software are more likely to
contain defects. Different machine learning approaches have
been proposed for SDP [3]. Many studies have focused
on identifying defect prone components (e.g., modules or
files) [4]. Recent studies have been increasingly focusing on
identifying defect-inducing software changes. This is known
as Just-In-Time Software Defect Prediction (JIT-SDP) [5]. Ad-
vantages of JIT-SDP over component level SDP include [5]:
(1) prediction made at an early stage, facilitating code in-
spection, (2) finer granularity of the predictions, making it
easier to find defects, and (3) straightforward allocation of
developers to inspect the code.

Similar to SDP at the module/file level, JIT-SDP classi-
fiers require sufficient amount of training data which is not
available during the initial phase of a project. To overcome
this problem, previous work has proposed Cross-Project
(CP) JIT-SDP, where historical data from other projects are
used to train the classifier [6]. Existing CP JIT-SDP work
[6] assumes an offline learning scenario, where classifiers
are built based on a pre-existing training set and never get

A preliminary version of this paper appeared in [1].

• S. Tabassum and L.L. Minku are with the School of Computer Sci-
ence, University of Birminigham, UK, emails: sxt901@cs.bham.ac.uk and
L.L.Minku@bham.ac.uk.

• D. Feng is with Xiliu Tech, China, email: danyi@ouchteam.com.
• Corresponding author: L.L. Minku.
• This work was funded by EPSRC Grant No. EP/R006660/2.

updated after that. This means that the CP classifier is never
trained on Within-Project (WP) data. However, in practice,
JIT-SDP is an online learning problem [7], i.e., a problem
where both additional CP and WP training examples arrive
over time, forming a data stream that can be used to update
JIT-SDP models whenever a new labelled software change
arrives.

The role of CP data in such online learning scenario is
unclear. CP JIT-SDP has never been investigated in online
mode before. In particular, it is unknown whether CP data
is only helpful at the very early stages of the project when
there is little WP data, or if it brings a prolonged benefit to
the predictive performance of the classifier. For instance, it
may be that CP approaches using an augmented training
data stream formed by both WP and CP examples lead
to increased predictive performance even at later stages of
the project, given that classifiers are built using more data
than WP classifiers trained only with WP data. Or, it may
be that CP data cause such approaches to obtain worse
predictive performance than WP classifiers once enough
WP data is used for training. Besides, prediction quality
can fluctuate due to variations (concept drifts) in the un-
derlying defect generating process [7], [8], rendering JIT-
SDP classifiers unreliable. The use of CP training data could
potentially help to handle concept drift. This is specially the
case considering that JIT-SDP is a class imbalance problem,
where the number of defect-inducing software changes is
typically much smaller than that of clean changes. In such
kind of problem, it would take a lot of time to collect new
WP defect-inducing examples to recover well from concept
drift. CP training examples could potentially help to recover
from concept drift more quickly.

This paper thus aims at investigating when and to what



2

extent CP JIT-SDP data can be helpful in a realistic online
learning scenario. It answers the following Research Ques-
tions (RQs):

RQ1 Can CP data help to improve predictive performance
in the initial phase of a project, when there is little or
no WP training data available? For how long and to
what extent?

RQ2 Can CP data help to prevent sudden drops in predic-
tive performance, which may be caused by concept
drift? To what extent?

RQ3 What are the effects of CP data on the predictive
performance during stable periods of the projects?
Could the CP data be detrimental during stable
periods, given that enough WP data may be available
for training?

RQ4 Is it necessary to update CP approaches over time
once a project starts, or is it enough to use mod-
els trained only with CP data produced before the
project being predicted commences? If it is enough,
online learning is not really necessary.

In online scenarios, both WP and CP training data arrive
over time as their collection can be automated. If incoming
CP data is used for updating a CP classifier over time, it
is natural and reasonable to also use any WP data that
may arrive over time. This is because such WP data should
not hurt (and could potentially improve) predictive per-
formance. Therefore, in online learning, we use the term
CP when referring to approaches that make use of both
incoming CP and WP data for training. This term is adopted
with this meaning in our RQs and throughout the rest of
this paper. This means that, for online learning scenarios,
when we refer to the benefits of CP data, we do not mean
the benefits of CP data in isolation, but the benefits of CP
data used along with incoming WP data. Indeed the term
CP means Cross-Project, i.e., data coming from multiple
projects, and thus there is no reason for this term to exclude
WP data in the context of online learning. When discussing
realistic online learning scenarios in this paper, we will use
the term Other-Project (OP) to refer to approaches that use
data that come only from other projects than the project
we are interested in. In this paper, these approaches are
CP approaches trained only on CP data that are available
before the project of interest commences, i.e., they are CP
approaches that have no access to WP data. We use the term
WP when referring to approaches that only use WP data.

To answer our RQs, we investigate four approaches: (1)
a single online learning CP classifier trained on incoming
WP and CP training examples, (2) an online learning CP
ensemble where each classifier is trained on incoming train-
ing examples from a different project, (3) a single online
learning CP classifier that filters out CP training examples
that are likely to be very different from recent WP examples
and (4) an OP classifier that is trained only with CP training
data which arrive before the project of interest commences,
and is never updated with incoming WP data. The first
3 approaches are online and are enhancements of the ap-
proaches used in the JIT-SDP literature [6], so that they can
operate in online mode. The last approach represents CP
approaches from the offline learning literature, which make
use of only OP data. All of these approaches are compared

against online WP [7], [9] approaches. Our experiments
based on 9 proprietary and 10 open source software repos-
itories show that the first and third approaches are helpful
to improve predictive performance in JIT-SDP compared to
WP classifiers, while the second and fourth are not.

Overall, our contributions are the following:

• We provide the first investigation of CP JIT-SDP in a
realistic online learning scenario.

• We show how to adapt CP JIT-SDP approaches so
that they can be used in an online learning scenario.

• We develop a new methodology to systematically
analyse approaches during periods of drop in pre-
dictive performance (and conversely also periods of
stability) in online learning. This enables us to know
how much more robust CP JIT-SDP approaches are
in terms of preventing such drops (and thus leading
to more reliable predictions over time) compared to
WP JIT-SDP approaches.

• By answering RQ1-4, we provide a detailed analysis
revealing that the extent to which CP can be helpful
in JIT-SDP is much larger than previously thought.
It can not only provide significant improvements
in predictive performance during the initial stages
of a project (RQ1), but also can prevent drops in
predictive performance over time (RQ2) and improve
predictive performance during stable periods (RQ3).

• We show that online CP approaches outperform OP
approaches (RQ4), highlighting the benefits of online
learning in JIT-SDP.

• We show that it is better to use CP and WP data to-
gether to build a single classifier, rather than building
different classifiers with disjoint subsets of the data.

• We provide an analysis of sensitivity to hyperparam-
eters for the most promising CP approach (Filtering),
providing an understanding of their effect on predic-
tive performance.

This paper is further organized as follows. Section 2
presents related work. Section 3 introduces our online CP
JIT-SDP approaches. Section 4 presents the investigated
datasets. Section 5 explains the experimental setup for an-
swering the RQs. Section 6 explains the results of the exper-
iments. Section 7 presents the sensitivity analysis. Section
8 presents the analysis of computational cost. Section 9
explains the implications to practice. Section 10 explains the
threats to validity. Section 11 presents the conclusions and
future work.

2 RELATED WORK

There are many SDP studies [3], [10], [11], including recent
studies investigating class imbalance techniques [12], au-
tomated feature engineering [13], ensemble learning [14],
among others. In this section, we discuss three main re-
search areas of SDP that are closely related to this work:
CP SDP at the component level (Section 2.1), CP JIT-SDP
(Section 2.2) and Online JIT-SDP (Section 2.3).

2.1 CP SDP at the Component Level
There have been several studies on CP SDP at the compo-
nent level. An initial study provided guidelines for choosing



3

training projects [15]. It proposed an approach to identify
factors that influence CP prediction success, such as data
and process factors. Another study [16] showed that care-
fully selected CP training data may provide better predic-
tion results than training data from the same project. Peters
et al. [17] focused on selecting suitable CP training data
based on the similarities between the distribution of the test
and potential training data. They used a similarity metric
and feature subset selection to remove irrelevant training
data. Canfora et al. [18] proposed a multi-objective approach
for CP defect prediction. They attempted to achieve a com-
promise between amount of code to inspect and number of
defect-prone artifacts. This approach performed better than
WP models. Panichella et al. [19] analysed the equivalence
of different defect predictors and proposed a combined
approach CODEP (COmbined DEfect Predictor) that uses
machine learning to combine different and complemen-
tary classifiers. This combination performed better than the
stand-alone CP technique. Nam et al. [20] applied Transfer
Component Analysis (TCA) to CP SDP. TCA is a transfer
learning approach that maps the data to a common latent
space where CP and WP data are similar to each other. They
also proposed a new approach called TCA+, which selects
suitable normalisation options for TCA. Other studies [21],
[22], [23] consider class imbalance learning for CP SDP. For
instance, Ryu et al. [21] proposed an approach that uses sim-
ilarity weight drawn from distributional characteristics and
the asymmetric misclassification cost to balance imbalanced
distributions.

Overall, these studies demonstrate that data distribu-
tional characteristics are important for CP SDP. They pro-
posed approaches to select CP data that are similar to WP
data, or to map CP and WP data into a latent space where
they are similar. However, none of these studies were in the
context of JIT-SDP or online SDP.

2.2 CP JIT-SDP

The first CP JIT-SDP study [6] carried out an empirical
evaluation of CP JIT-SDP performance by using data from
11 open source projects. They investigated five CP JIT-SDP
approaches based on project similarity, three variations of
data merging approaches, and ensemble approaches where
each model was trained on data from a different project. All
approaches were based on random forests as base learners.
They found that simple merging of all CP data into a sin-
gle training set and ensemble approaches obtained similar
predictive performance to that of WP models. Different
from SDP at the component level, other more complex
approaches, including similarity-based approaches, did not
offer any advantage compared to these.

Another study [24] investigated CP JIT-SDP in mobile
platforms using 14 apps extracted from the Commit.Guru
platform [25]. They compared the CP performance of four
different well-known classifiers and four ensemble tech-
niques. Naive Bayes performed best compared to other
classifiers and some ensemble techniques. They did not
check how CP compared against WP results.

Chen et al. [26] considered JIT-SDP as a multi-objective
problem to maximise the number of identified defect-
inducing changes while minimising the effort required to fix

the defects. They proposed a multi-objective optimization-
based supervised method called MULTI to build logistic
regression JIT-SDP models. They used six open source
projects. MULTI was evaluated on three different model
performance evaluation scenarios (cross-validation, cross-
project-validation, and timewise-cross-validation) against
43 state-of-the-art supervised and unsupervised methods.
They found that it can perform significantly better than WP
methods.

Zhu et al. [27] proposed a JIT-SDP approach named
DAECNN-JDP based on denoising autoencoder and con-
volutional neural network. WP and CP defect prediction
experiments were performed on six large open source
projects and DAECNN-JDP was compared with 11 baseline
models, including eight machine learning models, EALR,
Deeper and CNN-JDP. The results show that DAECNN-JDP
achieved better predictive performance than the baseline
models for both CP and WP defect prediction. However,
the predictive performance of CP and WP approaches was
not compared against each other.

Despite showing that CP JIT-SDP can obtain promising
results compared to WP JIT-SDP, none of the studies above
considered a realistic online learning scenario, where CP
and WP training data arrive over time.

2.3 Online JIT-SDP

Some studies have highlighted the importance of respecting
chronology in component-level SDP [28], [29]. However,
very few studies explored JIT-SDP in online mode. Tan et al.
[30] investigated JIT-SDP in a scenario where new batches
of training examples arrive over time and can be used for
updating the classifiers, using one proprietary and six open
source projects. They considered the fact that the labels of
training data may arrive much later than the commit time.
This is known as verification latency [31] and is important
to be taken into account in realistic scenarios. They used
resampling techniques to deal with the class imbalanced
data issue and updatable classification to learn over time.
However, their approach assumes that there is no concept
drift, i.e., that the defect generating process does not suffer
variations over time.

McIntosh et al. [8] performed a longitudinal case study
of 37,524 changes from the rapidly evolving QT and OPEN-
STACK systems and found that fluctuations in the prop-
erties of fix-inducing changes can impact the performance
of JIT models. They showed that JIT models typically lose
predictive power after one year, possibly as a result of
concept drift. Hence, the JIT model should be updated with
more recent data.

Cabral et al. [7] proposed a method called Oversampling
Rate Boosting (ORB) to tackle class imbalance evolution in
an online JIT-SDP scenario taking verification latency into
account. Class imbalance evolution is a type of concept drift
where the proportion of defect-inducing and clean examples
fluctuates over time. ORB has an automatically adjustable
resampling rate to tackle class imbalance evolution, being
able to improve predictive performance over JIT-SDP ap-
proaches that assume a fixed level of class imbalance.

The existing online JIT-SDP studies build JIT-SDP mod-
els that are trained only on the WP data. They do not use



4

any CP software changes for training. None of the online
JIT-SDP studies above investigated CP JIT-SDP.

2.4 Online CP JIT-SDP
There is no previous work on online CP JIT-SDP except for
a preliminary version of this paper, which was published in
[1]. The key additions to the current paper compared to that
one [1] are the following:

• The investigation of RQ2 was previously based on a
visual analysis of the predictive performance plots,
being subjective. We have now developed a new
methodology to systematically and quantitatively
analyse whether a given approach can help to pre-
vent large drops in predictive performance that may
occur over time. Therefore, the whole analysis of RQ2
has been re-done.

