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ABSTRACT
Just-In-Time Software Defect Prediction (JIT-SDP) is concerned
with predicting whether software changes are defect-inducing or
clean based onmachine learning classifiers. Building such classifiers
requires a sufficient amount of training data that is not available
at the beginning of a software project. Cross-Project (CP) JIT-SDP
can overcome this issue by using data from other projects to build
the classifier, achieving similar (not better) predictive performance
to classifiers trained on Within-Project (WP) data. However, such
approaches have never been investigated in realistic online learning
scenarios, where WP software changes arrive continuously over
time and can be used to update the classifiers. It is unknown to
what extent CP data can be helpful in such situation. In particular,
it is unknown whether CP data are only useful during the very
initial phase of the project when there is little WP data, or whether
they could be helpful for extended periods of time. This work thus
provides the first investigation of when and to what extent CP data
are useful for JIT-SDP in a realistic online learning scenario. For
that, we develop three different CP JIT-SDP approaches that can
operate in online mode and be updated with both incoming CP and
WP training examples over time. We also collect 2048 commits from
three software repositories being developed by a software company
over the course of 9 to 10 months, and use 19,8468 commits from
10 active open source GitHub projects being developed over the
course of 6 to 14 years. The study shows that training classifiers
with incoming CP+WP data can lead to improvements in G-mean
of up to 53.90% compared to classifiers using only WP data at the
initial stage of the projects. For the open source projects, which
have been running for longer periods of time, using CP data to
supplement WP data also helped the classifiers to reduce or prevent
large drops in predictive performance that may occur over time,
leading to up to around 40% better G-Mean during such periods.
Such use of CP data was shown to be beneficial even after a large
number of WP data were received, leading to overall G-means up
to 18.5% better than those of WP classifiers.

∗Corresponding author.

,

KEYWORDS
Software defect prediction, cross-project learning, transfer learning,
online learning, verification latency, concept drift, class imbalance

1 INTRODUCTION
The primary objective of software quality assurance activities is
to reduce the number of defects in software products [20]. It is a
challenging problem considering the limitation of budget and time
allocation for such activities. Software Defect Prediction (SDP) helps
to reduce the time and effort required for testing software products.
Different machine learning approaches have been proposed for SDP
[11]. Many studies have focused on identifying defect prone com-
ponents (e.g., modules or files) [10]. Recent studies in this area have
been increasingly focusing on identifying defect-inducing software
changes. This is known as Just-In-Time Software Defect Prediction
(JIT-SDP) [16]. Advantages of JIT-SDP over component level SDP
include [16]: (1) prediction made at an early stage, facilitating code
inspection, (2) finer granularity of the predictions, making it easier
to find defects, and (3) straightforward allocation of developers to
inspect the code.

Similar to SDP at the module/file level, JIT-SDP classifiers require
sufficient amount of training data which is not available during the
initial phase of a project. To overcome this problem, previous work
has proposed Cross-Project (CP) JIT-SDP, where historical data
from other projects are used to train the classifier [15]. Existing
CP JIT-SDP work [15] assumes an offline learning scenario, where
classifiers are built based on a pre-existing training set and never
updated anymore. This means that the classifier is never updated
with Within-Project (WP) data. However, in practice, JIT-SDP is
an online learning problem [2], where both additional CP and WP
training examples arrive over time.

The role of CP data in such online learning scenario is unclear.
CP JIT-SDP has never been investigated in online mode before. In
particular, it is unknown whether CP data is only helpful at the very
early stages of the project when there is little WP data, or it brings
a prolonged benefit to the predictive performance of the classifier.
For instance, it may be that CP approaches using an augmented
training data stream formed by both WP and CP examples lead
to increased predictive performance even at later stages of the
project, given that classifiers are built using more data than WP
classifiers trained only with WP data. Or, it may be that CP data
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cause such approaches to obtain worse predictive performance than
WP classifiers once enough WP data is used for training. Besides,
prediction quality can fluctuate due to variations (concept drifts) in
the underlying defect generating process [19]. Concept drift can
cause the predictive performance of JIT-SDP classifiers to drop [19].
The use of CP training data could potentially help to handle concept
drift. This is specially the case considering that JIT-SDP is a class
imbalance problem, where the number of defect-inducing software
changes is typically much smaller than that of clean changes. In
such type of problem, it would take a lot of time to collect new WP
defect-inducing examples to recover well from concept drift. CP
training examples could potentially help to recover from concept
drift more quickly.

This paper thus aims at investigating when and to what extent
CP JIT-SDP data can be helpful in a realistic online learning scenario.
It answers the following Research Questions (RQs):

RQ1 Can CP data help to improve predictive performance in the
initial phase of a project, when there is no or little WP train-
ing data available? For how long and to what extent?

RQ2 Can CP data help to prevent sudden drops in predictive
performance, which may be caused by concept drift? To
what extent?

RQ3 What is the overall effect of using CP and WP data together
on the predictive performance throughout the development
of software projects? In particular, do classifiers trained on
both CP and WP data improve, deteriorate or retain similar
overall predictive performance to WP classifiers?

It is worth noting that, in online scenarios, both WP and CP
training data arrive over time as their collection can be automated.
If incoming CP data is used for training a CP classifier, there is
no reason to exclude incoming WP data from the training process
of this classifier, as such WP data should not hurt its predictive
performance. Therefore, we use the term CP when referring to
online learning approaches that make use of both incoming CP and
WP data for training. This means that, when we refer to the benefits
of CP data, we do not mean the benefits of CP data in isolation, but
the benefits of CP data used along with incoming WP data. We use
the term WP when referring to approaches that only use WP data
for training.

To answer the above research questions, this paper investigates
three CP online learning approaches: (1) a single online learning
classifier trained on incoming WP and CP training examples, (2)
an online learning ensemble where each classifier is trained on
incoming training examples from a different project, and (3) a single
online learning classifier that filters out CP training examples that
are likely to be very different from the recent WP examples. These
approaches are enhancements of the approaches used in the JIT-SDP
literature [15], so that they can operate in online mode. They are
compared against online WP approaches. Our experiments based
on 13 software repositories show that the first and third approaches
are helpful to improve predictive performance in JIT-SDP compared
to WP classifiers, while the second is not.

The contributions of this work are the following:

• This paper provides the first investigation of CP JIT-SDP in
a realistic online learning scenario.

• We show how to adapt CP JIT-SDP approaches so that they
can be used in an online learning scenario.
• We reveal that the use of CP data combined with WP data
can improve overall predictive performance (rather than just
achieving similar predictive performance) compared to WP
learning in JIT-SDP.
• We show that CP data can be helpful for prolonged periods
of time, rather than only in the beginning of the learning
period as assumed in previous work.
• We show that CP data can reduce the negative effect of sud-
den predictive performance drops in the classifier, resulting
in more reliable predictions over time.
• We show that it is better to use both CP andWP data together
to build a single classifier, rather than creating different clas-
sifiers using disjoint subsets of the data.

This paper is further organized as follows. Section 2 presents
related work. Section 3 introduces our online JIT-SDP approaches.
Section 4 presents the details of the investigated datasets. Section 5
explains the experimental setup for answering the RQs. Section 6
explains the results of the experiments. Section 7 presents threats
to validity. Section 8 presents the conclusions and implications of
this work.

2 RELATEDWORK
There are many SDP studies [11, 18, 32], including recent studies
investigating class imbalance techniques [1], automated feature
engineering [17], ensemble learning [34], among others. In this
section, we discuss three main research areas of SDP that are closely
related to this work: CP SDP at the component level (Section 2.1),
CP JIT-SDP (Section 2.2) and Online JIT-SDP (Section 2.3).

