Hyperon: An Online Hyperparameter Tuning
Approach for Data Stream Learning

Sadia Tabassum and Leandro L. Minku
School of Computer Science, University of Birmingham
Birmingham, United Kingdom
sxt901 @alumni.bham.ac.uk, L.L.Minku@bham.ac.uk

Abstract—Predictive models built using machine learning al-
gorithms usually involve a number of hyperparameters that can
significantly affect their performance. While many approaches
for hyperparameter tuning have been investigated for offline
learning, there is little work in the context of online data
stream learning. Hyperparameter tuning for online data stream
learning can be particularly challenging, due to possible changes
in the underlying distribution of the problem. Such changes
can result in the best hyperparameter choice varying over
time, requiring efficient, real-time online adaptation. However,
existing online hyperparameter tuning approaches are limited
to specific models, are susceptible to local optima, rely on fixed
hyperparameter grids, or on concept drift detection methods.
We propose a novel online hyperparameter tuning approch for
data stream learning called Hyperon to overcome these issues.
Hyperon intertwines online data stream learning with a steady-
state evolutionary algorithm, enabling efficient and effective
hyperparameter optimisation over time. Experiments on 10 real
world data streams show that Hyperon is able to significantly
improve the predictive performance of the underlying online data
stream learning approach in a computationally efficient manner.

Index Terms—Hyperparameter tuning, online data stream
learning, evolutionary computation.

I. INTRODUCTION

Predictive models built using machine learning algorithms
usually involve a number of hyperparameters. Unlike ‘model
parameters’ which are learned during the training of the model,
‘hyperparameters’ need to be carefully set before running the
algorithm. Hyperparameters are critical for predictive models
as different hyperparameter choices can lead to different pre-
dictive performances [2]. Therefore, several hyperparameter
tuning algorithms have been proposed.

Hyperparameter optimisation techniques, such as Grid
search and Random search [3], are predominantly designed for
offline settings. These methods operate under the assumption
that the entire dataset is stationary, fully accessible, and
does not change over time. However, many machine learning
problems are data stream learning problems, where data arrive
sequentially over time, requiring online learning algorithms
capable of learning new examples without requiring retraining
on all previous data. Some examples are software defect pre-
diction [4], fraud detection [5], electricity price prediction [6].
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Some applications such as “TinyML” with on-device learning
also require online learning with strict memory constraints [7].

Online data stream learning presents unique challenges for
hyperparameter tuning. As data distributions in online envi-
ronments often evolve over time (concept drift), the optimal
hyperparameter configurations may change over time, and
static settings chosen at the beginning can become suboptimal,
leading to significant performance degradation. Although not
all data stream learning problems exhibit such variability [8],
the need for adaptive hyperparameter tuning methods is crucial
to maintain optimal predictive performance in several real-
world applications [9], [10].

Existing studies on hyperparameter tuning for data streams
[9], [11]-[15] are limited to specific models or tasks, rely
on periodic batch retraining, rely on concept drift detection
methods, or impose high computational overhead, restricting
their practical applicability. Additionally, in online data stream
learning, the conventional use of static, pre-defined training
and validation sets becomes infeasible due to the continuous
arrival of data, limited memory resources, the presence of
concept drift, and the need for real-time model adaptation.
Therefore, an efficient online hyperparameter tuning approach
is required which is adaptive and able to operate under these
constraints. This paper proposes a novel online hyperparame-
ter tuning approach for this purpose. It answers the following
research questions:

e RQI1: How to automatically tune hyperparameters in an
online and adaptive manner? To what extent can this help
improving predictive performance?

e RQ2: How high is the computational cost of online hy-
perparameter tuning approach? In particular, how feasible
is the new approach in terms of runtime?

To answer the above RQs, we propose a novel online evo-
lutionary hyperparameter tuning approach for online learning,
that explores the hyperparameter space and updates the predic-
tive model with appropriate hyperparameters over time. Our
experiments based on 10 real-world data streams show that
the proposed online hyperparameter tuning approach signifi-
cantly improved the predictive performance of online models
compared to an upper bound of performance achievable by
online Grid Search (RQ1). Although our proposed approach
has a higher computational cost compared to Grid search, the
computational cost was still minimal, making it suitable for



adaption in practice (RQ?2).