• The new methodology above also enables us to
distinguish between periods of sudden drops and
periods of stability of predictive performance. This is
important because preventing drops is not so helpful
if this results in poor performance during stable
periods. We can now systematically investigate the
predictive performance of the approaches also dur-
ing stable periods, leading to the new RQ3.

• Existing CP JIT-SDP literature assumes that CP data
used to train JIT-SDP classifiers are the data collected
prior to the beginning of the software project of inter-
est. If such OP data is enough to improve predictive
performance over time in JIT-SDP, further training
with CP data would be unnecessary, enabling com-
panies to save resources. However, OP approaches
were not investigated in the previous paper. We have
now added RQ4 for that.

• We provide a sensitivity analysis of hyperparameters
for the CP approach that achieved the most promis-
ing results. This sensitivity analysis was not available
in the previous work and gives insights into how to
choose hyperparameter values for this approach.

• We provide an analysis of the computational cost
of the approaches, which was not available in the
previous work.

• The previous study was based on 3 proprietary data
sets and 10 open source projects. We have now col-
lected more 6 proprietary data sets, making this the
largest JIT-SDP study to date in terms of the number
of proprietary software repositories. This improves
the external validity of our study.

3 ONLINE CP JIT-SDP APPROACHES

In this section, we modify and enhance three CP JIT-SDP
approaches adopted in [6] to enable them to be applied to
online JIT-SDP. All our algorithms fully respect chronology.
In particular, they never use future CP/WP training exam-
ples, future knowledge about labels (i.e., defect-inducing or
clean), or test examples, for training a model used for testing
the present. Our CP approaches can be trained not only with
CP and WP training examples that are made available over
time after the first WP commit, but also with CP training
examples produced before the first WP commit.

Training examples are generated using the online proce-
dure recommended by Cabral et al. [7] to take verification
latency into account for all approaches studied in this paper.
In particular, a software change becomes a training example
either when a defect is found to be associated to it, or once a
pre-defined waiting period of w days has passed, whichever
is earlier. This waiting period represents the amount of time
that it takes for one to be confident that the software change
in question is clean. In other words, if no defect is found
to be associated to the software change during the waiting
period, a training example of the clean class is created
to represent this software change. Otherwise, a training
example of the defect-inducing class is created immediately
after the defect is found. If, after the waiting period, a defect
is found to be associated to a change that was previously
considered clean, a new defect-inducing training example
is created for it. Training examples are used to update the
classifier as soon as they are created.

3.1 All-in-One (AIO) Approach

Existing offline JIT-SDP work [6] assumes that CP classifiers
are not trained with any WP data. Unlike offline approaches,
the AIO online CP approach includes WP data for training.
All incoming CP and WP training data are considered as
part of a single data stream of training examples, which
are used to train a single online classifier as soon as they
are produced. The data stream is in chronological order,
i.e., the training examples are sorted based on the Unix
timestamp of their author creation. A new incoming change
that does not belong to the target project is used for training
(respecting the chronology and verification latency), but not
for prediction. Algorithm 1 shows the pseudocode for the
AIO approach.

The classifier is initialised as an empty model that al-
ways predicts “clean”. When a new incoming change xt

p is
received at time step t (line 3), the algorithm first checks if
this change belongs to the target project, i.e., to the project
whose changes are being predicted (line 4). If it does, a
prediction is provided for this change. After that, xt

p is
stored in a queue for a pre-defined waiting period (line
7). All software changes in this queue are checked to see
whether they can be used for training (line 8 to 21). If a
defect is found to be associated to a given software change
in the queue during the waiting period (lines 9 to 12), a
defect-inducing training example is created to represent this
change and is used for training. If a defect is not found by
the end of the waiting period of a given change (lines 13
to 20), a clean training example is created for this change
and is used for training. After that the change is removed
from the queue. The algorithm also checks whether there is
any past change found to be defect-inducing, but that was
previously considered as a clean training example (lines 22
to 26). If there is, the classifier is trained using that change
as a defect-inducing training example.

The key difference between our approach and the data
merging approaches used by Kamei et al. [6] is that their
learning was offline (without taking into account incoming
training examples and verification latency) and they did not
include WP data for training. In our proposed approach, the
learning is online, takes verification latency into account,



5

and the classifier is trained on both CP and WP data whose
labels are produced before the current timestamp.

3.2 Ensemble Approach
The Ensemble approach uses an ensemble of classifiers
rather than a single classifier. A separate classifier is built
from each project’s separate training data stream (e.g., for 10
projects there will be 10 different classifiers). This includes
both CP and WP data streams. Each change belonging to
the target project is then predicted by all the classifiers,
and the mean of the predicted probabilities retrieved by the
classifiers is calculated. This mean is used to predict whether
the change is clean or defect-inducing. The pseudocode
for the Ensemble approach is similar to that of the AIO
approach, and can be found in the supplementary material
[32]. As with the AIO approach, the chronological order of
the training examples is always respected.

The predictions given by the ensemble are based on
simple voting. The key differences between our approach
and the approach used by Kamei et al. [6] are that our
approach is online, and our ensemble contains a classifier
built from WP training examples that have been labelled up
to the current timestamp, rather than using only CP data
classifiers.

3.3 Filtering Approach
We propose the following Filtering approach for online CP
JIT-SDP. First, a fixed-size window of most recent incoming
WP training examples is maintained. Whenever a CP train-
ing example arrives, it is compared with the training exam-
ples in the WP window. As with the AIO and Ensemble ap-
proaches, the chronological order of the training examples
is always respected. Euclidean distances between the input
features of the CP training example and each of the WP
training examples in the window that have the same label as
the CP training example are calculated to check how similar
the CP training example is to recent WP examples. All input
features used to describe the software changes in the data
stream are used for calculating the Euclidean distance. It is
important to use only training examples with the same label
to compute the distance. Otherwise, the approach would
consider that a CP clean training example described by
similar features as a WP defect-inducing training example
are similar training examples. However, they are different
due to the different label.

The average of the smallest K distances is calculated. If
this average distance is equal to or lower than a maximum
threshold, the CP training example is allowed to train the
classifier. Discarded CP training examples are kept in a
fixed-sized queue. This queue is checked in every iteration
to see whether any old discarded CP training example has
now become suitable for training. This can be useful in case
concept drift causes such discarded examples to become
relevant at some point.

Algorithm 2 shows the pseudocode for the Filtering
approach. The classifier is initialised as an empty model
that always predicts “clean”. When a new incoming change
xt
p from project p is received at time step t (line 3), the

algorithm checks whether there are any old CP training
examples that were previously not used for training due to

Algorithm 1 All-in-One (AIO) Approach
Input: S = stream of incoming changes from several
projects, b = index identifying the target project, w =
waiting period

1: Initialise predictive model m
2: for each incoming change xt

p ∈ S do // xt
p is a change

arriving from project p at timestamp t

3: if p = b then
4: ŷ ← predict(m, xt

p)
5: end if
6: store xt

p in a queue WFL-Q // WFL-Q is a queue
of incoming examples waiting to be used for training

7: for each item qi in WFL-Q do
8: if a defect was linked to qi at a timestamp ≤ t

then
9: create a defect-inducing training example

for qi

10: train(m, training example)
11: remove qi from WFL-Q
12: else
13: if qi is older than w then
14: create a clean training example for qi

15: train(m, training example)
16: remove qi from WFL-Q
17: store training example in CL-H //

CL-H is a hash of clean training examples
18: end if
19: end if
20: end for

21: if a defect was linked to a training example in
CL-H at a timestamp ≤ t then

22: Swap the label of training example to defect-
inducing

23: train(m, training example)
24: remove training example from CL-H
25: end if
26: end for

their dissimilarity to WP examples, but that are now suitable
for training due to their similarity to the current WP sliding
window (lines 4–7). If there are, they are used for training.
Then, a prediction is given if the change xt

p belongs to target
project (lines 8–10). The change xt

p is then stored in a queue
(line 11), waiting to be labelled. All changes in this queue
are checked to see whether they can be labelled (lines 12 to
30). If they can, corresponding training examples are created
and used for training only if they are similar enough to the
WP sliding window (lines 21–23). If they are not similar
enough and are CP examples, they are stored in the queue
CP -Q of discarded CP examples for possible future use (line
25). The sliding window is updated (slided) if the training
example is WP (line 28). The algorithm also checks whether
any change that was previously considered as clean has now
been associated to a defect and uses it for training, but only
if it is similar enough to the WP window (lines 31–39).



6

Algorithm 2 Filtering Approach
Input: S = stream of incoming changes from several
projects, b = index identifying the test project, w = waiting
period, windowSize = size of the WP -Q sliding window,
K = number of top short distances to be used, maxDist =
distance threshold for similarity, cpqSize = maximum size
of the queue CP -Q of dissimilar CP instances to be re-
checked for similarity in the future

1: Initialise predictive model m
2: for each incoming change xt

p ∈ S do // xt
p is a change

arriving from project p at timestamp t
3: if avgDist(training example, WP -Q,K)
≤ maxDist for any training example in CP -Q
then

4: train(m, training example)
5: remove training example from CP -Q
6: end if

7: if p = b then
8: ŷ = predict(m, xt

p)
9: end if

10: store xt
p in a queue WFL-Q // WFL-Q is a queue

of incoming examples waiting to be used for training

11: for each item qi in WFL-Q do
12: if a defect was linked to qi at a timestamp ≤ t

then
13: Create a defect-inducing training example

for qi

14: else
15: if qi is older than w then
16: Create a clean training example for qi

17: store qi in CL-H // CL-H is a hash of
clean training examples

18: end if
19: end if
20: if a training example was created for qi then
21: if avgDist(training example, WP -Q,K) ≤

maxDist or this is a WP change then
22: train(m, training example)
23: else
24: Add training example to CP -Q
25: end if
26: Remove qi from WFL-Q
27: Slide WP -Q if training example is WP
28: end if
29: end for

30: if a defect was linked to a training example in
CL-H before time t then

31: swap label of training example to defect-
inducing

32: remove training example from CL-H
33: if avgDist(training example,WP -Q,K)
≤ maxDist then

34: train(m, training example)
35: else
36: add training example to CP -Q
37: end if
38: end if
39: end for

4 DATASETS

We have extracted data from nine proprietary software
development project repositories from a Chinese software
development company for the purpose of this study. The
proprietary data collection used the same version of Com-
mit Guru prepared for Chinese language [33] as in [1]. A
description of the procedure used to prepare Commit Guru
to collect data from Chinese software development compa-
nies can be found in [1]. We have also used ten existing
datasets extracted from open source GitHub projects based
on Commit Guru [25], which were made available by Cabral
et al. [7].

Some information on the datasets is shown in Table 1.
The input features include 14 change metrics: NS (number
of modified subsystems), ND (number of modified directo-
ries), NF (number of modified files), Entropy (distribution
of modified code across each file), LA (lines of code added),
LD (lines of code deleted), LT (lines of code in a file before
the change), FIX (whether or not the change is a defect fix),
NDEV (number of developers that changed the modified
files), AGE (average time interval between the last and the
current change), NUC (number of unique changes to the
modified files), EXP (developer experience), REXP (recent
developer experience) and SEXP (developer experience on
a subsystem). These change metrics have been shown to be
adequate for JIT-SDP in previous work [5] and have been
adopted in previous online JIT-SDP work [7], [8].

All software changes were chronologically ordered
based on the author timestamp, which is provided by Git
as the timestamp when the commit was first created by
the author. Author timestamp is recommended over com-
miter timestamp for studies involving time-based Git data
[34]. This timestamp is used in our paper as the moment
in time when a JIT-SDP model is required to provide a
prediction for this software change. The timestamp when
a software change is found to be defect-inducing is the
author timestamp of the commit that fixes this software
change, as retrieved by Commit Guru [25]. Such timestamps
and the waiting period w are used to determine when the
training examples become available for training, following
the procedure [7] explained in the beginning of Section 3.
In this way, both the moment when software changes are
predicted and the moment when software changes become
available for training fully respect chronology. Commit guru
uses git log to get the commits. Git log lists all commits
in the current branch. If another branch is merged into it,
the commits from that other branch will also show, and are
chronologically ordered with the other commits based on
author timestamp.

5 EXPERIMENTAL SETUP

This section explains the experimental setup for answer-
ing the RQs introduced in Section 1. A replication pack-
age is available at https://zenodo.org/badge/latestdoi/
455513474.

5.1 Compared Approaches

RQ1-3 will be answered by comparing the predictive perfor-
mance of the online CP approaches presented in Section 3



7

TABLE 1: An overview of the projects

Project Total # Defect-inducing % Defect-inducing Median Defect Time Period Main Language Project Type
Changes Changes Changes Discovery Delay (days)

Tomcat 18907 5207 27.54 200.5798 27-03-2006 - 06-12-2017 Java Open source [7]
JGroups 18325 3153 17.21 116.1565 09-09-2003 - 05-12-2017 Java Open source [7]

Spring-integration 8750 2333 26.66 415.1201 14-11-2007 - 16-01-2018 Java Open source [7]
Camel 30575 6255 20.46 28.1947 19-03-2007 - 07-12-2017 Java Open source [7]

Brackets 17364 4047 23.31 14.454 07-12-2011 - 07-12-2017 JavaScript Open source [7]
Nova 48989 12430 25.37 88.5615 28-05-2010 - 28-01-2018 Python Open source [7]

Fabric8 13106 2589 19.75 39.1833 13-04-2011 - 06-12-2017 Java Open source [7]
Neutron 19522 4607 23.6 82.5097 01-01-2011 - 27-12-2017 Python Open source [7]

Npm 7920 1407 17.77 111.514 29-09-2009 - 28-11-2017 JavaScript Open source [7]
BroadleafCommerce 15010 2531 16.86 42.5818 19-12-2008 - 21-12-2017 Java Open source [7]

C1 1030 confidential confidential 18.17 06-09-2018 - 17-07-2019 Javascript proprietary
C2 601 confidential confidential 1.93 16-10-2018 - 19-07-2019 Javascript and 3D studio proprietary
C3 417 confidential confidential 2.98 05-09-2018 - 19-07-2019 Python proprietary
C4 341 confidential confidential 4.13 17-04-2019 - 17-10-2019 Javascript and 3D studio proprietary
C5 323 confidential confidential 4.24 22-05-2019 - 13-11-2019 Javascript and 3D studio proprietary
C6 555 confidential confidential 2.92 13-05-2019 - 13-12-2019 Javascript and 3D studio proprietary
C7 546 confidential confidential 3.33 16-04-2019 - 18-11-2019 Javascript and 3D studio proprietary
C8 798 confidential confidential 0.81 22-05-2019 - 16-09-2019 Python proprietary
C9 694 confidential confidential 0.77 30-04-2019 - 21-08-2019 Python proprietary

against that of online WP approaches, providing a detailed
understanding of when and to what extent CP data can
be helpful to improve predictive performance in JIT-SDP.
Comparisons of online CP against OP approaches will be
used to answer RQ4, revealing whether online learning is
really helpful in JIT-SDP. As with the online CP approaches,
the WP and OP approaches take verification latency into
account following Cabral et al. [7]’s waiting time procedure
and always respect chronology. A dummy classifier that
predicts clean or defect inducing uniformly at random is
also used for a preliminary investigation.