2.1 CP SDP at the Component Level
There have been several studies on CP SDP at the component level.
An initial study provided guidelines for choosing training projects
[35]. They proposed an approach to identify factors that influence
CP prediction success, such as data and process factors. Another
study [13] showed that carefully selected CP training data may
provide better prediction results than training data from the same
project. Peters et al. [12] focused on selecting suitable CP training
data based on the similarities between the distribution of the test
and potential training data. In particular, they used similarity mea-
suring and feature subset selection to remove irrelevant training
data. Canfora et al. [3] proposed a multi-objective approach for
CP defect prediction. They attempted to achieve a compromise
between amount of code to inspect and number of defect-prone ar-
tifacts. This approach performed better thanWPmodels. Panichella
et al. [24] analysed the equivalence of different defect predictors
and proposed a combined approach CODEP (COmbined DEfect
Predictor) that uses machine learning to combine different and
complementary classifiers. This combination performs better than
the stand-alone CP technique. Nam et al. [23] applied Transfer
Component Analysis (TCA) to CP SDP. TCA is a transfer learn-
ing approach that maps the data to a common latent space where
CP and WP data are similar to each other. They also proposed a
new approach called TCA+, which selects suitable normalisation
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options for TCA. Other studies [14, 26, 27] consider class imbal-
ance learning for CP SDP. For instance, Ryu et al. [26] proposed
an approach that uses similarity weight drawn from distributional
characteristics and the asymmetric misclassification cost to balance
imbalanced distributions.

Overall, these studies demonstrate that data distributional char-
acteristics are important for CP SDP. In particular, they proposed
approaches to select CP data that are similar to WP data, or to map
CP andWP data into a latent space where they are similar. However,
none of these studies were in the context of JIT-SDP or online SDP.

2.2 CP JIT-SDP
The first CP JIT-SDP study was done by Kamei et al. [15]. They
carried out an empirical evaluation of the JIT-SDP performance by
using data from 11 open source projects. They investigated five CP
JIT-SDP approaches based on project similarity, three variations of
data merging approaches, and ensemble approaches where each
model was trained on data from a different project. All approaches
were based on random forests as base learners. They found that
simple merging of all CP data into a single training set and ensemble
approaches obtained similar predictive performance to that of WP
models. Different from SDP at the component level, other more
complex approaches, including similarity-based approaches, did
not offer any advantage compared to these.

Another study [4] investigated CP JIT-SDP in mobile platforms
using 14 apps and 42,543 commits extracted from the Commit.Guru
platform [25]. They compared CP performance of four different
well-known classifiers and four ensemble techniques. Naive Bayes
performed best compared to other classifiers and some ensemble
techniques.

Chen et al. [5] considered JIT-SDP as a multi-objective problem
tomaximise the number of identified defect-inducing changes while
minimising the effort required to fix the defects. They proposed
a multi-objective optimization-based supervised method called
MULTI to build logistic regression-based JIT-SDP models. They
used six open source projects. MULTI was evaluated on three dif-
ferent model performance evaluation scenarios (cross-validation,
cross-project-validation, and timewise-cross-validation) against 43
state-of-the-art supervised and unsupervised methods. They found
that it can perform significantly better compared to WP methods.

Despite showing that CP JIT-SDP can obtain promising results
compared to WP JIT-SDP, none of the studies above considered a
realistic online learning scenario.

2.3 Online JIT-SDP
Few studies explored JIT-SDP in online mode. McIntosh et al. [19]
performed a longitudinal case study of 37,524 changes from the
rapidly evolving QT and OPENSTACK systems and found that
fluctuations in the properties of fix-inducing changes can impact the
performance of JIT models. They showed that JIT models typically
lose power after one year. Hence, the JIT model should be updated
with more recent data.

Tan et al. [29] investigated JIT-SDP in a scenario where new
batches of training examples arrive over time and can be used for
updating the predictive models, using one proprietary and six open
source projects. They considered the fact that the labels of training

data may arrive much later than the commit time. This is known
as verification latency in the machine learning literature [7]. They
used resampling techniques to deal with the class imbalanced data
issue and updatable classification to learn over time. However, their
approach assumes that there is no concept drift, i.e., that the defect
generating process does not suffer variations over time.

Cabral et al. [2] proposed a method called Oversampling Online
Bagging (ORB) to tackle class imbalance evolution in an online
JIT-SDP scenario taking verification latency into account. Class im-
balance evolution is a type of concept drift where the proportion of
defect-inducing and clean examples fluctuates over time. ORB has
an automatically adjustable resampling rate to tackle class imbal-
ance evolution, being able to improve predictive performance over
JIT-SDP approaches that assume a fixed level of class imbalance.

None of the online JIT-SDP studies investigated CP JIT-SDP.

3 ONLINE CP JIT-SDP APPROACHES
In this section, wemodify and enhance three CP JIT-SDP approaches
adopted in [15] to enable them to be applied to online JIT-SDP. All
our algorithms fully respect chronology. In particular, they never
use future CP/WP training examples, future knowledge about la-
bels (i.e., defect-inducing or clean), or test examples, for training a
model used for testing the present.

Training examples are generated using the online procedure
recommended by Cabral et al. [2] to take verification latency into
account for all approaches studied in this paper. A software change
becomes a training example either when a defect is found to be
associated to it, or once a pre-defined waiting periodw has passed,
whichever is earlier. This waiting period represents the amount of
time that it takes for one to be confident that the change in question
is clean. In other words, if no defect is found to be associated to the
software change during the waiting period, a training example of
the clean class is created to represent this software change. Oth-
erwise, a training example of the defect-inducing class is created
immediately after the defect is found. If, after the waiting period,
a defect is found to be associated to a change that was previously
considered clean, a new defect-inducing training example is created
for it. Training examples are used to update the classifier as soon
as they are created.

It is worth noting that, for all our CP approaches, classifiers can
be trained not only with CP and WP training examples that are
made available over time after the first WP commit, but also with
CP training examples produced before the first WP commit.

3.1 All-in-One Approach
Existing offline JIT-SDP work [15] assume that CP classifiers are
created only with CP data. Unlike offline approaches, the All-in-
One online approach can use both CP and WP data for training. All
incoming CP andWP training data are considered as part of a single
data stream of training examples, which are used to train a single
online classifier as soon as they are produced. The data stream is
in chronological order, i.e., the training examples are sorted based
on the unix timestamp of their creation. Algorithm 1 shows the
pseudocode for the All-in-One approach.

The predictive model is initialised as an empty model that always
predicts “clean”. When a new incoming change xtp is received at
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Algorithm 1 All-in-One Approach
1: S = stream of incoming changes from several projects, b = index

identifying the target project,w = waiting period

2: Initialise predictive modelm
3: for each incoming change xtp ∈ S do // xtp is a change arriving

from project p at timestamp t

4: if p = b then
5: ŷ ← predict(m, xtp )
6: end if
7: store xtp in a queueWFL-Q //WFL-Q is a queue of

incoming examples waiting to be used for training

8: for each item qi inWFL-Q do
9: if a defect was linked to qi at a timestamp ≤ t then
10: create a defect-inducing traininд_example for qi
11: train(m, traininд_example)
12: remove qi fromWFL-Q
13: else
14: if qi is older thanw then
15: create a clean traininд_example for qi
16: train(m, traininд_example)
17: remove qi fromWFL-Q
18: store traininд_example in CL-H // CL-H is a

hash of clean training examples
19: end if
20: end if
21: end for

22: if a defect was linked to a traininд_example in CL-H at a
timestamp ≤ t then

23: Swap the label of traininд_example to defect-inducing
24: train(m, traininд_example)
25: remove traininд_example from CL-H
26: end if
27: end for

time step t (line 3), the algorithm first checks if this change belongs
to the target project, i.e., to the project whose changes are being
predicted (line 4). If it does, a prediction is provided for this change.
After that, xtp is stored in a queue for a pre-defined waiting period
(line 7). All changes in this queue are checked to see whether they
can be used for training (line 8 to 21). If a defect is found to be
associated to a given change in the queue during the waiting period
(lines 9 to 12), a defect-inducing training example is created to
represent this change used for training. If a defect is not found by
the end of the waiting period of a given change (lines 13 to 20),
a clean training example is created for this change and used for
training. After that the change is removed from the queue. The
algorithm also checks whether there is any past change found to
be defect-inducing, but that was previously considered as a clean
training example (lines 22 to 26). If there is, the classifier is trained
using that change as a defect-inducing training example.

