An Investigation of Cross-Project Learning in Online Just-In-Time Software Defect Prediction – Supplementary Material

Sadia Tabassum sxt901@cs.bham.ac.uk University of Birmingham, UK Leandro L. Minku* L.L.Minku@cs.bham.ac.uk University of Birmingham, UK Danyi Feng danyi@ouchteam.com Xiliu Tech, China

Liyan Song L.Song.1@cs.bham.ac.uk University of Birmingham, UK

Algorithm 1 Ensemble approach

1: S = stream of incoming changes from n projects, b = index identifying the test project, w = waiting period

George Cabral

george.gcabral@ufrpe.br

Federal Rural University of

Pernambuco, Brazil

- 2: initialise ensemble model M consisting of n models $\{m_1, m_2, ..., ..., m_n\}$
- for each incoming change x^t_p ∈ S do // x^t_p is a change arriving from project p at timestamp t

4: **if** p = b then

- 5: \hat{Y} -List \leftarrow get prediction \hat{y}_i from each model in M
- 6: \hat{y} = mean of stored prediction results in \hat{Y} -List
- 7: **end if**
- store x^t_p in a queue WFL-Q_p for project p // WFL-Q_p is the queue of incoming changes of project p waiting to be used for trained

9:	for each model m_p in M do
10:	for each change q^i in WFL- Q_p do
11:	if a defect was linked to q^{i} at a timestamp \leq t then
12:	create defect-inducing $training_example$ for q^i
13:	<pre>train(m_p, training_example)</pre>
14:	remove q^i from WFL- Q_p
15:	else
16:	create a clean <i>training_example</i> for <i>qⁱ</i>
17:	<pre>train(m_p, training_example)</pre>
18:	remove q^i from WFL-Q
19:	store <i>training_example</i> in <i>CL_p-H</i> // <i>CL_p-H</i> is a
	hash of clean training examples for project p
20:	end if
21:	end for
22:	end for
23:	if a defect was linked to a <i>training_example</i> in <i>CL</i> _p - <i>H</i> be-
	fore time <i>t</i> then

fore time t then 24: Swap the label of training_example to defect-inducing 25: train $(m_p, training_example)$ 26: remove h from CL_p -H 27: end if 28: end for *Corresponding author.

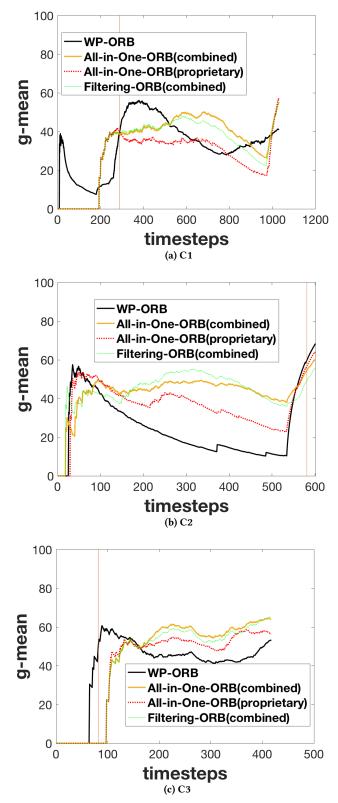


Figure 1: G-Mean for proprietary datasets through time using ORB. The vertical red bar indicates the last time step of the initial phase of the project.