The online WP approaches are approaches able to learn
WP training examples over time, but learn no CP data. The
OP approaches represent the core CP strategies adopted in
the offline CP JIT-SDP literature [6]. They do not use WP
data for training, except for when filtering is adopted, in
which case WP data are only used to decide which CP
data to filter out from the training process. As existing
CP JIT-SDP work does not adopt online learning, its cor-
responding approaches would only train JIT-SDP models
with CP data produced prior to the development of the
project of interest. Therefore, this is also the case for the
OP approaches investigated in this study. Both an AIO and
a Filtering OP approach are adopted. The OP AIO uses all
the OP data to train the same predictive model, as in [6]. To
ensure fair comparisons for the purpose of answering RQ4,
the OP Filtering approach makes use of the same filtering
mechanism explained in Section 3.3.

For simplicity, when referring to the CP approaches
AIO and Filtering presented in Section 3, we will omit the
term “CP”. When referring to the OP AIO and Filtering
approaches, we will make use of the term “OP” explicitly.

Given an open source repository corresponding to a
project of interest, for CP approaches, all 10 open reposi-
tories are considered as the CP data. For the OP approaches,
the other 9 open source repositories are considered as the OP
data. Given a proprietary repository, the AIO approaches
were investigated in two different ways: (a) combining both
10 open source and the 9 proprietary repositories as the
CP data and (b) only with the 9 proprietary repositories
as the CP data. For OP AIO, cases similar to (a) and (b)
were used, but the OP data excluded the data from the
project of interest. CP and OP Filtering approaches were
investigated only in the scenario (a), again with the OP

data excluding the data from the project of interest. They
were not investigated using only proprietary data because
filtering reduces the amount of training data by filtering
dissimilar instances, and the amount of proprietary data
is already small compared to the amount of open source
data. Hence, using only proprietary data would likely be
insufficient to train models for Filtering approaches. In
addition, due to the poor results obtained by the Ensemble
approach on the open source data, this approach was not
run for the proprietary data.

JIT-SDP is a class imbalance problem [5], [6], [7], [30],
and the open source data used in this study are known to
be affected by this issue [7]. Therefore, learning approaches
need to use online learning classifiers that can deal with
that. Two state-of-the-art approaches for online class im-
balanced learning are Improved Oversampling Online Bag-
ging (OOB) and Improved Undersampling Online Bagging
(UOB) [9]. Also, Cabral et al. [7] proposed a new approach
called Oversampling Rate Boosting (ORB), which improves
the predictive performance further in the context of WP
JIT-SDP. The three approaches are ensembles of Hoeffding
Trees [35]. These are online learning base classifiers, which
are updated incrementally with each new training example,
preserving old knowledge without requiring storage of old
examples. Previously, OOB and UOB achieved similar per-
formance in WP JIT-SDP [7], and ORB performed the best.
Thus, only OOB and ORB are selected as the base classifiers
for the approaches investigated in our study.

5.2 Predictive Performance
We define a time step as a sequential number indicating the
order of WP commits according to their author timestamp.
Each WP commit requires a WP software change to be
predicted as defect-inducing or clean. Therefore, to evaluate
predictive performance, we investigate how well a classifier
can predict the WP commit received at each time step. At
this time step, the online CP and WP classifiers used to
give a prediction will have been updated with all CP+WP
and WP labelled training examples that became available
prior to the Unix timestamp corresponding to this time step,
respectively. Therefore, they correspond to classifiers that
could really have been used in practice to make such pre-
diction. The OP approach always uses the OP classifier that
was created based on all the labelled CP training examples



8

that were available prior to the beginning of the project
being predicted. The analyses done for RQ1, RQ2 and RQ3
will concentrate on the predictive performance (1) in the
beginning of the projects, (2) during periods of time where
we can observe sudden drops in predictive performance of
the WP approach and (3) during periods of stable predictive
performance of the WP approach, respectively. The analysis
for RQ4 will discuss all of (1-3). The procedure used to
distinguish between (1), (2) and (3) is described in Section
5.3.

We adopt the Geometric Mean (G-Mean) of Recall0
and Recall1 as measures of predictive performance, where
Recall0 is the recall on the clean class and Recall1 is the
recall on the defect-inducing class. These metrics were com-
puted prequentially and using a fading factor to enable
tracking changes in predictive performance over time, as
recommended for problems that may suffer concept drift
[36]. If the current example belongs to class i, Recall

(t)
i =

θRecall
(t−1)
i + (1 − θ)1ŷ=i, where i is zero or one, t is the

current time step, θ is a fading factor set to 0.99 as in [7], ŷ is
the predicted class, and 1ŷ=i is the indicator function, which
evaluates to one if ŷ = i and to zero otherwise. If the current
example does not belong to class i, Recall

(t)
i = Recall

(t−1)
i .

Also, G-Mean(t) =

√
Recall

(t)
0 ×Recall

(t)
1 . It is worth not-

ing that Recall0 = 1 − FalseAlarmRate, i.e., false alarms
are taken into account through Recall0 and G-Mean.

These metrics were chosen because they are the most
recently recommended for online class imbalance learning
[9]. We opted for G-Mean instead of Area Under the ROC
Curve (AUC). AUC has been discouraged in the context
of software defect prediction [37] because it incorporates
several threshold values that are not meaningful in practice,
making the comparison among approaches difficult. Other
metrics such as Matthews Correlation Coefficient (MCC)
and F1-Score were not used because they are biased when
there is class imbalance [9], [38]. Such bias is particularly
problematic when the imbalance ratio is changing overtime
as in the case of JIT-SDP [7]. This is because the performance
metric would vary over time based on the current imbalance
ratio, even if the quality of the predictions given by the
classifier remains the same. Therefore, G-Mean is more
adequate for our study.

5.3 Identifying Initial Periods and Periods of Sudden
Drops in Predictive Performance
We define the initial phase of the open source projects as
the period of time ranging from the first time step until the
time step where the G-Mean of the WP approach reaches the
value of its average G-Mean across time steps. It represents
the time it takes for the G-Mean of this approach to reach
its typical values for a given project. Knowledge of how
long such period can be and how much it may vary from
project to project can be useful to enable: (a) more informed
decisions in terms of whether and when to trust the pre-
dictions given by a JIT-SDP model, and (b) to check which
approaches can learn more quickly so as to present a better
G-Mean during this initial stage.

For the proprietary data, the total number of time steps
is too small to use the average G-Mean across time steps for
this purpose. In particular, had longer periods of time been

observed, the G-Mean values would be likely to improve
further, given the trends in G-Mean at the end of the
period analyzed for these projects (see Fig. 2, which will be
discussed later in this section). Therefore, instead of using
the average G-Mean across all time steps, we have used the
average G-Mean across the last 40 time steps to determine
the initial phase. We chose to fix the value of 40 so that
enough time steps are being used for the calculation while
ensuring that only the very last time steps are used, as
they would be the time steps most likely to have increased
predictive performance.

A systematic approach is applied to identify the periods
of sudden drop in predictive performance. Its pseudocode
is shown in the supplementary material [32]. First, the peaks
in the G-Mean(t) (Section 5.2) obtained by the WP approach
across time steps are identified for each of the datasets using
a python module called ’Detecta’ [39]. This module provides
a function to detect or identify the change or occurrence of
a particular event in the data, based on a threshold. Then,
we start analysing the G-Mean(t) for each time step t. In par-
ticular, we compare G-Mean(t) against the simple average
G-Mean obtained based on the WP approach’s predictions
over all software changes between the immediate previous
peak identified by Detecta and the current time step t. If
G-Mean(t) drops below 20% of the simple average G-Mean,
then the time period from the immediate previous peak
to the next peak following this time step is considered as
a period of sudden drop in G-Mean. The threshold 20%
was chosen after investigating several different threshold
values. Smaller thresholds than 20% caused too many small
drops in performance to be considered as sudden drops,
whereas larger thresholds resulted in most sudden drops
in performance to be missed. Examples of sudden drop
periods identified by this systematic approach can be seen
in the grey shaded areas of Figures 1 and 2. As we can see,
the approach is able to identify periods of time where the
G-Mean of the WP approach presents severe drops.

Considering only the sudden drop periods without
knowing what happens in the periods of stable performance
would give us incomplete insights. In particular, an ap-
proach that is able to prevent sudden drops in performance,
but performs much worse during stable periods would not
be so useful. Therefore, we also investigate periods of stable
performance. Any period after the initial period excluding
the sudden drop periods is considered as a stable period.

5.4 Statistical Tests and Effect Size

The predictive performances obtained during each period
of the projects (initial phase, periods of sudden drop and
stable periods) will be compared across data sets using
the Scott-Knott procedure [40], which ranks the models
and separates them into clusters. This test is used to select
the best subgroup among different models. Non-parametric
bootstrap sampling is used to make the test non-parametric,
as recommended by Menzies et al. [41]. As explained by
Demsar [42], non-parametric tests are adequate for compar-
ison across data sets.

In addition, the Scott-Knott test adopted in this paper
uses A12 effect size [43] to rule out any small differences in

minkull
Highlight
There is a mistake in this formula. The correct formula, which has been used in the implementation, is:R_i(t) = \theta R_i(t-1) + 1(\hat{y}=i)'N_i(t) = \theta N_i(t-1) + 1Recall_i(t) = R_i(t) / N_i(t)



9

performance. Specifically, Scott-Knott only performed sta-
tistical tests to check whether groups should be separated if
the A12 effect size was not insignificant [41]. If the A12 effect
size was insignificant, groups were not separated. We will
refer to Scott-Knott based on Bootstrap sampling and A12
as Scott-Knott.BA12. Smaller Scott-Knott.BA12 rankings are
better rankings.

We also report the A12 effect sizes against the WP ap-
proach for each dataset individually to support the analysis.
Symbols [*], [s], [m] and [b] represent insignificant, small,
medium and large A12 effect size. Presence/absence of the
sign “-” in the effect size means that the corresponding
approach was worse/better than the corresponding WP
approach.

5.5 Parameter Tuning
The parameters for the Filtering approach were chosen by
performing grid search on the initial portion (1000 commits
and one-third commits respectively for open source and pro-
prietary data) of the datasets using the following set of val-
ues: windowSize ={500,600,700,1000}, number of top short
distances tobe used K={50,100,200}, distance threshold for
similarity maxDist={0.6,0.7,0.8} and maximum size of the
queue of dissimilar CP instances cpqSize = {500, 1000}. Two
ORB parameters are also tuned by grid search: moving av-
erage window size={50, 100, 200} and n={3, 5, 7} for open
source and proprietary data. The rest of the ORB parameters
were kept to the same values as in [1] for open source
datasets, as they have already been tuned for these datasets.
However, for the proprietary datasets, OOB parameters
were further tuned using the following set of values: ensem-
ble={5,10,20,30,40} and theta={0.9,0.99,0.999}. We will also
provide an analysis of sensitivity of the online CP approach
that obtained the most promising results (Filtering) to its
parameters in Section 7.

The waiting period was 90 days for the open source
datasets as in [1] and 30 days for the proprietary datasets,
due to their lower defect discovery delay (see Table 1).
When open source data were used in combination with
proprietary data, waiting period of 30 days was used for
both types of datasets. Cabral et al. [7]’s study on WP JIT-
SDP recommended to use waiting periods that are close to
the expected median time to discover defects in the project.
However, due to concept drift, it is advisable to use shorter
waiting periods when some of the CP data have shorter
defect discovery delay. This is because shorter waiting pe-
riods enable speeding up recovery from concept drift. The
choice of waiting period may cause some defect-inducing
commits to be initially labelled as clean and then relabelled
to defect-inducing once a defect is found to be associated
to them. However, once an example is relabelled, it is
immediately used for training again. When that happens,
the resampling rates adopted by OOB and ORB are likely to
help emphasising the new defect-inducing label, given that
the defect-inducing class is usually a minority class.

Thirty executions of each approach with each of the base
classifiers have been performed on each dataset.

6 EXPERIMENTAL RESULTS

Tables 2 to 7 include the results obtained by the CP, WP and
OP approaches for the different periods of time investigated

in this study. Results obtained by the ORB-based approaches
are shown in the supplementary material, for space consid-
erations. Section 6.1 presents a preliminary comparison of
the approaches against the dummy classifier. Sections 6.2 to
6.4 will focus on the comparisons between the CP and WP
approaches, whereas Section 6.5 will also consider the OP
approaches.