The key difference between the proposed approach and the data
merging approaches used by Kamei et al. [15] is that, in [15], the

learning was offline (without taking into account incoming training
examples and verification latency) and they used only CP data for
training. In the proposed approach, the learning is online, takes
verification latency into account, and the classifier is trained on
both CP and WP data whose labels are produced before the current
timestamp.

3.2 Ensemble Approach
The Ensemble approach uses an ensemble of classifiers rather than
a single classifier. A separate classifier is built from each project’s
separate training data stream (e.g., for 10 projects there will be 10
different classifiers). This includes both CP and WP data streams.
Each change belonging to the target project is then predicted by all
the classifiers, and the mean of the predicted probabilities retrieved
by the classifiers is calculated. This mean is used to predict whether
the change is clean or defect-inducing. The pseudocode for the
Ensemble approach is similar to that of the All-in-One approach,
and can be found in the supplementary material [28]. As with
the All-in-One approach, the chronological order of the training
examples is always respected.

In the previous offline ensemble approach [15], Kamei et al. in-
vestigated both simple voting ensembles (where equal weight is
given to each classifier) and weighted voting ensembles (where
more weight is given to classifiers trained on projects that are more
similar to the target project). They showed that weighted voting
did not offer any advantage over simple voting. Hence, our on-
line ensemble approach uses simple voting. The key differences
between our approach and the approach used by Kamei et al. [15]
are that our approach is online, and our ensemble contains a classi-
fier built from WP training examples that have been labelled up to
the current timestamp, rather than using only CP data classifiers.

3.3 Filtering Approach
Even though filtering did not improve predictive performance in
offline JIT-SDP [15], filtering strategies have shown to be very
beneficial in offline SDP at the component level [30]. Therefore,
we investigate whether filtering out software changes that are
dissimilar to the target changes could be useful in online JIT-SDP.

We proposed the following Filtering approach for online JIT-SDP.
First, a fixed-size window of most recent incoming WP training
examples is maintained. Whenever a CP training example arrives, it
is compared with the training examples in the WP window. As with
the All-in-One and Ensemble approaches, the chronological order
of the training examples is always respected. Euclidean distances
between the input features of the CP training example and each of
the WP training examples in the window that have the same label
as the CP training example are calculated to check how similar the
CP training example is to recentWP examples. It is important to use
only training examples with the same label to compute the distance.
If the labels had been ignored, the approach would consider that a
CP clean training example described by similar features as a WP
defect-inducing training example are similar training examples.
However, they are different due to the different label.

The average of the smallest K distances is calculated. If this
average distance is equal to or lower than a maximum threshold,
the CP training example is allowed to train the classifier. Discarded
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Algorithm 2 Filtering Approach
1: S = stream of incoming changes from several projects, b = index

identifying the test project,w = waiting period, windowSize =
size of theWP-Q sliding window, K = number of top short dis-
tances to be used,maxDist = distance threshold for similarity,
cpqSize = maximum size of the queue CP-Q of dissimilar CP
instances to be re-checked for similarity in the future

2: Initialise predictive modelm
3: for each incoming change xtp ∈ S do // xtp is a change arriving

from project p at timestamp t
4: if avgDist(traininд_example ,WP-Q ,K ) ≤ maxDist for any

traininд_example in CP-Q then
5: train(m, traininд_example)
6: remove traininд_example from CP-Q
7: end if

8: if p = b then
9: ŷ = predict(m, xtp )
10: end if
11: store xtp in a queueWFL-Q //WFL-Q is a queue of

incoming examples waiting to be used for training

12: for each item qi inWFL-Q do
13: if a defect was linked to qi at a timestamp ≤ t then
14: Create a defect-inducing traininд_example for qi
15: else
16: if qi is older thanw then
17: Create a clean traininд_example for qi
18: store qi in CL-H // CL-H is a hash of clean

training examples
19: end if
20: end if
21: if a traininд_example was created for qi then
22: if avgDist(traininд_example ,WP-Q ,K ) ≤ maxDist

or this is a WP change then
23: train(m, traininд_example)
24: else
25: Add traininд_example to CP-Q
26: end if
27: Remove qi fromWFL-Q
28: SlideWP-Q if traininд_example is WP
29: end if
30: end for

31: if a defect was linked to a traininд_example inCL-H before
time t then

32: swap label of traininд_example to defect-inducing
33: remove traininд_example from CL-H
34: if avgDist(traininд_example ,WP-Q ,K) ≤ maxDist

then
35: train(m, traininд_example)
36: else
37: add traininд_example to CP-Q
38: end if
39: end if
40: end for

CP training examples are kept in a fixed-sized queue. This queue
is checked in every iteration to see whether any old discarded CP
training example has now become suitable for training. This can
be useful in case concept drift causes such discarded examples to
become relevant.

Algorithm 2 shows the pseudocode for the Filtering approach.
The predictive model is initialised as an empty model that always
predicts “clean”. When a new incoming change xtp is received at
time step t (line 3), the algorithm checks whether there are any old
CP training examples that were previously not used for training due
to their dissimilarity to WP examples, but that are now suitable for
training due to their similarity to the current WP sliding window
(line 4 to 7). Then, a prediction is given if the change xtp belongs
to target project (line 8 to 10). The change xtp is then stored in a
queue (line 11), waiting to be labelled. All changes in this queue
are checked to see whether they can be labelled (lines 12 to 30). If
they can, corresponding training examples are created and used for
training only if they are similar enough to the WP sliding window
(lines 21 to 23). If they are not similar enough and are CP examples,
they are stored in the queue CP-Q of discarded CP examples for
possible future use (line 25). The sliding window is updated (slided)
if the training example is WP (line 28). The algorithm also checks
whether any change that was previously considered as clean has
now been associated to a defect and uses it for training, but only if
it is similar enough to the WP sliding window (line 31 to 39).

4 DATASETS
We have extracted data from three proprietary software develop-
ment project repositories from a Chinese software development
company for the purpose of this study. We have also used ten ex-
isting datasets extracted from open source GitHub projects, which
weremade available by Cabral et al. [2] at https://zenodo.org/record/
2594681. Some information on the datasets is shown in Table 1. All
datasets were extracted based on Commit Guru [25]. The change
metrics include 14 metrics that can be grouped into five types of
metrics: i) diffusion of the change, ii) size of the change, iii) purpose
of the change, iv) history of the change, and v) experience of the
developer that made the change. These change metrics have been
shown to be adequate for JIT-SDP in previous work [16].

It is worth noting that there is evidence of concept drift that can
be attributed to software engineering in the datasets. For instance,
in Tomcat, the number of developers changing the modified files
associated to a commit increases as the project matures during the
first 16,000 commits, then drops. Upon dropping, new changes are
usually clean, different from old ones with similar change metrics.