The overall contributions of the paper are following:

o Proposal of a novel online hyperparameter tuning ap-

proach based on evolutionary optimisation.

o Empirical demonstration that online tuning improves pre-

dictive performance over time.

« Evidence that the proposed approach is computationally

feasible for practical deployment.

This paper is further organised as follows. Section II
presents the problem formulation. Section III presents related
work. Section IV introduces our online hyperparameter tuning
approach. Section V presents the investigated datasets. Section
VI explains the experimental setup for answering the RQs.
Section VII explains the results of the experiments. Section
VIII presents the conclusions and future work.

II. PROBLEM FORMULATION

We consider online data stream learning problems where
Strain = {(Xt,yt) 2, is a sequence of training examples
received over time, x; are the input features, y; is its cor-
responding label, and ¢ is the time step when the label of
the training example arrived. The labels arrive with a delay
compared to the input features, a phenomenon known as
verification latency [16]. In particular, a given example (x¢, y:)
is used for training and hyperparameter tuning J; > 0 days
after it is used for testing. Each example (x;,3;) comes
from an underlying joint probability distribution that was
active when the input features were produced. This distribution
may change over time, a phenomenon known as concept
drift [17]. This may cause the best hyperparameter choice
to potentially change over time. Our problem is to optimise
the hyperparameter choice for online learning models at each
time ¢t so that the models will perform well for the current
underlying probability distribution. The online hyperparmeter
tuning algorithm may rely on a limited-size window of recent
training examples including (x¢, y).

ITI. RELATED WORK
A. Offline Hyperparameter Tuning

Several offline hyperparameter tuning approaches exist.
They search for optimal hyperparameter values based on a
pre-defined validation set. Grid Search is a common brute
force method for this purpose [4]. It is easy to implement,
but inefficient when the number of hyperparameters increases,
being unsuitable for high dimensional spaces [18]. Random
search was proposed to be used for hyperparameter tuning by
Bergstra et al. [19] and was shown to be able to find models
that are as good or better within less computational time than
grid search, being more efficient in high dimensional spaces.

Gradient descent methods have also been used for hyperpa-
rameter tuning. A study [20] used reversed stochastic gradient
descent with momentum to compute the gradient with respect
to all continuous hyperparameters. Another study [21] used
approximate gradient instead of true gradient because com-
puting an exact gradient can be computationally demanding.
However, these techniques can get stuck in local optima.

Other hyperparameter tuning approaches are based on meta-
heuristic optimisation, which are well known to improve
robustness to local optima. Genetic algorithm is widely used
for hyperparameter optimisation [22]. HyperOpt [23] adopts
Bayesian optimisation for both model selection and hyperpa-
rameter optimisation. It uses a surrogate model to approximate
the objective function and an acquisition function to direct the
samples towards areas where an improvement over the current
best observation is likely [24], [25].

Reinforcement learning has also been used for hyperparam-
eter tuning. Bandit-based algorithms such as Successive Halv-
ing [26] and Hyperband [27] have shown success. Successive
halving eliminates half of the poorly performing hyperparam-
eters and allows more budget to the better-performing half
to be evaluated in next iteration. However, allocating budget
efficiently is a concern for Successive Halving. Hyperband
deals with this by achieving a good trade-off between the
number of hyperparameters and their allocated budget.

All studies above require a pre-existing validation set to
evaluate different hyperparameter choices. When dealing with
data streams, such choices may become inadequate over time.

B. Batch-Based Hyperparameter Tuning

Batch-based hyperparameter tuning approaches are simi-
lar to offline ones, but enable hyperparameter values to be
changed over time. These approaches process data in batches
/ chunks and perform tuning by applying an offline tuning
approaches on a validation set that is either sampled from each
batch, or consists of the previous batch of training examples.

Jie et al. [14] proposed a hyperparameter optimisation
technique called Hypertube. They introduced a set of initial
settings based on a micromini-batch training mechanism and
used a Genetic Algorithm to create new candidate hyper-
parameters. As it re-optimises from scratch for each new
batch, it has high computational cost and wastes potentially
useful knowledge about past hyperparameter values that may
have performed well. Joy et al. [15] proposed a Bayesian
optimisation for hyperparameter tuning in data streams [15],
by dividing the data stream into batches and generating
hyperparameter combinations for a given batch based on their
performance on the previous batches.