6.1 Preliminary Analysis
We compared all approaches against a dummy classifier as a
preliminary analysis. A JIT-SDP classifier that outperforms a
dummy classifier in terms of overall predictive performance
is a classifier that was able to learn relevant JIT-SDP knowl-
edge. Filtering and AIO were always able to outperform
a dummy classifier in terms of overall G-Mean across times
steps, with large effect size. These results are in Table 7 of the
supplementary material, for space considerations. The Scott-
Knott.BA12 ranking of these approaches across datasets was
much better than that of the dummy classifier. The WP and
Ensemble approaches also achieved better overall G-Mean
ranking than the dummy classifier, even though they were
unable to consistently outperform the dummy classifier in
all individual datasets. The OP approaches obtained worse
overall G-Mean ranking than the dummy classifier. This
means that it was unable to learn enough JIT-SDP knowl-
edge to be of practical use for these projects.

Table 8 of the supplementary material shows the overall
G-Mean across time steps obtained by all approaches for the
proprietary projects. The dummy classifier outperformed all
approaches, achieving the top ranking in terms of overall
G-Mean across datasets. It is known that a small number of
training examples from the underlying problem distribution
negatively affects machine learning models [44]. The small
number of WP training examples (Table 1) is likely the
reason for such poor results on the proprietary projects.
Nevertheless, it is still useful to further compare the existing
approaches on the proprietary datasets in the subsequent
sections of this paper. Approaches that perform better than
other approaches on these datasets are likely to learn faster
(with less training examples) than approaches that perform
worse.

An ideal JIT-SDP approach would also outperform a
dummy classifier at different individual stages of the learn-
ing process. However, this is unlikely to be achievable in
practice. In particular, during the first time steps of the
learning, there would always be a very small number of
WP examples to learn from. Therefore, so long as WP
data is relevant to achieve good predictive performance,
there would always be at least some very initial time steps
where a given approach performs worse than a dummy
classifier. During latter periods of time, concept drifts may
sometimes also have a similar effect to that of a small
number of training examples. This is because concept drifts
may uncover areas of the input space that have not yet
been learned. To gain a better understanding of how well
the approaches perform against the dummy classifier, we
have compared each approach against the dummy classifier
separately during the initial, performance drop and stable
periods.

Table 2 (and Table 1 of the supplementary material)
shows the results obtained during initial period for the



10

opensource projects. From the Scott-Knott.BA12 test results,
we can see that AIO-OOB and Filter-OOB were better
ranked than the dummy classifier in terms of G-Mean
across open source projects for both OOB and ORB. When
analysing individual open source projects, AIO-OOB and
Filter-OOB outperformed the dummy classifier with large
effect size in 6 and 7 out of 10 projects, respectively. Sim-
ilar results were achieved when adopting ORB. Absolute
improvements in G-Mean were up to 25.09% and 24.98%,
for Neutron using AIO-ORB and Filter-ORB, respectively.
All other approaches were unable to rank better than the
dummy classifier during the initial period.

From Table 3 (and Table 2 in the supplementary ma-
terial) we can see that all approaches ranked worse than
the dummy classifier on the initial period of proprietary
projects. This is because the number of commits in the
initial period for proprietary data is very small. In reality,
the actual initial period might be much longer if we had
more commits from these projects. It is possible that the
whole period of time analysed for these projects is actually
part of the initial period. In most cases, the whole period
of the proprietary projects is smaller than the initial period
of the open source projects. In particular, the median total
number of software changes in the proprietary projects is
555, whereas the median initial period of the open source
projects is 17844.5. This explains the poor performance of all
approaches on the proprietary projects.

Table 4 (and Table 3 of the supplementary material)
shows the results obtained during performance drop peri-
ods for open source projects. AIO and Filtering obtained
better Scott-Knott.BA12 ranking than the dummy classifier,
whereas the other approaches did not. When looking at
individual datasets, AIO and Filtering were able to out-
perform the dummy classifier with large effect size in the
performance drop periods of all projects except for JGroups
when using OOB and Npm when using ORB. This is an en-
couraging result for AIO and Filtering, as the performance
drop periods are periods where we expect the approaches to
struggle to perform well. The absolute improvements were
up to 17.39% for BroadleafCommerce and up to 17.48% for
Nova when using AIO-OOB and AIO-ORB, respectively in
terms of G-Mean.

For the proprietary projects (Table 5 of the paper and
Table 4 of the supplementary material), all approaches ob-
tained worse Scott-Knott.BA12 ranking than the dummy
classifier during the performance drop period.

Table 6 (and Table 5 of the supplementary material)
shows the results obtained during stable periods for open
source projects. According to the Scott-Knott.BA12 tests, the
AIO, Filtering, Ensemble and WP approaches performed
better than the dummy classifier during the stable peri-
ods. There were improvements in G-Mean with large effect
sizes for all datasets, except for the Ensemble approach
on JGroups. In particular, Filtering-OOB led to absolute
improvements in G-Mean of up to 32.22% (for Neutron)
and AIO-ORB approach led to absolute improvements in
G-Mean of up to 31.87% (for Neutron) compared to the
dummy approach (Tables 6 and Table 5 of the supplemen-
tary material). The OP approaches were unable to achieve
better ranking than the dummy classifier across datasets.

For proprietary projects (Table 7 of the paper and Ta-
ble 6 of the supplementary material), according to Scott-
Knott.BA12, AIO-OOB-combined and Filter-ORB-combined
were able to outperform the dummy classifier across
datasets. Filter-OOB-combined achieved the largest absolute
improvement in G-Mean of 9.42% for C2 among CP ap-
proaches. AIO-ORB-proprietary achieved absolute G-Mean
improvements of up to 12.7% (for C3). These results are
encouraging. They show that, at least during periods of sta-
bility, some AIO approach is able to outperform the dummy
classifier, despite the overall G-Mean of all approaches
having been worse than that of the dummy classifier. This
strengthens our believe that, had they been given more WP
training data for training, the proposed approaches would
also perform better than the dummy classifier in terms of
overall G-Mean.

The preliminary analysis shows that the proposed CP ap-
proaches are able to learn relevant JIT-SDP knowledge. They
outperformed the dummy classifier in terms of overall G-
Mean for the open source projects, despite not always out-
performing the dummy classifier on every individual initial
and performance drop periods. Other approaches struggled
more to outperform the dummy classifier. All approaches
struggled to perform well on the proprietary projects, due
to the limited number of WP training examples.

6.2 RQ1: Initial Phase of the Project
Tables 2 and 3 show the number of time steps of the initial
phase, the average G-Mean, the effect size A12 against the
dummy approach, and the Scott-Knott.BA12 results during
this period for the OOB approaches on the open source
and proprietary data, respectively. Results for ORB can be
found in the supplementary material. Note that the time
steps corresponding to the initial period (and also the stable
and sudden drop periods) are different for OOB and ORB,
such that we cannot compare these approaches against each
other in these separate periods. A comparison between
these two approaches across all time steps is shown in the
supplementary material.

The initial phase of the open source projects lasted from
461 to 6271 time steps with a median of 1418 when using
OOB (Table 2). This length of time was also considerable
when using ORB, lasting from 900 to 6271 time steps with a
median of 1553. The initial phase of the proprietary projects
was typically much smaller than that of the open source
projects, lasting from 8 to 581 time steps for OOB (Table 3)
and from 62 to 671 time steps for ORB. This is probably
related to the fact that the duration of these projects as a
whole was in general much shorter than that of the open
source projects.

For open source projects, AIO and Filtering ranked the
best for both OOB and ORB according to Scott-Knott.BA12.
A12 effect sizes against WP learning for individual datasets
were typically large. The average G-Means of the AIO
and Filtering approaches were typically higher during the
initial phase than those of the WP approach (absolute im-
provements in G-Mean of up to 44.81% and 53.89%, for
Brackets using Filtering-OOB and AIO-ORB respectively).
For the Filtering approach, the G-Means were better than



11

TABLE 2: Number of initial time steps of the initial phase, average G-Means, A12 effect sizes against the Dummy approach
and Scott-Knott.BA12 ranking to compare OOB-based approaches on this initial phase for open source data

Dataset #Time Steps Dummy WP-OOB AIO-OOB Filter-OOB Ensemble-OOB OP-AIO-OOB OP-Filter-OOB
Tomcat 2006 50 43.62(4.84)[-b] 51.95(1.25)[b] 52.5(0.71)[b] 33.67(0.63)[-b] 53.12(3.28)[b] 52.86(1.15)[b]
JGroups 1268 50 38.6(0.83)[-b] 38.29(0.84)[-b] 39.01(0.75)[-b] 16.64(0.36)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]

Spring-Integration 461 50 27.3(0.12)[-b] 24.28(0.25)[-b] 38.69(0.49)[-b] 19.48(0.22)[-b] 11.15(6.13)[-b] 29.16(6.34)[-b]
Camel 3112 50 46.82(1.71)[-b] 57.75(0.74)[b] 57.07(0.82)[b] 39.42(0.52)[-b] 47.0(1.06)[-b] 46.94(0.96)[-b]

Brackets 1569 50 21.37(0.03)[-b] 64.89(1.32)[b] 66.17(0.74)[b] 46.83(0.91)[-b] 50.46(1.05)[s] 59.45(1.33)[b]
Nova 6271 50 55.42(0.41)[b] 63.15(0.68)[b] 64.39(0.34)[b] 51.66(0.29)[b] 62.55(1.16)[b] 62.88(4.43)[b]

Fabric8 795 50 27.01(0.3)[-b] 51.51(1.42)[b] 58.63(1.57)[b] 40.3(0.69)[-b] 56.57(3.12)[b] 45.52(1.08)[-b]
Neutron 917 50 44.84(5.75)[-b] 73.55(0.99)[b] 67.29(2.45)[b] 55.07(1.1)[b] 67.03(0.41)[b] 73.15(0.7)[b]

Npm 2536 50 26.92(1.1)[-b] 48.37(1.34)[-b] 45.75(1.94)[-b] 42.02(0.34)[-b] 42.89(6.01)[-b] 15.7(1.15)[-b]
BroadleafCommerce 677 50 26.37(0.26)[-b] 50.32(1.55)[*] 53.16(1.99)[b] 37.26(1.58)[-b] 40.29(2.8)[-b] 30.63(3.6)[-b]

Ranking 2 4 1 1 4 3 3

TABLE 3: Number of initial time steps of the initial phase, average G-Means, A12 effect sizes against the Dummy approach
and Scott-Knott.BA12 ranking to compare OOB-based approaches on this initial phase for proprietary data

Dataset #Time Steps Dummy WP-OOB
AIO-OOB
combined

AIO-OOB
proprietary

Filter-OOB
combined

OP-AIO-OOB
combined

OP-AIO-OOB
proprietary

OP-Filter-OOB
combined

C1 284 50 15.76(4.12)[-b] 35.07(3.74)[-b] 15.97(3.9)[-b] 42.5(2.11)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]
C2 581 50 24.62(0.37)[-b] 31.03(0.43)[-b] 32.71(5.38)[-b] 46.82(0.76)[-b] 43.84(1.9)[-b] 5.62(6.26)[-b] 45.33(2.97)[-b]
C3 82 50 8.48(0.0)[-b] 23.36(0.0)[-b] 35.9(0.0)[-b] 8.62(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]
C4 24 50 7.59(0.13)[-b] 18.93(2.73)[-b] 18.63(3.19)[-b] 0.0(0.0)[-b] 20.1(0.14)[-b] 14.47(0.39)[-b] 0.0(0.0)[-b]
C5 8 50 11.62(0.0)[-b] 1.69(2.63)[-b] 31.66(4.57)[-b] 10.14(3.89)[-b] 5.16(6.01)[-b] 1.99(4.52)[-b] 39.83(0.0)[-b]
C6 20 50 3.6(0.0)[-b] 1.8(0.0)[-b] 1.8(0.0)[-b] 1.38(0.77)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]
C7 29 50 1.17(0.0)[-b] 42.76(2.42)[-b] 50.92(3.65)[-s] 0.0(0.0)[-b] 40.61(8.02)[-b] 23.0(10.38)[-b] 0.0(0.0)[-b]
C8 39 50 0.76(0.0)[-b] 5.87(4.91)[-b] 40.16(8.41)[-b] 0.66(0.26)[-b] 16.56(8.28)[-b] 37.57(6.39)[-b] 0.0(0.0)[-b]
C9 62 50 10.44(1.43)[-b] 15.4(6.94)[-b] 25.12(2.67)[-b] 0.55(0.0)[-b] 21.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]

Ranking 1 4 3 2 4 4 4 4

(a) Tomcat (b) Fabric8

Fig. 1: G-Mean for open source datasets through time using
OOB. The vertical red bar indicates the last time step of the
initial phase of the project. The periods highlighted in grey
background are the sudden drop periods.

those of the WP classifiers for the initial period of all open
source datasets. Fig. 1 illustrates some sample results (see
G-Means up to the red vertical line). Other figures are in
the supplementary material. AIO also performed better than
WP except for AIO-OOB on JGroups and Spring-integration.
The Ensemble approach ranked worse than AIO and Filter-
ing, even though it was able to improve over WP when
using ORB according to Scott-Knott.BA12.

The fact that AIO and Filtering ranked best across
datasets means that these approaches typically outper-
form the others. However, this does not mean that they
will always outperform the others. For instance, WP-OOB
performed better than AIO-OOB on JGroups and Spring-
integration at the initial phase. In the case of JGroups, there
were no CP training examples arriving during the initial
period because of the chronological order. So, AIO was
trained only with WP data during this period. Hence, for
JGroups, the predictive performance obtained by WP and

(a) C1 (b) C9

Fig. 2: G-Mean for proprietary datasets through time using
OOB. The vertical red bar indicates the last time step of the
initial phase of the project. The periods highlighted in grey
background are the sudden drop periods.