To collect the proprietary data for this study, all commit mes-
sages from the three repositories were extracted using the git log
command. A Chinese language native speaker knowledgeable of
programming was asked to read the commit messages to identify
keywords that can be used to identify corrective commits. Keywords,
representative commit messages of corrective and non-corrective
cases, and commit messages for which the native speaker was un-
certain about were stored in a separate file. This gave a total of
57 commit messages. The second author of this paper then went
through the file providing his independent classification of the com-
mits as corrective or non-corrective, by using Google Translate to
translate the commit messages. Unclear Google translations were

https://zenodo.org/record/2594681
https://zenodo.org/record/2594681
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Table 1: An overview of the projects
Project Total # Defect-inducing % Defect-inducing Median Defect Time Period Main Language Project Type

Changes Changes Changes Discovery Delay (days)
Tomcat 18907 5207 27.54 200.5798 27-03-2006 - 06-12-2017 Java Open source [2]
JGroups 18325 3153 17.21 116.1565 09-09-2003 - 05-12-2017 Java Open source [2]

Spring-integration 8750 2333 26.66 415.1201 14-11-2007 - 16-01-2018 Java Open source [2]
Camel 30575 6255 20.46 28.1947 19-03-2007 - 07-12-2017 Java Open source [2]
Brackets 17364 4047 23.31 14.454 07-12-2011 - 07-12-2017 JavaScript Open source [2]
Nova 48989 12430 25.37 88.5615 28-05-2010 - 28-01-2018 Python Open source [2]
Fabric8 13106 2589 19.75 39.1833 13-04-2011 - 06-12-2017 Java Open source [2]
Neutron 19522 4607 23.6 82.5097 01-01-2011 - 27-12-2017 Python Open source [2]
Npm 7920 1407 17.77 111.514 29-09-2009 - 28-11-2017 JavaScript Open source [2]

BroadleafCommerce 15010 2531 16.86 42.5818 19-12-2008 - 21-12-2017 Java Open source [2]
C1 1030 confidential confidential 35.81 06-09-2018 - 17-07-2019 JavaScript Proprietary
C2 601 confidential confidential 1.98 16-10-2018 - 19-07-2019 JavaScript and 3D Studio Proprietary
C3 417 confidential confidential 2.97 05-09-2018 - 19-07-2019 Python Proprietary

discussed with the native speaker. After that, the native speaker and
the second author met to discuss all 57 commit messages. Commit
messages for which there was still some doubt after this discussion
were further discussed with the Company, who confirmed whether
they were corrective or non-corrective. The native speaker and sec-
ond author then agreed on a list of keywords to identify commits,
which was presented to the Company. The Company confirmed
that the list of keywords was adequate for their projects.

The list of keywords was used as input for Commit Guru to iden-
tify corrective commits, which were then used to identify which
changes are defect-inducing or clean [25], to generate the data sets.
As a data quality assurance procedure, all commit messages consid-
ered by Commit Guru as corrective and a sample of non-corrective
commit messages were double checked by the native speaker, giv-
ing a total of 1,230 commit messages. There was a disagreement
between Commit Guru’s classification and the native speaker in
only 3 cases, and the native speaker was unsure of the correct clas-
sification in 7 cases. Therefore, Commit Guru’s classification of
commits as corrective and non-corrective was deemed appropriate.

5 EXPERIMENTAL SETUP
The RQs introduced in Section 1 will be answered by comparing the
predictive performance of the All-in-One, Ensemble and Filtering
approaches against WP learning. The analysis done for RQ1, RQ2
and RQ3 will concentrate on the predictive performance (1) in
the beginning of the projects, (2) during periods of time where
we can observe sudden drops in predictive performance of the
WP approach, and (3) average across time steps, respectively. We
define a time step as a sequential number indicating the order of
WP commits. Each WP commit requires a WP software change to
be predicted as defect-inducing or clean. Due to the poor results
obtained by the Ensemble approach on the open source data, this
approach was not run for the proprietary data.

Given an open source project repository, all other 9 open reposi-
tories are considered as the CP data. Given a proprietary repository,
two cases were considered: (1) the other 2 proprietary repositories
are the CP data, and (2) all other 12 repositories are the CP data.

JIT-SDP is a class imbalance problem [2, 15, 16, 29], and the open
source data used in this study are known to be class imbalanced [2].
Therefore, learning approaches need to use online learning classi-
fiers that can deal with this issue. Two state-of-the-art approaches
for online class imbalanced learning are Improved Oversampling

Online Bagging (OOB) and Improved Undersampling Online Bag-
ging (UOB) [33]. Also, Cabral et al. [2] proposed a new approach
called Oversampling Rate Boosting (ORB), which improves the pre-
dictive performance further for JIT-SDP. The three approaches are
ensembles of Hoeffding Trees [8]. These are online learning base
classifiers, which are updated incrementally with each new training
example, preserving old knowledge without requiring storage of old
examples. Previously, OOB and UOB achieved similar performance
to JIT-SDP [2], and ORB performed the best. Thus, only OOB and
ORB are selected as the base classifiers in this study.

To evaluate the performance, we adopt recall on the clean class
(Recall0), recall on the defect-inducing class (Recall1) and Geomet-
ric Mean of Recall0 and Recall1 (G-Mean). They were computed
prequentially and using a fading factor to enable tracking changes
in predictive performance over time, as recommended for problems
that may suffer concept drift [9]. If the current example belongs
to class i , Recall (t )i = θRecall

(t−1)
i + (1 − θ )1ŷ=i , where i is zero

or one, t is the current time step, θ is a fading factor set to 0.99
as in [2], ŷ is the predicted class, and 1ŷ=i is the indicator func-
tion, which evaluates to one if ŷ = i and to zero otherwise. If the
current example does not belong to class i , Recall (t )i = Recall

(t−1)
i .

Also, G-Mean(t ) =
√
Recall

(t )
0 × Recall

(t )
1 . It is worth noting that

Recall0 = 1 − FalseAlarmRate , and so false alarms are taken into
account through both Recall0 and G-Mean. These metrics were
chosen because they are the most recently recommended for online
class imbalance learning [33].

The predictive performances obtained during the initial phase
of the projects, and the overall predictive performances calculated
using all time steps will be compared across data sets using the
Scott-Knott procedure [22], which ranks the models and separates
them into clusters. This test is used to select the best subgroup
among different models. Non-parametric bootstrap sampling is
used to make the test non-parametric, as recommended by Menzies
et al. [21]. As explained by Demsar [6], non-parametric tests are
adequate for comparison across data sets. In addition, the Scott-
Knott test adopted in this paper uses A12 effect size [31] to rule out
any small differences in performance. Specifically, Scott-Knott only
performed statistical tests to check whether groups should be sepa-
rated if the A12 effect size was medium or large, as recommended
in [21]. If the A12 effect size was not medium or large, groups were

minkull
Highlight
There is a mistake in this formula. The correct formula, which has been used in the implementation, is:R_i(t) = \theta R_i(t-1) + 1(\hat{y}=i)'N_i(t) = \theta N_i(t-1) + 1Recall_i(t) = R_i(t) / N_i(t)
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not separated. We will refer to Scott-Knott based on Bootstrap sam-
pling and A12 as Scott-Knott.BA12. We have also included the A12
effect sizes for each dataset individually to support the analysis.

The parameters for the Filtering approach were chosen by per-
forming grid search on the initial portion (1000 commits) of the
datasets using the following set of values, where bold values were se-
lected: windowSize= {500,600,700,1000}, K= {50,100,200}, maxDist=
{0.6,0.7,0.8} and cpqSize= {500, 1000}. Parameters of OOB and ORB
were kept to the same values as in [2] for open source datasets, as
they have already been tuned for these datasets. Ensemble sizes and
decay factors were further tuned for the proprietary datasets. The
waiting period was 90 for the open source datasets as in [2] and
30 for the proprietary datasets, due to their lower defect discovery
delay (see Table 1). Thirty executions of each approach with each
of the base classifiers have been performed on each dataset.

6 EXPERIMENTAL RESULTS
6.1 RQ1: Initial Phase of the Project
We define the initial phase of the open source projects as the period
of time ranging from the first time step until the time step where
the G-Mean of the WP approach reaches the value of its average
G-Mean across time steps. It represents the time it takes for the G-
Mean of this approach to reach its typical values for a given project.
For the proprietary data, the total number of time steps is too small
to use the average G-Mean across time steps for this purpose. In
particular, had longer periods of time been observed, the G-Mean
values would be likely to improve further, given the trends in G-
Mean at the end of the period analyzed for these projects (see Fig. 3,
which will be discussed later in this section). Therefore, instead of
using the average G-Mean across all time steps, we have used the
average G-Mean across the last 40 time steps to determine the initial
phase. Table 2 shows the number of time steps of the initial phase
of all projects, as well as the average G-Mean of each approach, the
effect size A12 against the corresponding WP approach, and the
Scott-Knott.BA12 results during this period.