Despite these approaches being applicable to data streams,
they still apply offline tuning procedures for each batch.
They also have to wait for a new batch to arrive before
hyperparameter values can be updated, delaying adaptation.

C. Online Hyperparameter Tuning

Hyperparameter tuning in online learning scenarios can be
challenging due to the constraints that it presents such as con-
tinuous learning from data streams and dealing with concept
drifts caused by changes in the data generating process.

In data stream learning, there are two types of approaches
can be identified based on concept drift handling: non-explicit
approaches, which adapt hyperparameters without relying on
explicit drift detection, and explicit approaches, which rely on
a drift detection mechanism to trigger adaptation.



There are several existing non-explicit hyperparameter tun-
ing approaches in data stream learning. A study [11] proposed
an incremental learning-model selection method for support
vector machine (SVM) for data streams, which involves incre-
mental tuning of the hyperparameters of the SVM. However, it
is limited to SVMs. Another study [28] proposed an algorithm
that computes the hyper-gradient on the fly when a new datum
is observed and then the average of the historical hyper-
gradient is computed. However, it is mainly tailored for Kernel
Ridge Regression, and might not generalise for other models
or complex data where the hyper-gradients is unreliable.

Lin et al. [12] performed online hyperparameter optimi-
sation for auto-augmentation inspired by a forward hyper-
gradient approach. However, their approach still needs a sep-
arate fixed, pre-defined validation set, making it less suitable
for fully online learning. In addition, it only searches within
a fixed set of step changes (augmentation), limiting its ability
to find new augmentation strategies dynamically. An online
supervised hyperparameter tuning procedure based on online
grid search called Dycom was proposed in [13]. This approach
operates in a strict online manner, but is limited to a grid
of hyperparameter configurations. Interestingly, there are no
online random search tuning methods in the literature.

There are also some explicit approaches. Veloso et al. [9]
proposed an approach called SSPT, by adjusting the Nelder-
Mead optimisation procedure to work with data streams. How-
ever, the Nelder-Mead algorithm can get stuck in local optima
or non-stationary points [29], and can be very inefficient for
high dimensional problems [30], [31]. An approach based on
differential evolution called MESSPT was proposed in [32] to
overcome this problem. However, it generates and maintains
very few new configurations over time, potentially requiring a
large number of iterations to find good values, and thus being
more suitable for very high speed data streams. However,
these approaches rely on a concept drift detection method to
trigger a hyperparameter optimisation phase, being prone to
false positive and negative detections.

Overall, though addressing some challenges in online hyper-
parameter tuning, existing online methods suffer from model-
specific designs, limited flexibility or fixed hyperparameter
grids, susceptibility to local optima, high computational costs,
or reliance on very high speed data, or on drift detection
methods. These gaps highlight the necessity for an adaptive,
model-agnostic, and resource-efficient online tuning approach
that can dynamically adjust hyperparameters in real time.

IV. PROPOSED APPROACH

This section proposes a novel online hyperparameter tuning
approach — Hyperon, which is a non-explicit hyperparameter
tuning approach, i.e., it does not rely on drift detection.
The proposed algorithm itself is presented in Section IV-A,
while Section IV-B explains the evolutionary algorithm Asyn-
chronous Differential Evolution with Adaptive Correlation
Matrix (ADE-ACM) [33] adopted within Hyperon and how
Hyperon interacts with it.

A. Hyperon

Hyperon is an online meta-heuristic algorithm that searches
for good hyperparameter configurations over time through the
data stream. It maintains a pool of online learning models
trained based on different hyperparameter combinations. The
hyperparameters used by the models in this pool are evolved
based on a steady-state evolutionary algorithm. Hyperon con-
siders each candidate solution #; ! in the evolutionary al-
gorithm as a vector containing the hyperparameters of the
underlying machine learning algorithm being tuned. Hyperon’s
hyperparameter optimisation iterations are intertwined with
the learning of incoming examples, such that the evolutionary
algorithm is run in an online manner together with the training
of the online learning models. The models in the pool are
evaluated based on a sliding window containing the most
recent labelled examples. Such evaluation is used both as
the fitness function for the evolutionary algorithm and to
determine the most promising hyperparameter configuration,
which is then used for predicting new incoming examples.