AIO is very similar.
For Spring-Integration, the initial period is small (461

commits for OOB) and has CP data from only 2 projects
(Tomcat and JGroups). It is possible that these CP projects
are dissimilar to Spring-Integration. A proportion of 82% of
the CP commits in the initial phase of Spring-Integration are
from project JGroups. There are large differences in the input
features of JGroups and Spring-integration. For instance, the
averages of the developers experience (EXP) is 4790 and
1039, of the number of defective commits is 1918 and 123,
and of the time interval between last and current change
(AGE) is 25 and 4.57 in JGroups and Spring-integration,
respectively. This indicates that during this initial period,
the JIT-SDP model is trained with very dissimilar commits,
possibly causing AIO-OOB to perform worse than WP.
Filter-OOB was able to overcome this issue by filtering out
commits that are very dissimilar.

For proprietary projects, AIO-proprietary was better



12

ranked than the WP approach for both OOB and ORB, being
followed by AIO-combined according to Scott-Knott.BA12.
A possible reason why AIO-proprietary performed better
than AIO-combined is the high dissimilarity between the
open source and proprietary projects. Together with the very
small number of WP training examples during the initial
phase, such high dissimilarity can prevent the WP training
examples from playing a significant role when training
the AIO-combined classifiers. This is because they may be
perceived almost as noise by the learning process. When
using AIO-proprietary, there is not only smaller amount of
CP data (enabling the WP data to play a more significant
role), but also those CP data are more similar to WP data
as they are all projects of similar nature. This may enable
the AIO-proprietary approach to learn the underlying defect
generating process better.

AIO-proprietary’s G-Means were better than those of
WP classifiers in the initial phase (absolute improvements
in G-Mean of up to 49.75%, for C7) for most of the datasets
except for datasets C6 (OOB) and C1 (ORB). Filtering with
OOB’s G-Means were lower than WP’s for several datasets
especially where the initial periods were very small (ranging
from 8 to 62). Sample results when it performed better and
worse are shown in Fig. 2. For Filtering with ORB, the G-
Means were better than those of WP classifiers in the initial
phase for all of the proprietary datasets.

It is also interesting to note that AIO performed bet-
ter than Filtering for the proprietary projects. Specifically,
when comparing AIO-OOB combined against Filter-OOB
combined, we can see that filtering itself was detrimental.
It is likely that filtering resulted in the removal of relevant
training examples, which was particularly a problem given
the small length of the initial phase of these datasets.

The G-Means obtained for proprietary datasets were in
general low. As AIO-proprietary performed significantly
better than WP and AIO-combined (see Scott-Knott.BA12
results in Table 3), the CP proprietary data were usually
important for improving predictive performance in the ini-
tial period. Therefore, the small number of CP proprietary
software changes compared to the open source projects is
likely to be part of the reason for the poor G-Means obtained
for the proprietary projects, even though other factors such
as the specific distribution of the WP data may also affect
the G-Mean on individual projects.

The G-Means of all approaches during the initial periods
were relatively poor compared to the stable periods. This is
expected, because the initial period is by definition a period
of time when JIT-SDP classifiers have not yet reached their
typical average G-Mean, i.e., it corresponds to the period of
time when the approaches perform below average. Reach-
ing the average G-Mean value requires training on more
WP data. Despite that, our experiments have shown that
AIO-OOB outperformed other existing approaches during
such periods, having obtained better initial period G-Mean
ranking.

RQ1: The initial phase of the projects had considerably
large length, lasting from 461 to 6271 and from 8 to 582
time steps for the open source and proprietary projects,
respectively. CP data was helpful when there was no or little
WP training data available, in particular when using AIO

approaches for both open source projects and proprietary
projects. Filtering was also top performing for the open
source projects. Absolute improvements in average G-Mean
were up to 53.89%, avoiding extremely low G-Means.

6.3 RQ2: Periods with Sudden Drops in WP Classifier’s
Predictive Performance
In several datasets, after the initial phase, the WP approach
suffered periods of large drops in G-Means. Figs. 1 and
2 show some examples of that highlighted in grey back-
ground. Tables 4 and 5 show further information about the
sudden drop periods suffered by OOB for open source and
proprietary projects, respectively. Other tables and results
for ORB are in the supplementary material.

The periods of sudden drop have considerable length
for the open source projects, covering in total from 1202 to
6009 time steps when using OOB (Table 4) and from 936
to 4408 when using ORB. Due to the shorter duration of
the proprietary projects, the total length of the sudden drop
periods in those projects was smaller, ranging from 210 to
541 time steps for OOB (Table. 5) and 23 to 238 time steps
for ORB.

For open source projects, when using OOB, Filtering was
the best ranked approach, followed by AIO, according to
Scott-Knott.BA12. When using ORB, AIO was top ranked
together with Filtering. Drop periods are likely to occur
as result of concept drifts, meaning that most recent WP
data are dissimilar to past WP data. Filtering out dissimilar
examples may help to focus more on the current concept
being learned, enabling the model to adapt quicker than
with AIO. However, ORB is more robust to concept drift
than OOB, due to its automatically boosted resampling rate
[7]. So it may not always require the extra focus on the
current concept. The Ensemble approach was unable to
consistently perform better than the WP approach across
open source datasets, obtaining the same Scott-Knott.BA12
ranking as the WP approach.

AIO and Filtering outperformed the WP approach in
all open source datasets except Nova during such periods
(absolute improvements of up to 27.17% and up to 29.01%
when using Filtering-OOB and Filtering-ORB, respectively,
for Spring-integration). Fig. 1 shows some examples of that,
highlighted in grey background. As we can see, Filtering
managed to reduce or even eliminate the drops in G-Mean
suffered by the WP approach.

For proprietary projects, Filtering was also better
than the WP, AIO and OP approaches, based on Scott-
Knott.BA12. Therefore, even when using ORB, Filtering
was important during the performance drop periods of the
proprietary projects. The effect size of the Filtering and AIO
approaches against WP were frequently large. The absolute
improvements in average G-Mean over the WP approach
were up to 37.35% for OOB when using AIO-combined
and up to 30.34% for ORB when using Filtering-ORB (for
C8). Fig. 2 shows some examples of results achieved by
Filtering, where it is clear that this approach outperformed
the WP approach. The AIO approach also outperformed WP
approach in most of the datasets. AIO-combined achieved
better results than AIO-proprietary when using OOB, but



13

TABLE 4: Total number of time steps of the performance drop periods, average G-Means, A12 effect sizes against the
Dummy approach and Scott-Knott.BA12 to compare approaches using OOB for open source data during the drop periods

Dataset #Time Steps Dummy WP-OOB AIO-OOB Filter-OOB Ensemble-OOB OP-AIO-OOB OP-Filter-OOB

Tomcat 3855 50 48.52(1.17)[-b] 58.86(0.72)[b] 60.22(1.0)[b] 52.26(0.32)[b] 36.42(6.24)[-b] 43.81(1.44)[-b]
JGroups 4353 50 43.95(1.44)[-b] 48.01(1.05)[-b] 48.08(0.89)[-b] 31.41(0.5)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]

Spring-Integration 3973 50 32.98(0.7)[-b] 59.01(0.53)[b] 60.15(0.97)[b] 45.68(0.43)[-b] 52.05(5.34)[s] 34.89(4.74)[-b]
Camel 6009 50 53.15(1.68)[b] 56.17(0.98)[b] 57.0(0.92)[b] 52.4(0.41)[b] 50.09(1.54)[*] 50.68(0.69)[b]
Nova 4427 50 66.99(0.06)[b] 66.99(0.18)[b] 66.85(0.26)[b] 57.19(0.66)[b] 65.4(3.73)[b] 67.1(6.49)[b]

Fabric8 3443 50 53.79(2.18)[b] 56.34(0.76)[b] 65.57(1.04)[b] 53.98(0.4)[b] 23.23(6.54)[-b] 24.48(6.65)[-b]
Npm 1202 50 38.64(1.95)[-b] 62.97(1.47)[b] 65.37(1.25)[b] 51.13(0.62)[b] 44.42(7.52)[-s] 17.36(3.61)[-b]

BroadleafCommerce 3579 50 50.18(0.55)[s] 67.39(1.05)[b] 66.05(0.66)[b] 54.38(0.25)[b] 52.72(1.17)[b] 56.08(2.43)[b]
Ranking 3 3 2 1 3 4 4

TABLE 5: Total number of time steps of the performance drop periods, average G-Means, A12 effect sizes against the
Dummy approach and Scott-Knott.BA12 to compare approaches using OOB for proprietary data during the drop periods

Dataset #Time Steps Dummy WP-OOB
AIO-OOB
combined

AIO-OOB
proprietary

Filter-OOB
combined

OP-AIO-OOB
combined

OP-AIO-OOB
proprietary

OP-Filter-OOB
combined

C1 452 50 32.27(4.27)[-b] 41.37(1.45)[-b] 43.4(4.45)[-b] 46.66(1.08)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]
C3 210 50 42.79(1.72)[-b] 47.75(1.31)[-b] 39.1(1.42)[-b] 52.17(1.3)[b] 0.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]
C4 249 50 33.0(0.95)[-b] 51.47(1.74)[b] 60.05(2.89)[b] 56.78(1.76)[b] 57.74(1.11)[b] 47.1(1.74)[-b] 51.35(0.0)[b]
C6 466 50 21.34(1.35)[-b] 43.64(1.49)[-b] 45.89(5.02)[-b] 44.32(1.98)[-b] 43.53(0.41)[-b] 37.47(0.18)[-b] 45.1(0.47)[-b]
C7 255 50 25.74(1.19)[-b] 41.5(5.94)[-b] 32.34(1.51)[-b] 40.34(1.02)[-b] 50.43(2.6)[-*] 36.26(0.52)[-b] 30.73(0.4)[-b]
C8 287 50 7.3(0.89)[-b] 44.65(0.96)[-b] 34.6(5.43)[-b] 40.14(1.82)[-b] 44.3(1.81)[-b] 45.49(9.63)[*] 25.57(8.7)[-b]
C9 541 50 31.75(1.77)[-b] 51.34(1.76)[b] 50.08(2.77)[s] 53.25(1.58)[b] 40.3(5.22)[-b] 34.92(3.87)[-b] 34.36(0.55)[-b]

Ranking 1 5 3 4 2 4 5 5

similar when using ORB. This shows that open source data
can sometimes help to improve predictive performance on
proprietary projects during sudden drop periods.

Given that existing literature indicates that JIT-SDP suf-
fers from concept drift [8], it is likely that WP classifiers
suffer drops in performance due to changes in the char-
acteristics of WP training data over time. However, in CP
learning, training data comes from different projects. Some
of the CP training data may have similar distribution as the
target project currently has, helping to reduce the negative
effect of differences in the distribution over time. This is a
potential reason for CP data (including mixed proprietary
and open source data) to be helpful in case of sudden
performance drops.

Interestingly, the Filtering approach typically achieved
better results than the AIO approach during the sud-
den drop periods. Improvements in G-Means achieved by
Filtering-OOB compared to AIO-OOB were up to 9.21%
(for Fabric8) for open source and up to 13.16% (for C3)
for the proprietary data. This suggests that even though
CP data may prevent performance drops resulting from
changes in characteristics of the data, it might introduce
other performance drops due to the use of too dissimilar
CP data. This indicates that filtering dissimilar instances
can be particularly helpful to reduce or prevent sudden
drops of performance, which has not been captured by the
offline JIT-SDP literature when they concluded that AIO and
Filtering approaches perform similarly [6]. Unlike in the
initial period, CP approaches benefited from a combination
of both open source and proprietary data during drop
periods, specially for OOB, where combined data outper-
formed proprietary-only approaches both through Filtering
and AIO. This suggests that the diversity of data from
multiple sources may help with dealing with concept drift
in JIT-SDP.

Brackets, Neutron, C2 and C5 did not present drops
in predictive performance. Together with the fact that no
large sudden changes in the values of the input features

were found for these projects over time, we believe that
these projects are more stable than the others, being less
negatively affected by concept drift.

RQ2: The periods of sudden drop in performance were
of considerable length, covering in total from 936 to 6009
time steps for open source, and from 23 to 541 time steps
for proprietary data. CP approaches frequently helped to
reduce or even prevent sudden drops in G-Mean compared
to WP approaches, with absolute improvements of up to
37.35% during such periods. Filtering was the top ranked
approach across datasets.

6.4 RQ3: Effects of CP Data on the Predictive Perfor-
mance During Stable Periods of The Projects

Tables 6 and 7 show information about the stable periods
for the open source and proprietary projects, respectively,
when using OOB. Tables for ORB are in the supplementary
material.

The smallest and largest total length of stable periods for
open source projects are 4182 and 38291 for OOB (Table 6),
and 5490 and 38310 for ORB. For proprietary projects, they
are 20 and 472 for OOB (Table 7) and 19 and 486 for ORB.
Due to the long duration of the open source projects, it
is expected that their stable periods are longer than the
periods of sudden drop in performance, even though the
periods of sudden drop are still considerable periods worth
addressing. For the proprietary data, the stable periods were
short compared to the sudden drop periods. Possibly, due
to the relatively small number of software changes in the
proprietary projects, the whole period of time covered by
the proprietary projects is more unstable.

Given the length of time covered by stable periods, it is
important that the better results obtained by CP approaches
during the initial and sudden drop periods are not counter-
acted by poor performance during stable periods.