The initial phase of the open source projects lasted from 461
to 6271 time steps with a median of 1418, and from 900 to 6271
time steps with a median of 1553 when using OOB and ORB, re-
spectively (Table 2). The average G-Mean of the All-in-One and
Filtering approaches was frequently higher during the initial phase
of the open source projects than that of the WP approach (up to
53.90% higher, for Brackets using All-in-One-ORB). This is further
illustrated by Figs. 1 and 2, which show the G-Means across time
steps. The G-Means of the WP classifiers were lower than those of
All-in-One and Filtering in the initial phase of all plots, except for
Figs. 1b, 1c and 2b, where the G-Means were similar. The superior-
ity of All-in-One and Filtering is confirmed by Scott-Knott.BA12,
which shows that these approaches were better ranked than the
others in terms of G-Mean. A12 effect sizes against WP learning for
individual datasets were typically large. The Ensemble approach
sometimes achieved better G-Means than the WP approach at the
very beginning of the projects, but performed worse than the other
CP approaches during most of the initial phase (Table 2). These
results are also supported Scott-Knott.BA12, which shows that the
Ensemble approach was better ranked than the WP approach, but
worse ranked than All-in-One and Filtering in terms of G-Mean.

(a) Tomcat (b) JGroups

(c) Spring-integration (d) Camel

(e) Brackets (f) Nova

(g) Fabric8 (h) Neutron

(i) Npm (j) BroadleafCommerce

Figure 1: G-Mean for all datasets through time using OOB.
The vertical red bar indicates the last time step of the initial
phase of the project, shown in Table 2.

Given the promising results of the All-in-One and Filtering ap-
proaches, we investigated them further in the context of the pro-
prietary data. All-in-One was investigated in two different ways:
a) combining both open source and proprietary training data and
b) only with proprietary data. The initial phase of the proprietary
projects was typically much smaller than that of the open source
projects, lasting from 81 to 581 time steps and from 82 to 581
time steps for OOB and ORB, respectively (Table 2). The G-Means
were also much lower than for the (longer) initial phase of the
open source projects. CP approaches helped to improve average
G-Mean for OOB-based approaches, which is confirmed by the
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Table 2: Number of initial time steps of the initial phase, and average G-Means, A12 effect sizes and Scott-Knott.BA12 to
compare learning approaches on this initial phase

OOB ORB
Open Source Data Initial Time Steps WP All-in-One Filtering Ensemble Initial Time Steps WP All-in-One Filtering Ensemble

Tomcat 2006 43.61 51.94[b] 52.49[b] 33.66[-b] 926 40.44 45.82[b] 48.12[b] 35.32[-b]
JGroups 1268 38.6 38.28[-s] 39.01[s] 16.64[-b] 1412 30.71 31.47[m] 33.47[b] 15.14[-b]

Spring-integration 461 27.3 24.27[-b] 38.69[b] 19.48[-b] 900 25.70 60.47[b] 63.43[b] 42.17[b]
Camel 3112 46.81 57.74[b] 57.06[b] 39.42[-b] 5111 49.68 57.98[b] 57.63[b] 41.38[-b]
Brackets 1569 21.36 64.88[b] 66.17[b] 46.83[b] 1721 13.49 67.39[b] 67.20[b] 50.45[b]
Nova 6271 55.42 63.15[b] 64.39[b] 51.66[-b] 6271 52.80 66.43[b] 65.0[b] 51.84[-s]
Fabric8 795 27.01 51.5[b] 58.63[b] 40.3[b] 1613 29.97 63.33[b] 62.89[b] 45.19[b]
Neutron 917 44.83 73.55[b] 67.29[b] 55.06[b] 3304 71.78 75.09[b] 74.84[s] 71.04[-b]
Npm 2536 26.91 48.36[b] 45.75[b] 42.01[b] 1494 30.12 40.07[b] 43.48[b] 43.52[b]

BroadleafCommerce 677 26.36 50.31[b] 53.16[b] 37.25[b] 950 27.68 51.81[b] 52.40[b] 41.68[b]
Ranking 4 2 1 3 4 1 1 3

Proprietary Data Initial Time Steps WP All-in-One All-in-One Filtering Initial Time Steps WP All-in-One All-in-One Filtering
(combined) (proprietary) (combined) (combined) (proprietary) (combined)

C1 347 18.93 38.31[b] 17.28[-b] 39.66[b] 289 15.93 11.48[-b] 11.57[-b] 11.49[-b]
C2 581 25.03 40.75[b] 32.95[b] 40.23[b] 581 24.48 43.04[b] 36.03[b] 44.01[b]
C3 81 7.96 13.67[b] 35.98[b] 13.42[b] 82 8.48 0[-b] 0[-b] 0[-b]

Ranking 2 1 1 1 2 2 2 2
Top G-Means for each dataset are in bold. Symbols [*], [s], [m] and [b] represent insignificant, small, medium and large A12 effect size against the
corresponding WP approach (WP-OOB or WP-ORB). Presence/absence of the sign “-” in the effect size means that the corresponding approach was
worse/better than the corresponding WP approach. Scott-Knott.BA12 was run for all OOB- and ORB-based approaches together. For each performance
metric, one test was run for the open source, and one test was run for the proprietary data results. The groups’ rankings retrieved by Scott-Knott.BA12 are
shown in the ranking rows, with smaller numbers indicating better rankings.

Scott-Knott.BA12 results and further illustrated in Fig. 3. For in-
stance, in Fig. 3a, theWP approach obtained very low G-Mean of 8%
around time step 290, while All-in-One (combined) and Filtering
obtained a higher G-Mean of around 40%. Interestingly, All-in-One
(combined) led to better results than All-in-One (proprietary) for
C1 and C2 when using OOB and for C2 when using ORB, indicat-
ing that open source data can sometimes help to improve JIT-SDP
predictions on proprietary data during the initial period.

However, the use of CP data for the proprietary projects was less
helpful when using ORB-based approaches (see Table 2; plots in
supplementary material [28]). It is possible that the whole period
of time analyzed for these projects belongs to the initial phase, and
that the last time step of the initial phase could not be precisely
identified due to the lack of information on the typical G-Means
that would be obtained by the WP approaches in prolonged periods
of time, as was done for the open source data. As shown in Section
6.3, the G-Means obtained for ORB-based combined CP approaches
improve when considering the whole period of the projects.
RQ1: CP data was helpful in the initial phase of the project when there
was no or little WP training data available, in particular when using
All-in-One and Filtering approaches for the open source projects and
OOB-based approaches for the proprietary projects. This initial phase
lasted from 461 to 6271 and from 81 to 581 time steps for the open
source and proprietary projects, respectively. Improvements in average
G-Mean were up to 53.90%, avoiding extremely low G-Means.

6.2 RQ2: Periods with Sudden Drops in WP
Classifier’s Predictive Performance

In some datasets, after the initial phase, the WP approach suffered
periods of large drops in G-Means. Some clear cases can be observed
from time steps 1000 to 3000 in Fig. 1c, near time step 25,000 in
Fig. 1d, around time step 7000 in Fig. 1j, around time step 18,000 in
Fig. 2a, from time step 1000 to 3000 in Fig. 2c, and around time step

2100 in Fig. 2i. The CP approaches frequently managed to reduce
or sometimes even eliminate such drops.

For example, in Fig. 2c, we can see that from time steps 1000 to
3000, the WP classifier had a large fall of performance reducing the
G-Mean to around 20%. During this period, All-in-One and Filter-
ing managed to maintain a G-Mean of around 60%. The Ensemble
approach also managed to avoid the drop in G-Mean, but did not
perform so well as All-in-One and Filtering.

WP classifiers may suffer such drops in performance due to
changes in the characteristics of WP training data over time. How-
ever, in CP learning, training data comes from different projects.
Some of the CP training data may have similar distribution as the
target project currently has, helping to reduce the negative effect of
differences in the distribution over time. This is a potential reason
for CP data to be helpful in case of sudden performance drops.