14

TABLE 6: Number of time steps of the stable periods, and average G-Means, A12 effect sizes against the Dummy approach
and Scott-Knott.BA12 to compare OOB-based approaches on stable periods for open source data

Dataset #Time Steps Dummy WP-OOB AIO-OOB Filter-OOB Ensemble-OOB OP-AIO-OOB OP-Filter-OOB

Tomcat 13046 50 62.69(0.81)[b] 61.36(0.5)[b] 63.36(0.64)[b] 50.57(0.22)[b] 39.68(6.07)[-b] 45.23(1.56)[-b]
JGroups 12704 50 60.08(0.66)[b] 58.74(0.72)[b] 58.51(0.54)[b] 38.8(0.3)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]

Spring-Integration 4316 50 64.86(1.01)[b] 65.99(0.35)[b] 66.96(0.77)[b] 56.02(0.33)[b] 55.88(8.08)[b] 45.51(8.94)[-*]
Camel 21454 50 67.33(0.56)[b] 64.48(0.67)[b] 65.05(0.62)[b] 54.61(0.35)[b] 41.45(1.55)[-b] 41.52(1.26)[-b]

Brackets 15795 50 68.27(0.12)[b] 71.44(0.48)[b] 71.38(0.42)[b] 64.25(0.54)[b] 38.19(13.68)[-b] 66.67(0.36)[b]
Nova 38291 50 79.84(0.26)[b] 82.03(0.21)[b] 81.54(0.2)[b] 68.72(0.79)[b] 73.99(16.63)[b] 75.19(0.5)[b]

Fabric8 8868 50 65.0(0.77)[b] 63.53(0.62)[b] 67.64(0.64)[b] 54.15(0.4)[b] 26.11(4.94)[-b] 28.23(4.47)[-b]
Neutron 18605 50 81.13(0.27)[b] 81.87(0.23)[b] 82.22(0.25)[b] 68.93(1.5)[b] 74.53(1.79)[b] 71.53(3.95)[b]

Npm 4182 50 59.52(1.71)[b] 64.96(0.63)[b] 66.49(0.99)[b] 55.3(0.46)[b] 29.24(2.24)[-b] 40.11(1.15)[-b]
BroadleafCommerce 10754 50 65.96(1.12)[b] 70.73(0.62)[b] 70.13(0.55)[b] 59.55(0.2)[b] 54.26(0.8)[b] 60.42(1.07)[b]

Ranking 4 2 1 1 3 5 4

TABLE 7: Number of time steps of the stable periods, and average G-Means, A12 effect sizes against the Dummy approach
and Scott-Knott.BA12 to compare OOB-based approaches on stable periods for proprietary data

Dataset #Time Steps Dummy WP-OOB
AIO-OOB
combined

AIO-OOB
proprietary

Filter-OOB
combined

OP-AIO-OOB
combined

OP-AIO-OOB
proprietary

OP-Filter-OOB
combined

C1 294 50 49.55(1.47)[-*] 43.65(2.33)[-b] 43.4(6.94)[-b] 45.75(2.02)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]
C2 20 50 64.59(0.23)[b] 52.86(1.75)[b] 55.58(2.72)[b] 59.42(0.62)[b] 36.49(0.93)[-b] 2.8(3.22)[-b] 37.36(1.46)[-b]
C3 125 50 54.54(1.05)[b] 54.01(0.43)[b] 33.69(2.6)[-b] 57.0(0.61)[b] 0.0(0.0)[-b] 0.0(0.0)[-b] 0.0(0.0)[-b]
C4 68 50 45.72(1.21)[-b] 53.4(1.23)[b] 56.98(4.85)[b] 27.16(8.92)[-b] 46.76(0.61)[-b] 44.62(2.6)[-b] 21.15(0.0)[-b]
C5 315 50 23.2(0.43)[-b] 46.55(1.35)[-b] 42.6(0.99)[-b] 49.93(1.71)[-s] 44.14(5.2)[-b] 49.53(2.92)[-s] 41.15(4.14)[-b]
C6 69 50 41.71(0.64)[-b] 43.05(0.65)[-b] 49.84(2.73)[-*] 41.83(3.36)[-b] 24.67(0.34)[-b] 14.76(0.07)[-b] 21.1(0.26)[-b]
C7 262 50 45.55(1.0)[-b] 52.02(5.6)[s] 52.62(2.11)[b] 52.35(2.27)[b] 57.67(1.5)[b] 52.6(1.18)[b] 40.38(0.7)[-b]
C8 472 50 26.13(0.22)[-b] 55.16(0.91)[b] 47.01(3.71)[-b] 40.38(1.65)[-b] 45.29(1.94)[-b] 48.99(5.2)[s] 41.14(2.6)[-b]
C9 91 50 49.63(1.59)[-b] 56.46(2.26)[b] 59.12(6.12)[b] 46.6(2.06)[-b] 29.03(2.98)[-b] 8.62(1.08)[-b] 14.33(2.11)[-b]

Ranking 2 3 1 2 3 4 5 5

Except for the Ensemble approach, Scott-Knott.BA12
shows that all CP approaches performed at least as well as
the WP approach across datasets during the stable periods.
This was the case both when adopting OOB and ORB,
for both open source and proprietary data. This is very
encouraging, as it shows that the G-Mean improvements
achieved by Filtering and AIO during the initial and sudden
drop periods are not cancelled out by worse G-Mean during
stable periods.

For the open source data, according to Scott-Knott.BA12,
both AIO and Filtering approaches were ranked the best for
OOB and ORB during stable periods in terms of G-Mean.
Moreover, except for Ensemble, the CP approaches were
frequently able to outperform the WP approach in terms
of G-Mean during the stable period, though by a smaller
amount than they did for the initial and sudden drop
periods. The Filtering approach performed up to 6.97% (for
Npm) and 8.39% (for Spring-integration) better compared to
the WP approach for OOB (Table 6) and ORB, respectively.

For proprietary data, according to Scott-Knott.BA12,
AIO-OOB-combined was ranked the best for OOB (Table 7).
The largest improvement in G-Mean compared to WP ap-
proaches was achieved by AIO-OOB-combined, which had
an improvement of 29.03% for C8. When using ORB, Filter-
ing was the top ranked approach. Filtering-ORB achieved
G-Mean improvements of up to 15.92% (for C8).

Filtering was helpful for open source projects, but not
so much for proprietary projects, where Filtering-OOB per-
formed similar to WP-OOB. Therefore, the more competitive
performance achieved by Filtering compared to AIO during
the sudden drop periods can possibly be counteracted by
less competitive results during stable periods compared to
AIO. Nevertheless, it is worth reiterating that both Filtering
and AIO performed at least as well as the WP approach

during the stable periods across datasets, and that both of
them outperformed WP approaches during the periods of
sudden drop, based on Scott-Knott-BA12.

Although the Ensemble approach performed similar to
the WP approach for initial and drop periods, it was worse
for stable periods. A further analysis of the results obtained
by each classifier within the ensemble reveals that their
individual G-Means were not high, which resulted in the
poor G-Mean of the ensemble as a whole. This could be due
to lack of enough training data for the individual classifiers,
given that each classifier in the ensemble is trained with
data from one project. This suggests that the larger amount
of varied data to train a model was crucial to improve
predictive performance in online JIT-SDP. It also explains
why the Ensemble approach worked in previous offline
mode but not in online mode, as in offline mode chronology
would have been ignored, enabling each base model to
be trained with larger amounts of data that would not
have been available in practice. In addition, these results
suggest that using a weighted ensemble instead of simple
votes as in this study would also unlikely work well. This
kind of strategy would emphasise the individual models
that perform best for the project being predicted, but if all
models underperform, emphasising the best models would
not help in this case.

RQ3: Except for the Ensemble approach, CP approaches
performed at least as well as WP approaches in terms of
G-Mean during stable periods. In particular, Filtering with
ORB obtained up to around 8.39% improvement in G-Mean
for open source data and AIO-OOB-combined achieved up
to 29.03% absolute improvement in G-Mean for proprietary
data than the WP approach during such periods.



15

6.5 RQ4: The Need for Updating CP Approaches Over
Time

In traditional offline JIT-SDP, models are built with only CP
training data and are never updated with new incoming
training data over time once they start predicting. Such
OP approaches have been successful in achieving similar
predictive performance to WP approaches in the offline
learning literature [6]. Even though there has been work on
online JIT-SDP [7], [30], it is unclear whether OP approaches
would perform well enough such that online learning is
after all unnecessary. In particular, if OP approaches trained
on data received before a given project perform well enough
when making predictions in realistic online scenarios, then
it would be unnecessary to update CP or WP models over
time with incoming WP examples. It would be sufficient for
the model to be trained just once with all the available CP
data in offline mode.

We investigated this using a JIT-SDP OP model only with
CP data that are available until the first WP instance arrives.
Once the first WP instance arrives for prediction, training
of the OP model is ceased. Comparing the results between
OP and CP approaches during initial period, drift period
and stable period will provide a better understanding of
the necessity of updating CP approaches over time. There
are several cases when OP approaches have G-Mean of
zero. This happened because the OP model did not have
enough training data. When calculating differences in G-
Mean between OP and CP, these cases are excluded because
they may not reflect the actual magnitude of improvement.

During initial phase, for open source data, the OP AIO
and Filtering approaches usually performed worse than
the AIO and Filtering approaches (Table 2). CP approaches
obtained absolute G-Mean improvements of up to 32.15%
(AIO-ORB for Nova) for open source data and up to 35.02%
(AIO-ORB-proprietary for C9) for proprietary data during
this period, when compared to OP approaches. However,
OP’s G-Means were frequently better than those of WP
classifiers in the initial phase. This is supported by the Scott-
Knott.BA12 which ranked the OP-AIO and OP-Filtering
better (third) than WP (fourth) for OOB (Table 2). For
proprietary data, when using OOB, whereas Filtering out-
performed the WP approach according to ScottKnott.BA12,
all OP approaches performed similarly to WP approaches.
In general, we can see that performing online CP learning
over time is important to improve G-Means in the initial
period, even though data from other projects was also useful
to improve G-Means over WP approaches through OP.

During the sudden drop periods, CP approaches ob-
tained absolute improvements in G-Mean of up to 48.16%
(Filter-OOB for Npm) compared to OP for open source
data, and up to 23.9% (AIO-ORB-proprietary for C9) for
proprietary data. While AIO and Filtering were very suc-
cessful in preventing sudden drops in predictive perfor-
mance suffered by the WP approach for the open source
data, the OP approaches did not perform so well during
these periods, being ranked worse than the WP approach
based on Scott-Knott.BA12 (Table 4). The OP results were
a bit more competitive for the proprietary data (Table 5),
but still not in the top ranked group. These results show
that OP data are not enough. Possibly, even though OP data

may be prepared to reduce the sudden drop in predictive
performance caused by concept drifts, in general it cannot
learn well the underlying defect generating process of the
project of interest, due to the lack of data coming from
it. This suggests that the combined use of WP and data
from other projects is important to prevent sudden drops
in predictive performance.

For stable periods, OP approaches ranked worse than all
CP and WP approaches for both open source and propri-
etary data (Tables 6 and 7). There were also some datasets
(Fabric8 and Npm for OOB) where the differences in G-
Means between OP and WP approaches were quite large.
CP approaches obtained absolute G-Mean improvements
of up to 41.25% (AIO-ORB for Nova) compared to OP for
open source data, and 37.94% (AIO-OOB-proprietary for C9)
for proprietary data during the stable period. These results
further confirm that using OP data is not enough to achieve
good predictive performance in JIT-SDP when considering
realistic online learning scenarios. For JGroups dataset, OP
approaches obtained G-Mean of zero. This is because the
first change of this project was created before any training
data from other projects was available. Hence, the models
were not trained, resulting in them always predicting the
non-defect inducing class, which led to a G-Mean of zero.

Overall, these results suggest that a combination of CP
and WP data is important to improve predictive perfor-
mance in JIT-SDP. Using only WP data can lead to very poor
performance during the initial phase of the projects, and
severe drops in predictive performance over time. Using
only OP data can help during the initial period, but overall is
not enough to achieve competitive results. Tables 7 and 8 of
the supplementary material contain a further comparison of
all approaches across the whole data streams formed by the
projects. It confirms that OP approaches are not well ranked
in terms of G-Mean when considering the data streams as
a whole. OP approaches performed up to 39.36% (for Nova
with ORB) and 36.64% (for C9 with ORB) worse compared
to corresponding CP approaches across all time steps.

Online approaches can make use of both CP and WP
incoming data whereas OP approaches only train with data
from other projects. As a result, online approaches use
more training data than OP approaches, which contributes
towards better predictive performance. The presence of WP
data is also important along with larger amount of data.
This can be realised when we observe the experiments with
proprietary projects as proprietary projects have very small
amount of WP data and their predictive performance was
much worse. This indicates that data from other projects
help, but we still need WP data. Therefore, online ap-
proaches achieved better predictive performance compared
to OP approaches most of the time.

RQ4: CP approaches achieved absolute G-Mean improve-
ments of up to 32.15%, 48.16% and 41.25% for open source
data and up to 35.02%, 23.9% and 37.94% for proprietary
data compared to OP approaches during initial, sudden
drop and stable periods respectively. This highlights the im-
portance of updating the JIT-SDP model with CP (including
WP) data received over time.



16

7 SENSITIVITY ANALYSIS

Filtering and AIO were the most competitive approaches
according to our experiments. Filtering should be preferred
over AIO especially if one wants to strongly focus on
prevention of sudden drops in G-Mean. However, Filtering
has more hyperparameters to be tuned than AIO, and it is
unclear how these hyperparameters affect its performance.
To avoid loosing such advantage, it is important to under-
stand the effect of these hyperparameters better. We will
focus on Filtering-OOB, as overall it achieved similar or
better rankings than Filtering-ORB (see Tables 7 and 8 of
the supplementary material). Results for Filtering-ORB can
be found in the supplementary material.

To investigate this, Analysis of Variance (ANOVA) was
performed to analyse the influence of each hyperparam-
eter as well as their interactions with each other on the
average G-Mean. The following within-subject factors are
investigated: windowSize ∈ {500, 700, 1000}, number of
top short distances to be used K ∈ {50, 100, 200}, dis-
tance threshold for similarity maxDist ∈ {0.6, 0.7, 0.8}
and maximum size of the queue of dissimilar CP instances
cpqSize ∈ {500, 1000}. The dataset is a between-subjects
factor. Therefore, a Split-Plot (mixed) ANOVA design was
used. Mauchly’s sphericity test were adopted with a level of
significance of 0.05 to evaluate whether or not the spheric-
ity assumption is violated. If violated, Greenhouse-Geisser
corrections were adopted to take that into account. Partial
eta-squared η2p was used as a measure of effect size.

The analysis was based on Filtering-OOB with six
datasets: JGroups, Fabric8 and Neutron (for open source)
and C5, C6 and C8 (for proprietary data). These datasets
were chosen because they are the open source and propri-
etary datatsets where this approach achieved the best, worst
and average G-Mean values, respectively. Thirty runs for
each combination of hyperparameter values were carried
out on each dataset.

Table 8 shows the sensitivity analysis for the open source
projects with OOB. Several factors and interactions have
large (η2p ≥ .244) effect size. Many of them involve the
factors K , maxDist and their interaction with dataset. There-
fore, we examine them further through Fig. 3. From this
figure we can see that despite the choice of hyperparameters
leading to significantly different G-Means, such differences
did not have large magnitude except for Fabric8. Therefore,
in general, small K with small maxDist led to top or close
to top G-Means for the open source projects, even when
this combination of values did not lead to the best G-Mean
values. Smaller K means that Filtering can use examples
for training so long as they are similar to a small number
of recent WP software changes. Small maxDist means that
the similarity measure is more strict, not allowing very
dissimilar training examples. Small K with small maxDist
also led to top or close to top G-Means when using ORB.

The hyperparameter values selected based on the grid
search used for hyperparameter tuning in Section 5.5 gener-
ally matched the best hyperparameter values obtained in the
sensitivity analysis. This indicates that the hyperparameter
tuning procedure worked well for the open source projects.

Table 9 shows the sensitivity for proprietary
projects with OOB. Hyperparameters maxDist, K ,

TABLE 8: ANOVA and Effect Size Results for Open Source
Data

Within Subject Test for Filtering-OOB (Open Source Data)
Factor/Int. SS DF MS F η2p
K*Dataset 1791.279 4 447.82 2038.001 0.979
K 905.532 1.815 498.873 2060.511 0.959
maxDist*Dataset 304.904 4 76.226 363.86 0.893
K*maxDist*Dataset 326.35 8 40.794 248.202 0.851
windowSize*K*Dataset 254.511 8 31.814 168.637 0.795
K*maxDist 213.227 4 53.307 324.334 0.788
windowSize*Dataset 124.758 4 31.189 160.438 0.787
windowSize*K 242.986 3.467 70.079 322.001 0.787
windowSize 101.327 1.806 56.103 260.612 0.75
windowSize * maxDist * Dataset 60.926 8 7.616 39.002 0.473
windowSize*K*maxDist*Dataset 116.255 16 7.266 38.747 0.471
windowSize*K*maxDist 112.351 8 14.044 74.891 0.463
windowSize*maxDist 36.793 4 9.198 47.106 0.351
maxDist 11.785 2 5.893 28.128 0.244
K*maxDist*cpqSize 7.657 4 1.914 11.486 0.117
K*maxDist*cpqSize*Dataset 7.695 8 0.962 5.772 0.117
windowSize*K*cpqSize*Dataset 8.666 8 1.083 5.527 0.113
K*cpqSize*Dataset 3.712 4 0.928 4.284 0.09
maxDist*cpqSize*Dataset 3.019 4 0.755 3.226 0.069
windowSize*cpqSize*Dataset 1.642 4 0.411 2.825 0.061
maxDist*cpqSize 1.498 1.725 0.869 3.202 0.036
windowSize*maxDist*cpqSize 0.757 3.596 0.21 0.988 0.011
windowSize*cpqSize 0.171 2 0.085 0.588 0.007
K*cpqSize 0.271 2 0.136 0.626 0.007

Between Subject Test for Filtering-OOB

Dataset 56.040
×104

2 28.020
×104

122.836
×104

1

TABLE 9: ANOVA and Effect Size Results for Proprietary
Data

Within Subject Test for Filtering-OOB (Proprietary Data)
Factor/Int. SS DF MS F η2p

maxDist*dataset 35880.183 4 8970.046 3254.373 0.986
K*dataset 7718.661 4 1929.665 729.317 0.942

K*maxDist*dataset 4795.522 8 599.44 232.216 0.838
maxDist 1289.891 2 644.946 233.989 0.722

K 1076.273 1.858 579.372 203.389 0.693
K*maxDist 989.154 3.577 276.565 95.796 0.516

cpqSize*dataset 44.216 2 22.108 6.963 0.134
cpqSize 33.326 1 33.326 10.497 0.104

maxDist*cpqSize 56.189 2 28.095 8.667 0.088
maxDist*cpqSize*dataset 55.978 4 13.995 4.317 0.088

K*cpqSize*dataset 34.787 4 8.697 2.972 0.062
K*maxDist*cpqSize 63.415 3.472 18.265 5.56 0.058

Between Subject Test for Filtering-OOB
dataset 74431.101 2 37215.55 14019.740 0.997

interaction between K*maxDist, maxDist*dataset and
K*maxDist*dataset had very large effect size (η2p ≥ .516)
compared to the other hyperparameters and interactions,
whose effect sizes were always η2p ≤ .134. As the largest
effect sizes involve hyperparameters maxDist, K and
their interaction with dataset, we also examine them further
through Fig. 4.

From this figure, we can see that the magnitudes of the
differences in G-Mean were larger than for the open source
projects. This suggests that Filtering becomes more sensi-
tive to hyperparameter choice when dealing with smaller
datasets. Larger values of K usually led to top or close to
top G-Means. A larger K requires CP training examples
to be similar to a larger number of WP examples. This
may have helped the learning process to focus more on
learning the core aspects of the current defect generating
process, which are shared by a larger proportion of WP
training examples. As the number of WP training examples
is small in the proprietary datasets, such additional focus
may be important. The results for different values of maxDist



17

(a) Effect of K ∗maxDist with
Fabric8

(b) Effect of K ∗maxDist with
JGroups

(c) Effect of K ∗maxDist with
Neutron

Fig. 3: Plots of Marginal Means for Filtering-OOB’s Factors
K , maxDist and dataset (Opensource data).

(a) Effect of K ∗maxDist with
C5

(b) Effect of K ∗maxDist with
C6

(c) Effect of K ∗maxDist with
C8

Fig. 4: Plots of Marginal Means for Filtering-OOB’s Factors
K , maxDist and dataset (Proprietary data).

were varied, indicating that this hyperparameter was more
dependent on the characteristics of specific datasets. The
findings for ORB were similar for K , but large maxDist led
to good results in all datasets when using ORB.

The best values of hyperparameter maxDist selected by
the grid search were either small or large for datasets C5, C6
and C8, which aligns with the above finding. The value of
hyperparameter K selected by the grid search was not large
for datasets C5 and C6. This means that Filtering was able to
achieve competitive results using sub-optimal K value, and
it is possible for it to achieve better predictive performance
for these datasets if this parameter is better tuned for the
dataset of interest.

It is worth noting that the hyperparameter tuning done
in this paper was based on G-Mean, so as to achieve a
good trade-off between Recall0 and Recall1. However, one
could focus on another performance metric should they
wish to focus more on a specific class. For instance, they
could focus on Recall0 (or false positive rate) to target a
given pre-defined false positive rate such as the value of

30% suggested in [45]. We have performed an additional
investigation to check whether different hyperparameter
configurations could enable to tune the false positive rate of
the approaches. In 8 out of 10 open source datasets, at least
one of these configurations led to an average overall false
positive rate that is close to 30%: Spring-Integration: 21.63%,
Neutron: 25.73%, Tomcat: 27.45%, BroadLeaf: 29.54%, Nova:
29.67%, Brackets: 29.79%, Fabric8: 33.79%, JGroups: 34.08%,
Camel: 39.61%, Npm: 40.34%.

The hyperparameter sensitivity analysis suggests that the G-
Mean obtained by Filtering is more sensitive to hyperparam-
eters when the datasets are smaller. Smaller/larger values
for K may be preferable for larger/smaller datasets for the
purpose of improving G-Mean. While smaller maxDist led
to acceptable G-Means on the larger datasets, the choice
of maxDist was very dependent on the dataset and/or
underlying machine learning algorithm when the dataset
was small.

8 ANALYSIS OF COMPUTATIONAL COST

Table 10 shows total average runtime of AIO, Filter, OP-AIO
and OP-Filter with OOB in columns 2–5, computed across 5
runs for 3 open source projects on an Intel(R) Xeon(R) CPU
E5-2690 v3 at 2.60GHz and 16Gb of RAM. Tomcat, Npm and
Brackets were chosen as they have small, medium and large
number of OP projects, respectively.

The total runtime of the OP approaches is mostly spend
for training prior to the beginning of the project being pre-
dicted. The total runtime of the AIO and Filter approaches
includes both such prior training and the training per-
formed over time, with training examples generated after
the target project commenced. As we can see, updating
the JIT-SDP classifier with additional training examples
received over time leads to large increases in the total
runtime in the AIO and Filter approaches compared to the
OP approaches. The Filter approaches are slower than their
corresponding AIO approaches, because they require the
training process to compare the similarity between software
changes to decide which training examples to filter out.

Nevertheless, the runtime of all approaches is actually
very small compared to the number of software changes
being learned. Columns 7–10 of Table 10 list the average run-
time per year and per day for the AIO and Filter approaches.
This value is computed by dividing the runtime spent after
the target project commenced by the duration of the target
project in years and days, respectively. This is done because
the learning process of these approaches occurs continu-
ously over time. OP was not included as all its training
process is spent before the target project commences. We can
see that the highest runtimes are 17.067 and 506.6 seconds
per year for AIO and Filter, respectively. They correspond
to only 0.05 and 1.39 seconds per day, respectively. As these
runtimes are very small, these approaches can be used in
practice without causing much computational overhead.

Overall, Filter and AIO had much higher computational cost
than the OP approaches. However, such higher computa-
tional cost is still very small (less than 1.5 seconds per day).



18

TABLE 10: Runtime Analysis of CP Approaches

Dataset AIO- Filter- OP-AIO- OP-Filter- Duration Runtime Runtime Runtime Runtime # Training Examples
OOB OOB OOB OOB (year) Per Year Per Year Per Day Per Day After Target Project Starts

(s) (s) (s) (s) (AIO) (Filter) (AIO) (Filter) (For AIO and Filter)
Tomcat 98.8 2414.6 3 4.6 11.7 8.188 205.983 0.02 0.56 227286

Brackets 111 3185.6 8.6 146 6 17.067 506.6 0.05 1.39 166978
Npm 102.6 3358.8 3.4 51.8 8.16 12.157 405.27 0.03 1.11 204398

9 IMPLICATIONS TO PRACTICE

Our work has practical implications as described below:

• Our study demonstrates the importance of the
amount of training data, with both WP and CP data
being important to improve JIT-SDP. Practitioners
should consider collecting large amounts of both CP
and WP training data when adopting JIT-SDP.

• The G-Means obtained by all JIT-SDP approaches
were low on the proprietary projects, due to the
small number of WP software changes that can be
used as training examples in these projects. There-
fore, if a software development company expects
their projects to be very small like the proprietary
software projects used in this study, current JIT-SDP
approaches may not be recommended.

• In online JIT-SDP, if practitioners use CP data (along
with WP data), this can help improving the perfor-
mance of the model at the initial phase of a project.
This can help practitioners to use JIT-SDP earlier
during the development of a project (RQ1,RQ4).

• WP models can suffer performance drops which
cause them to be unsuitable during certain peri-
ods of time. These drops mean that, at any given
point in time, models may be performing very well
or very poorly, being unreliable for practitioners.
Using CP data (along with WP data) can help to
overcome this issue by preventing or reducing such
drops, enabling practitioners to more continuously
use JIT-SDP throughout the lifetime of the project
(RQ2,RQ4).

• The use of CP (along with WP data) also improves
predictive performance of JIT-SDP during stable pe-
riods (RQ3,RQ4). Therefore, the benefits provided by
CP data during the initial and sudden drop periods
are not cancelled out by poor predictive performance
during stable periods. This further confirms that CP
approaches could be adopted throughout the soft-
ware development process.

• In practice, it is not possible to know beforehand how
long the initial period will last, or whether we are
currently in a performance drop period. In particular,
tracking predictive performance over time will not
enable practitioners to know that. Due to verification
latency, any tracking of the predictive performance
over time in practice would have a delay of “waiting
time” days. This means that the performance being
calculated “now” by practitioners would correspond
to the performance obtained “waiting time” days
ago. Therefore, it is important to adopt an approach
that is competitive during the stable periods, while
not being so negatively affected during the initial or
drop periods. As shown in Sections 6.2 to 6.5, the

proposed approaches AIO and Filtering achieved the
best results in terms of that.