Interestingly, the Filtering approach managed to achieve a more
stable G-Mean than All-in-One for Fabric8. This suggests that even
though CP data may prevent performance drops resulting from
changes in characteristics of the data, it might introduce other
performance drops due to the use of too dissimilar CP data. Experi-
ments with additional projects are needed to confirm that.

For the proprietary data, the period of time analysedwas not long
enough to identify large sudden drops in predictive performance
after the initial phase. Hence, to understand whether CP data is
helpful to prevent sudden drops in performance for proprietary data,
future work on other proprietary projects should be performed.
RQ2: CP approaches frequently help to reduce or even prevent sudden
drops in performance compared to WP approaches. In particular, the
All-in-One and Filtering approaches obtained up to around 40% better
G-Mean than the WP approach during such periods.
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(a) Tomcat (b) JGroups

(c) Spring-integration (d) Camel

(e) Brackets (f) Nova

(g) Fabric8 (h) Neutron

(i) Npm (j) BroadleafCommerce

Figure 2: G-Mean for all datasets through time using ORB.
The vertical red bar indicates the last time step of the initial
phase of the project, shown in Table 2.

6.3 RQ3: Overall Predictive Performance
According to the Scott-Knott.BA12 test to rank the overall G-Mean
of all OOB- and ORB-based approaches across open source datasets
(Table 3), All-in-One-OOB, All-in-One-ORB, Filtering-OOB and
Filtering-ORB ranked best,WP-ORB ranked second,WP-OOB ranked
third, Ensemble-ORB ranked fourth and Ensemble-OOB ranked
worst.

Table 3 shows that All-in-One-OOB’s G-Means were up to 13.43%
better (for Npm) and All-in-One-ORB’s were up to 16.04% better
(for Spring-integration). The improvements in average G-Mean

(a) C1 (b) C2

(c) C3

Figure 3: G-Mean for proprietary datasets through time us-
ing OOB. The vertical red bar indicates the last time step of
the initial phase of the project, shown in Table 2.

for the open source data when using All-in-One-OOB compared
with WP-OOB had large effect size in 8 out of 10 datasets, and
the improvements when using All-in-One-ORB compared with
WP-ORB had large effect size in all 10 datasets.

Filtering performed similarly to All-in-One. Table 3 shows that
Filtering-OOB’s G-Means were up to 13.97% better than WP-OOB’s
(for spring-integration), and Filtering-ORB’s G-Means were up to
16.88% better thanWP-ORB’s (for spring-integration). The improve-
ments in average G-Means when using All-in-One-OOB compared
with WP-OOB had large effect size in 8 out of 10 datasets, and the
improvements when using All-in-One-ORB compared with WP-
ORB had large effect size in all 10 datasets. Therefore, even though
Filtering improved the results over the WP approach, filtering in-
stances dissimilar to the target project does not have a major impact
on the performance of the classifier compared to All-in-One. As
All-in-One merges all data together to build one classifier, it is pos-
sible that classifier performance mainly depends on the amount and
potentially variety of training data rather than CP project similarity.

From that we can see that merging CP and WP data together to
train a classifier (through All-In-One or Filtering) improved overall
predictive performance in terms of G-Mean, rather than maintain-
ing similar predictive performance as in offline [15] scenarios.

Although Ensemble approaches performed well in offline mode
[15], our study shows that ensembles of classifiers trained on sep-
arate projects did not perform well in a realistic online scenario.
Ensemble-OOB’s G-Means were up to 19.25% worse than WP’s
(for JGroups), and Ensemble-ORB’s were up to 19.85% worse than
WP’s (for JGroups). A further analysis of the results obtained by
each classifier within the ensemble reveals that their individual
G-Means were not high, which resulted in the poor G-Mean of the
ensemble as a whole. This could be due to lack of enough training
data for the individual classifiers, given that each classifier in the
ensemble is trained with data from one project. This again sug-
gests that the larger amount of varied data was crucial to improve
predictive performance in online JIT-SDP. It also explains why the
Ensemble approach worked in offline mode but not in online mode.
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Table 3: Overall predictive performance, A12 effect sizes and Scott-Knott.BA12 statistical tests to compare learning approaches
Dataset Approach Recall0 Recall1 G-Mean

Tomcat

WP-OOB 58.25(1.82) 63.59(1.53) 57.78(0.61)
All-in-One-OOB 61.07(1.32)[b] 63.76(1.13)[-*] 59.85(0.47)[b]
Filtering-OOB 66.99(1.22)[b] 60.05(0.97)[-b] 61.57(0.52)[b]
Ensemble-OOB 63.78(0.7)[b] 43.06(0.73)[-b] 49.12(0.2)[-b]

JGroups

WP-OOB 57.55(1.68) 59.01(1.51) 54.76(0.68)
All-in-One-OOB 64.54(1.58)[b] 52.85(1.46)[-b] 54.77(0.64)[*]
Filtering-OOB 65.94(1.32)[b] 51.59(1.22)[-b] 54.68(0.42)[-s]
Ensemble-OOB 84.03(0.4)[b] 18.6(0.36)[-b] 35.51(0.29)[-b]

Spring-integration

WP-OOB 61.13(1.64) 56.09(1.31) 48.41(0.7)
All-in-One-OOB 65.32(0.61)[b] 61.57(0.86)[b] 60.62(0.29)[b]
Filtering-OOB 69.82(0.75)[b] 59.96(1.19)[b] 62.38(0.68)[b]
Ensemble-OOB 73.09(0.57)[b] 37.6(0.63)[-b] 49.4(0.27)[-b]

Camel

WP-OOB 56.04(1.23) 74.62(0.95) 62.45(0.57)
All-in-One-OOB 53.89(1.13)[-b] 75.29(0.71)[m] 62.16(0.61)[-m]
Filtering-OOB 55.52(0.81)[-s] 74.29(0.71)[-s] 62.66(0.55)[s]
Ensemble-OOB 55.25(0.87)[-m] 55.17(0.77)[-b] 52.63(0.24)[-b]

Brackets

WP-OOB 49.16(0.27) 89.6(0.23) 64.03(0.11)
All-in-One-OOB 65.47(0.99)[b] 79.68(1.3)[-b] 70.85(0.47)[b]
Filtering-OOB 69.15(0.83)[b] 75.44(1.28)[-b] 70.91(0.39)[b]
Ensemble-OOB 64.89(0.76)[b] 62.81(1.11)[-b] 62.68(0.47)[-b]

Nova

WP-OOB 68.18(0.24) 86.96(0.52) 75.55(0.2)
All-in-One-OOB 70.04(0.32)[b] 88.9(0.53)[b] 78.25(0.2)[b]
Filtering-OOB 70.91(0.3)[b] 87.24(0.37)[s] 78.01(0.17)[b]
Ensemble-OOB 75.88(0.78)[b] 57.23(1.59)[-b] 65.5(0.6)[-b]

Fabric8

WP-OOB 50.56(2.68) 75.72(2.17) 59.75(0.99)
All-in-One-OOB 55.91(0.99)[b] 70.76(1.43)[-b] 60.92(0.47)[b]
Filtering-OOB 61.94(1.86)[b] 73.25(1.55)[-b] 66.55(0.62)[b]
Ensemble-OOB 48.84(1.2)[-m] 61.42(1.37)[-b] 53.27(0.35)[-b]

Neutron

WP-OOB 70.03(0.69) 91.81(0.6) 79.43(0.36)
All-in-One-OOB 73.24(0.41)[b] 91.39(0.49)[-m] 81.48(0.23)[b]
Filtering-OOB 74.89(0.44)[b] 89.63(0.53)[-b] 81.51(0.25)[b]
Ensemble-OOB 78.58(1.02)[b] 59.78(3.26)[-b] 68.28(1.39)[-b]

Npm

WP-OOB 36.99(2.15) 75.74(1.5) 45.91(0.89)
All-in-One-OOB 54.8(1.58)[b] 68.69(2.0)[-b] 59.34(0.6)[b]
Filtering-OOB 55.39(1.58)[b] 68.59(1.46)[-b] 59.68(0.53)[b]
Ensemble-OOB 54.22(1.0)[b] 51.89(1.03)[-b] 50.42(0.28)[b]