• Practitioners may still wish to track such predictive
performance over time despite the delay caused by
verification latency. Once the drop in performance
is noticed, practitioners may opt for stopping to
use JIT-SDP until an improvement in performance
is noticed. The caveat is that this also means that
a JIT-SDP model that is good will only start being
used “waiting period” days after its predictive per-
formance becomes suitable. A similar caveat occurs
when monitoring the performance during the initial
phase to decide when to start using the JIT-SDP
classifier. An alternative strategy for the initial phase
is to start using the JIT-SDP classifiers after 1418
software changes have been produced, as this was
the median length of the initial phase according to
Table 2. After this length, JIT-SDP classifiers are likely
to perform better. Even though this number will not
work for all projects, it is a suitable strategy if used
together with an approach such as AIO and Filtering,
which reduce the risk of underperforming a dummy
classifier during this period.

10 THREATS TO VALIDITY

Internal validity: Each approach for each dataset with each
classifier has been executed 30 times to mitigate threats to
internal validity. Also, results can be influenced by hyperpa-
rameter choices. To ensure a fair comparison, a grid search
was performed on a set of possible values for the hyper-
parameters of each approach based on an initial portion of
the data stream (see Section 5). All approaches take veri-
fication latency into account and fully respect chronology.
There is some chance that the author timestamps used to
chronologically order the data contain errors resulting from,
e.g., misconfigured clocks or problems when converting old
repositories into GitHub. However, such issues tend to affect
a very small proportion of commits [34], being unlikely to
negatively affect our analyses. An additional threat is the
use of Commit Guru to collect labelled software changes.
This tool is based on SZZ, which can lead to label noise
[46]. This threat is partly mitigated by the finding that the
performance reductions caused by the mislabeling incurred
by the original SZZ algorithm are not significant compared
to the most recent SZZ version [46]. However, even the most
recent SZZ version is likely to incur some label noise.

Construct validity: This work is mainly based on G-
Mean as an evaluation metric. Recall0 and Recall1 are also
reported in the supplementary material. Predictive perfor-
mance is calculated in a prequential way with fading factor
to discount older information across time, so that plots of
predictive performance reflect the variations in predictive



19

performance observed over time. G-Mean with fading factor
is a widely used metric appropriate for class imbalance
learning [9]. Even though G-Mean has been criticised in
[37], such criticism does not affect the comparisons between
classifiers on the same datasets.

Statistical conclusion validity: Scott-Knott test was run
with non-parametric bootstrap sampling considering A12
effect size to avoid concluding that there is a difference in
predictive performance when this difference is likely to be
irrelevant due to insignificant effect size.

External validity: This study used 10 open source projects
and 9 proprietary projects of various characteristics such as
programming language, starting date, number of commits
per day, etc. As with any study involving machine learning,
the results may not generalise to other types of projects. This
study is based on the threshold-dependent performance
metric G-Mean. Other threshold values could be used to
increase recall on one class at the cost worsening the recall
on the other class. As we have adopted OOB and ORB to
increase recall on the minority class while attempting not to
worsen recall on the majority class too much, we have kept
the default threshold of 0.5. Conclusions may not generalise
to other threshold values.

11 CONCLUSIONS

This study provided the first investigation of CP learning
for JIT-SDP in a realistic online learning scenario, using
both open source and proprietary data. We showed that CP
approaches trained with incoming CP and WP data can help
to improve predictive performance over WP approaches
trained only with WP data and over OP approaches trained
only with data from other projects. The AIO and Filtering
CP approaches were particularly helpful during the initial
phase of the project when there is not enough WP data
available (RQ1), leading to up to 53.89% and 35.02% ab-
solute improvements in G-Mean over WP and OP models,
respectively. These approaches also helped to reduce or
even eliminate sudden drops in predictive performance
suffered by the WP model (RQ2) after the initial phase
of the project, achieving up to around 37.35% and 48.02%
absolute improvements in G-Mean during such periods of
time compared with WP and OP models, respectively. Also,
during stable periods (RQ3), these approaches achieved
up to 29.03% and 41.25% absolute improvements in G-
Mean compared to WP and OP models, respectively. These
results highlight the importance of using CP data (including
data from other projects and data from the project being
predicted) over time for training JIT-SDP models.

When comparing CP, WP and OP, the best ranked
approaches for initial, drift, non-drift and overall periods
were always online CP approaches. For most cases, OP
approaches were worse than and for few cases they were
similar to online CP approaches. In general, Filtering is
recommended over AIO if we wish to strongly focus on
preventing sudden drops in predictive performance. If the
focus is on the initial or stable periods, we recommend
AIO, as it performed competitively and requires less hy-
perparameters. Even though the Ensemble approach was
shown to perform well in offline learning [6], it was the
worst approach when considering a realistic online learning

scenario, obtaining average G-Means that were even lower
than those of the WP approach. This indicates that splitting
data from different projects may not be appropriate in online
scenarios. Training a single model combining CP and WP
together (AIO) significantly improved performance, hence
is more suitable in online JIT-SDP. Our results indicate
that both the number of CP and WP training examples
is important for achieving good predictive performance in
JIT-SDP. This is confirmed by the fact that G-Means of CP
approaches obtained during initial phase, when there is less
WP training examples, are lower compared to the drop and
stable periods.

Our study found that the predictive performance on the
proprietary projects was not high. Future work includes
incorporating additional longer running industrial projects
to investigate whether the predictive performance would
improve. Moreover, such results indicate that WP data is
still necessary to improve predictive performance in JIT-
SDP. New transfer learning approaches to reduce the need
for large amounts of WP data would be desirable. These
approaches could focus especially on improving predictive
performance during the initial phase of the projects, which
was the most challenging for the proposed approaches.
The predictive performance of the proposed approaches
was also found to be affected by hyperparameter choice.
However, hyperparameter tuning is inherently difficult in
online learning, as the best hyperparameter values may
change over time. Approaches able to automatically adjust
their hyperparameters over time are desirable. Finally, even
though the proposed approaches were able to improve
predictive performance during the initial and performance
drop periods, the predictive performance was still much
lower during these periods than during the stable periods.
Mechanisms able to alert practitioners of potential reduc-
tions in predictive performance are desirable.

REFERENCES

[1] S. Tabassum, L. L. Minku, D. Feng, G. G. Cabral, and L. Song,
“An investigation of cross-project learning in online just-in-time
software defect prediction,” in ICSE, 2020, pp. 554–565.

[2] T. Mende and R. Koschke, “Effort-aware defect prediction mod-
els,” in 2010 14th European Conference on Software Maintenance and
Reengineering. IEEE, 2010, pp. 107–116.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE TSE, vol. 38, no. 6, pp. 1276–1304,
2012.

[4] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion,” IEEE TSE, vol. 31, no. 10, pp. 897–910, Oct. 2005.

[5] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time
quality assurance,” IEEE TSE, 2013.

[6] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using
cross-project models,” EMSE, vol. 21, no. 5, pp. 2072–2106, 2016.

[7] G. G. Cabral, L. L. Minku, E. Shihab, and S. Mujahid, “Class im-
balance evolution and verification latency in just-in-time software
defect prediction,” in ICSE, 2019, pp. 666–676.

[8] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect prediction,”
IEEE TSE, vol. 44, no. 5, pp. 412–428, 2018.

[9] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online
class imbalance learning with concept drift,” IEEE TNNLS, vol. 29,
no. 10, pp. 4802–4821, 2018.



20

[10] R. Malhotra, “A systematic review of machine learning techniques
for software fault prediction,” Applied Soft Computing, vol. 27, pp.
504–518, 2015.

[11] R. S. Wahono, “A systematic literature review of software defect
prediction: research trends, datasets, methods and frameworks,”
Journal of Software Engineering, vol. 1, no. 1, pp. 1–16, 2015.

[12] A. Agrawal and T. Menzies, “Is “better data” better than “better
data miners”?: on the benefits of tuning smote for defect predic-
tion,” in ICSE, 2018, pp. 1050–1061.

[13] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in QRS. IEEE, 2017, pp. 318–328.

[14] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel
ensemble learning for software defect prediction,” ASE, vol. 23,
no. 4, pp. 569–590, 2016.

[15] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process,” in FSE, 2009, pp. 91–100.

[16] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation
on the feasibility of cross-project defect prediction,” ASE, vol. 19,
no. 2, pp. 167–199, 2012.

[17] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-
source projects: An empirical study on defect prediction,” in
ESEM, 2013, pp. 45–54.

[18] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Multi-objective cross-project defect predic-
tion,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, 2013, pp. 252–261.

[19] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’union fait la force,” in CSMR-WCRE. IEEE,
2014, pp. 164–173.

[20] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE,
2013, pp. 382–391.

[21] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with
a support vector machine for cross-project defect prediction,”
EMSE, vol. 21, no. 1, pp. 43–71, 2016.

[22] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, “An improved sda based
defect prediction framework for both within-project and cross-
project class-imbalance problems,” IEEE TSE, vol. 43, no. 4, pp.
321–339, 2016.

[23] D. Ryu, J.-I. Jang, and J. Baik, “A transfer cost-sensitive boosting
approach for cross-project defect prediction,” SQJ, vol. 25, no. 1,
pp. 235–272, 2017.

[24] G. Catolino, D. Di Nucci, and F. Ferrucci, “Cross-project just-in-
time bug prediction for mobile apps: An empirical assessment,” in
6th IEEE/ACM International Conference on Mobile Software Engineer-
ing and Systems, 2019.

[25] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: analytics and
risk prediction of software commits,” in FSE, 2015, pp. 966–969.

[26] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “Multi: Multi-objective
effort-aware just-in-time software defect prediction,” IST, vol. 93,
pp. 1–13, 2018.

[27] K. Zhu, N. Zhang, S. Ying, and D. Zhu, “Within-project and cross-
project just-in-time defect prediction based on denoising autoen-
coder and convolutional neural network,” IET Software, 2020.

[28] D. Falessi, J. Huang, L. Narayana, J. F. Thai, and B. Turhan, “On the
need of preserving order of data when validating within-project
defect classifiers,” EMSE, vol. 25, no. 6, pp. 4805–4830, 2020.

[29] M. Harman, S. Islam, Y. Jia, L. Minku, F. Sarro, and K. Srivisut,
“Less is more: Temporal fault predictive performance over multi-
ple hadoop releases,” in SSBSE, 2014, pp. 240–246.

[30] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction
for imbalanced data,” in ICSE, vol. 2, 2015, pp. 99–108.

[31] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in
nonstationary environments: A survey,” IEEE CIM, vol. 10, no. 4,
pp. 12–25, 2015.

[32] S. Tabassum, L. L. Minku, and D. Feng, “Cross-project online
just-in-time software defect prediction – supplementary material,”
2022.

[33] L. L. Minku, “Commitguru-chinese: First release,” 2020. [Online].
Available: https://zenodo.org/record/3684635

[34] S. Flint, J. Chauhan, and R. Dyer, “Escaping the time pit: Pitfalls
and guidelines for using time-based git data,” in MSR, 2021, pp.
85–96.

[35] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
ACM SIGKDD KDD, 2000, pp. 71–80.

[36] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine learning, vol. 90, no. 3, pp. 317–346,
2013.

[37] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive inves-
tigation of the role of imbalanced learning for software defect
prediction,” IEEE Transactions on Software Engineering, vol. 45,
no. 12, pp. 1253–1269, 2018.

[38] Q. Zhu, “On the performance of matthews correlation coefficient
(MCC) for imbalanced dataset,” Pattern Recognition Letters, vol.
136, pp. 71–80, 2020.

[39] M. Duarte, “detecta: A python module to detect events in data,”
https://github.com/demotu/detecta, 2020.

[40] N. Mittas and L. Angelis, “Ranking and clustering software cost
estimation models through a multiple comparisons algorithm,”
IEEE TSE, vol. 39, no. 4, pp. 537–551, 2012.

[41] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn, “Negative
results for software effort estimation,” EMSE, vol. 22, no. 5, pp.
2658–2683, 2017.

[42] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” JMLR, vol. 7, pp. 1–30, 2006.

[43] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of mcgraw and wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[44] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 2000.
[45] R. Moser, W. Pedrycz, and S. G., “A comparative analysis of the

efficiency of change metrics and static code attributes for defect
prediction,” in ICSE, 2008.

[46] Y. Fan, X. Xia, D. Costa, D. Lo, A. Hassan, and S. Li, “The impact
of mislabelled changes by SZZ on just-in-time defect prediction,”
IEEE TSE, vol. 47, 2021.

Sadia Tabassum is a final year PhD can-
didate at the University of Birmingham (UK).
She received the MSc degree in Computer Sci-
ence from the University of Leicester (UK), in
2016. Her research interests include software
engineering, software defect prediction, machine
learning, online learning, transfer learning, class
imbalanced learning and evolutionary optimisa-
tion.

Leandro L. Minku is an Associate Professor at
the School of Computer Science, University of
Birmingham (UK). Prior to that, he was a Lec-
turer in Computer Science at the University of
Leicester (UK), and a Research Fellow at the
University of Birmingham (UK). He received the
PhD degree in Computer Science from the Uni-
versity of Birmingham (UK) in 2010. Dr. Minku’s
main research interests include machine learn-
ing for software engineering, machine learning
for non-stationary environments / data stream

mining, class imbalance learning, ensembles of learning machines and
search-based software engineering. Among other roles, Dr. Minku is
Associate Editor-in-Chief for Neurocomputing, and Associate Editor for
IEEE Transactions on Neural Networks and Learning Systems, Empiri-
cal Software Engineering and Journal of Systems and Software.

Danyi Feng is the founder of XiLiuTech. She received the MSc degree
in Artificial Intelligence from the University of Edinburgh (UK) in 2008,
and the BEng degree in Human Interactive Systems from the University
of Birmingham (UK) and in Software Engineering from the Huazhong
University of Science and Technology (China) in 2007. Ms. Feng’s main
interests are the application of artificial intelligence technology, software
quality assurance and life science.