BroadleafCommerce

WP-OOB 58.44(1.55) 69.82(2.09) 60.41(0.82)
All-in-One-OOB 67.28(1.34)[b] 72.11(1.51)[b] 69.01(0.57)[b]
Filtering-OOB 67.41(0.93)[b] 70.53(0.96)[s] 68.39(0.42)[b]
Ensemble-OOB 61.96(0.88)[b] 56.48(1.07)[-b] 57.31(0.17)[-b]

Ranking

WP-OOB 2 1 3
All-in-One-OOB 1 1 1
Filtering-OOB 1 1 1
Ensemble-OOB 1 4 5

C1

WP-OOB 60.93(5.53) 38.32(4.22) 40.56(0.97)
All-in-One-OOB (combined) 30.42[-b](1.81) 67.12[b](1.91) 39.45[-b](1.45)
All-in-One-OOB (proprietary) 24.52[-b](3.5) 74.84[b](3.04) 35.76[-b](1.71)

Filtering-OOB 30.97(2.22) 67.77(1.96) 39.93[-m](1.35)

C2

WP-OOB 16.49(0.17) 87.11(0.12) 26.36(0.46)
All-in-One-OOB (combined) 44.47[b](1.1) 58.6[-b](2.23) 41.3[b](1.01)
All-in-One-OOB (proprietary) 41.12[b](1.1) 54.58[-b](1.85) 33.77[b](0.83)

Filtering-OOB 45.88(2.71) 56.64(2.83) 40.79[b](0.97)

C3

WP-OOB 52.05(4.13) 48.31(3.48) 40.28(1.05)
All-in-One-OOB (combined) 48.12[-b](1.52) 61.14[b](0.88) 43.53[b](0.88)
All-in-One-OOB (proprietary) 23.51[-b](2.41) 78.5[b](1.87) 38.97[-b](1.75)

Filtering-OOB 47.36(1.33) 61.12(1.47) 43.05[b](0.63)

Ranking

WP-OOB 1 3 2
All-in-One-OOB (combined) 2 2 1
All-in-One-OOB (proprietary) 3 1 2
Filtering-OOB (combined) 2 2 1

Dataset Approach Recall0 Recall1 G-Mean

Tomcat

WP-ORB 58.41(1.7) 64.49(1.19) 59.78(0.82)
All-in-One-ORB 61.98(1.17)[b] 63.38(0.73)[-b] 61.72(0.8)[b]
Filtering-ORB 61.07(0.88)[b] 63.31(0.72)[-b] 61.25(0.47)[b]
Ensemble-ORB 61.75(1.21)[b] 47.67(1.06)[-b] 50.82(0.34)[-b]

JGroups

WP-ORB 61.18(0.7) 56.93(1.26) 57.2(0.79)
All-in-One-ORB 62.77(0.93)[b] 56.67(0.95)[*] 57.92(0.65)[b]
Filtering-ORB 63.05(1.06)[b] 57.21(1.24)[s] 58.29(0.67)[b]
Ensemble-ORB 83.72(0.32)[b] 20.1(0.41)[-b] 37.35(0.32)[-b]

Spring-integration

WP-ORB 71.92(0.98) 45.83(1.29) 51.73(0.77)
All-in-One-ORB 67.51(0.84)[-b] 69.48(1.03)[b] 67.77(0.74)[b]
Filtering-ORB 68.57(0.82)[-b] 69.93(0.81)[b] 68.61(0.57)[b]
Ensemble-ORB 74.61(0.47)[b] 39.98(0.66)[-b] 52.4(0.53)[b]

Camel

WP-ORB 59.59(1.16) 70.11(1.13) 62.92(0.96)
All-in-One-ORB 59.12(0.51)[-m] 73.1(0.55)[b] 65.0(0.44)[b]
Filtering-ORB 58.58(0.61)[-b] 72.7(0.52)[b] 64.48(0.42)[b]
Ensemble-ORB 61.46(0.86)[b] 52.33(1.11)[-b] 54.26(0.5)[-b]

Brackets

WP-ORB 61.31(0.73) 76.66(1.41) 63.31(0.48)
All-in-One-ORB 66.9(1.01)[b] 74.94(1.68)[-b] 69.98(0.86)[b]
Filtering-ORB 66.34(0.9)[b] 75.35(1.31)[-b] 69.78(0.73)[b]
Ensemble-ORB 61.7(1.07)[m] 69.14(1.21)[-b] 64.71(0.74)[b]

Nova

WP-ORB 74.25(1.47) 80.57(2.6) 75.42(0.64)
All-in-One-ORB 74.15(0.87)[-*] 81.95(1.25)[b] 77.28(0.32)[b]
Filtering-ORB 72.72(0.21)[-b] 82.85(0.53)[b] 76.83(0.34)[b]
Ensemble-ORB 76.76(0.74)[b] 68.42(1.77)[-b] 71.7(0.58)[-b]

Fabric8

WP-ORB 61.32(2.13) 67.83(1.3) 61.42(1.02)
All-in-One-ORB 57.39(1.41)[-b] 73.78(1.4)[b] 63.7(1.02)[b]
Filtering-ORB 64.14(0.61)[b] 71.8(1.07)[b] 67.42(0.41)[b]
Ensemble-ORB 49.61(1.22)[-b] 65.68(1.2)[-b] 55.91(0.58)[-b]

Neutron

WP-ORB 80.47(1.68) 79.52(1.85) 79.52(0.57)
All-in-One-ORB 75.34(0.56)[-b] 87.53(0.88)[b] 80.72(0.39)[b]
Filtering-ORB 73.96(0.73)[-b] 88.94(1.02)[b] 80.62(0.46)[b]
Ensemble-ORB 77.01(1.52)[-b] 72.02(3.35)[-b] 74.28(1.08)[-b]

Npm

WP-ORB 54.93(1.15) 63.67(1.3) 53.81(0.94)
All-in-One-ORB 50.95(1.54)[-b] 76.91(1.89)[b] 60.03(1.09)[b]
Filtering-ORB 51.23(3.95)[-b] 73.26(3.88)[b] 59.15(1.91)[b]
Ensemble-ORB 52.48(1.23)[-b] 56.11(0.95)[-b] 52.41(0.57)[-b]

BroadleafCommerce

WP-ORB 59.43(2.91) 65.93(2.96) 59.72(1.26)
All-in-One-ORB 66.78(0.84)[b] 70.12(1.0)[b] 67.85(0.57)[b]
Filtering-ORB 66.83(0.63)[b] 69.2(1.45)[b] 67.51(0.84)[b]
Ensemble-ORB 61.57(1.18)[b] 59.13(1.44)[-b] 58.94(0.44)[-m]

Ranking

WP-ORB 1 2 2
All-in-One-ORB 1 1 1
Filtering-ORB 1 1 1
Ensemble-ORB 1 3 4

c1

WP-ORB 58.15(4.91) 40.56(4.66) 33.04(2.3)
All-in-One-ORB (combined) 46.46[-b](4.49) 47.98[b](3.89) 33.29[*](2.54)
All-in-One-ORB (proprietary) 34.44[-b](0.49) 59.36[b](0.47) 26.2[-b](0.71)

Filtering-ORB 43.63[-b](4.81) 51.16[b](4.16) 31.68[-s](2.81)

c2

WP-ORB 16.3(0.11) 87.14(0.04) 25.81(0.32)
All-in-One-ORB (combined) 44.58[b](9.89) 56.03[-b](7.71) 43.53[b](3.37)
All-in-One-ORB (proprietary) 26.65[b](5.99) 76.45[-b](6.74) 36.86[b](3.7)

Filtering-ORB 52.54[b](7.32) 48.5[-b](8.29) 44.31[b](3.71)

c3

WP-ORB 49.64(4.43) 51.2(7.06) 39.79(1.14)
All-in-One-ORB (combined) 64.04[b](1.01) 48.98[-s](1.46) 42.85[b](0.79)
All-in-One-ORB (proprietary) 57.95[b](0.83) 50.52[-s](1.08) 39.78[*](0.61)

Filtering-ORB 62.97[b](1.01) 48.07[-m](1.54) 41.76[b](0.73)

Ranking

WP-ORB 2 2 3
All-in-One-ORB (combined) 2 3 1
All-in-One-ORB (proprietary) 2 2 2
Filtering-ORB (combined) 1 3 1

Top G-Means for each dataset are in bold. Standard deviations are shown in brackets. Symbols [*], [s], [m] and [b] represent insignificant, small, medium
and large A12 effect size against the corresponding WP approach (WP-OOB or WP-ORB). Presence/absence of the sign “-” in the effect size means that the
corresponding approach was worse/better than the corresponding WP approach. Scott-Knott.BA12 was run for all OOB- and ORB-based approaches
together. For each performance metric, one test was run for the open source, and one test was run for the proprietary data results. The groups’ rankings
retrieved by Scott-Knott.BA12 are shown in the ranking rows, with smaller numbers indicating better rankings.

Specifically, studies in offline scenarios ignore the chronology of
the projects. When the target and other projects have an overlap
in their development period, offline CP approaches train their in-
dividual classifiers with a considerably larger amount of data that
would still not have been available for training in practice, leading
to overoptimistic estimates of predictive performance.

In terms of recalls for the open source datasets, WP-OOB per-
formed generally poorly in terms of Recall0, while Ensemble-OOB,
Ensemble-ORB and WP-ORB performed generally poorly in terms
of Recall1. As a result, these approaches ranked worse than the
others on these performance metrics. The recalls of the approaches
across data sets are influenced by trade-offs between Recall0 and Re-
call1, resulting in several approaches obtaining the same best rank

across datasets. This is because a given approach sometimes per-
forms better in terms of Recall0 and sometimes in terms of Recall1,
resulting in a the same rank among approaches across datasets.
However, given the G-Mean results, which combine Recall0 and
Recall1, the trade-offs between recalls obtained by All-In-One and
Filtering were better than those obtained by WP and Ensemble.

All-in-One (combined) and Filtering (combined) were the best
ranked in terms of G-Mean for the proprietary projects, according to
Scott-Knott.BA12 (Table 3). Effect sizes varied from insignificant to
large. In particular, All-in-One-OOB (combined) obtained G-means
up to 14.94% better (for C2) than those of WP-OOB, and Filtering
(combined) obtained G-means up to 18.5% better (for C2) than those
of WP-ORB.
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Interestingly, both All-in-One-OOB and All-in-One-ORB using
only the proprietary CP data did not perform so well, and were
ranked second in terms of G-Mean, together with WP-OOB. WP-
ORB was the worst ranked approach in terms of G-Mean. These
results again show that open source data can be helpful for propri-
etary JIT-SDP predictions. They also suggest again that the number
and variety of training examples used for training a classifier is
a key factor for obtaining better G-Means, as the All-in-One ap-
proach using only the proprietary CP data was trained on less CP
data. However, the G-Mean values obtained when predicting the
proprietary data were in general much lower than when predicting
the open source data, even when using all the open source data as
CP data. This suggests that having a good amount ofWP data is also
important. The importance of the number of WP training examples
is also supported by the (lower) overall G-Mean during the initial
phase of the open source projects (Table 2) against the (higher)
overall G-Mean across the whole open source projects (Table 3). So,
both open source and proprietary projects need a good number of
WP training examples to perform well.

In terms of recalls, the results for the proprietary datawere varied.
All-in-One-OOB trained only with proprietary CP data ranked best
in terms of Recall1, but worst in terms of Recall0. WP-OOB and
Filter-ORB ranked best in terms of Recall0, but were in the worst
group in terms of Recall1.
RQ3: Merging CP and WP data together (All-in-One or Filtering) to
train a classifier achieved up to 16.88% higher overall G-Mean than
WP classifiers for the open source, and up to 18.5% higher overall
G-Mean for the proprietary data in an online scenario. There was no
evidence that filtering out training examples dissimilar to the recent
software changes of the target project is helpful to improve overall
predictive performance. Building separate classifiers from individual
projects (Ensemble approach) was detrimental.

7 THREATS TO VALIDITY
Internal validity: each approach for each dataset with each clas-
sifiers has been executed 30 times to mitigate threats to internal
validity. Also, results can be influenced by poor parameter choices.
To mitigate this threat, a grid search was performed on a set of
possible values for each parameter based on an initial portion of the
data stream (see Section 5). Besides, all approaches take verification
latency into account and fully respect chronology.

Construct validity: The evaluation metrics used in this work are
G-Mean, Recall0, and Recall1. These are widely used metrics appro-
priate for class imbalance learning [33]. Predictive performance is
calculated in a prequential way with fading factor to discount older
information across time, so that plots of predictive performance
reflect the variations in predictive performance observed over time.

Statistical conclusion validity: Scott-Knott test was run with non-
parametric bootstrap sampling considering A12 effect size to avoid
concluding that there is a difference in predictive performance
when this difference is likely to be irrelevant due to low effect size.

External validity: This concerns with generalisation of the find-
ings. This study used 10 open source projects and 3 proprietary
projects of various characteristics such as programming language,
starting date, number of commits per day, etc. The results may not
be generalised for other types of projects.

8 CONCLUSION
This study investigated CP learning for JIT-SDP in a realistic online
learning scenario, using both open source and proprietary data. In
offline learning, existing CP approaches for JIT-SDP did not perform
better thanWP approaches [15]. In online learning, we showed that
CP approaches trained with incoming CP and WP data can help
to improve predictive performance over WP approaches trained
only with WP data. The All-in-One and Filtering CP approaches
were particularly helpful during the initial phase of the project
when there is not enough WP data available (RQ1), leading to up to
53.90% improvements in G-Mean. These approaches also helped to
reduce sudden drops in performance of the predictive model (RQ2)
after the initial phase of the project, achieving up to around 40%
better G-Mean during such periods of time. They also improved
overall predictive performance (RQ3) compared to theWP approach,
obtaining up to 18.5% higher overall G-Mean.

Even though the ensemble approach was shown to perform well
in offline learning [15], it was the worst approach when considering
a realistic online learning scenario, obtaining average G-Means that
were even lower than those of the WP approach. This indicates
that splitting data from different projects may not be appropriate
in online scenario. On the other hand, training a single model
combining CP andWP together (All-in-One) significantly improved
performance, hence is more suitable in online JIT-SDP. Our results
indicate that both the number of CP and WP training examples is
important for achieving good predictive performance in JIT-SDP.
Filtering out very different CP examples did not improve the models
performance significantly compared to the All-in-One approach.

Our work has practical implications which are described below:

• In online JIT-SDP, if practitioners use CP data along with
WP data, this can prevent the performance of the model to
become very low at the initial phase of a project which often
occurs due to lack of sufficient training data. This will enable
practitioners to use JIT-SDP earlier during the development
of a project (RQ1).
• WP models can suffer performance drops which cause them
to be unsuitable during certain periods of time. These drops
mean that, at any given point in time, models may be per-
forming very well or very poorly, being unreliable for practi-
tioners. Using CP data along withWP data can overcome this
issue by helping to prevent or reduce such drops, enabling
practitioners to more continuously use JIT-SDP throughout
the lifetime of the project (RQ2).
• The combined use of both WP and CP data through All-in-
One and Filtering improves overall predictive performance
of JIT-SDP compared to WP classifiers (RQ3). Our study
indicates the importance of the amount of training data.
Practitioners should consider collecting large amounts of
both CP and WP training data when adopting JIT-SDP.

Future work includes incorporating additional longer running in-
dustrial projects and additional open source projects, investigation
of different CP approaches for online JIT-SDP, and investigation of
methods for automatically adjusting the hyperparameters of the
approaches over time.
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