The evolutionary algorithm adopted by Hyperon is ADE-
ACM [33]. We have adopted this algorithm due to it being
quasi-parameter-free from the user’s perspective, which makes
it a suitable option to adopt in Hyperon to search for new
hyperparameter combinations. Many evolutionary algorithms
are generation-based strategies where evolutionary operations
are performed on a large portion of the population to generate
offspring solutions. Typically the number of generated off-
spring is the same as the population size. Offspring solutions
then replace old solutions of the population. This makes such
algorithms impractical for continuous optimisation. We used
steady-state ADE-ACM, where evolutionary operations are
performed on a (few) selected member(s) of the population
instead of a large portion of the population. Typically, only
one new solution can be inserted into the population, allowing
the new better solution to take part in the evolution process
without any time lag [33]. Vavak et al. [34] showed that the
steady version outperforms the generational genetic algorithm
regarding the convergence speed for real-time/non-stationary
environments. Hence, a steady-state optimisation algorithm
would be more suitable to tune hyperparameters in online data
stream learning.

Algorithm 1 shows the pseudocode of the Hyperon ap-
proach. It generates an initial set of hyperparameter com-
binations H (line 1). This initial set is randomly sampled
from a grid of possible values. One of the combinations in
H is enforced to be the default combination typically used
with the underlying machine learning algorithm. This avoids
poor initial performance resulting from the use of completely
random hyperparameter values in the beginning of the data
stream. A pool M of n models is created, where each model
corresponds to a hyperparameter combination in H (line 2).

When a training example d* = (x4, ;) from the training
data stream Sypqin arrives, each model m, in the pool M
makes a prediction, which is stored in a list Y (line 4).

INote that this is different from the input feature vector x;.



Algorithm 1 Proposed Hyperon Approach

Input: S;,.;, = training data stream b = test project index,
w = waiting period, h = default hyper-parameter combination,
M : {m1,m2,...,m,} = Pool of models,

Algorithm Hyperparameters: minAge = minimum age of
the model to be old enough, windowSize = max size of the
most recent instance window, ealnterval = interval to run
ADE-ACM, n = max number of models

Variables: InstWindow = window of most recent instances,
ErrorWindow = window containing the prediction errors
of classifiers on InstWindow, fitlist = hyperparameters of
models in M with their fitness.

1: Generate set of random hyper-parameter combination
and add default hyper-parameter combinations H
{h1,h2,....;hp,} U{h}

2: Initialise model pool M consisting of n models {m1, ma,
...... , My, } using n hyperparameter combinations from H

3: for each training example d; = (X¢,y:) in Strain do

4 Y=List of predictions on x; by each model m in M
5: for each model m,, in M do

6: Update ErrorWindow|[m,] with (Y[m,]! = y;)
7 fitlist[my)|=fitnessCalc(m,)

8 Train model m,, with d;

9

: end for

10: if t % ealnterval == 0 then

11 fitny = ADE-ACM(fitlist), Mpew and
errorsy,, ., are the new model and its mistakes

12: if fit,/ is better than the old enough worst model
Mayrst 1N the pool M then

13: Del myrs¢ from M, ErrorWindow, fitlist

14: Add mpew, fitpy and errorsy,,., to M,
fitlist and ErrorWindow, respectively

15: end if

16: end if

17: Yield the best fitness model from M as the one to be
used for testing purposes
18: end for

19: function MODELEVAL(m,¢q)
20: of fspringError =[]

21 for each training example d; = (x;,y;) in
InstWindow do

22: Uj = Mpeyw-predict(x;)

23: of fspringErrormpnew] = (g;! = y;)

24: Mpew-train(d;)

25: end for

26: Return fitnessCalc(Myew)

27: end function

28: function FITNESSCALC(m,,)
29: fitlistimp) =0

30: for each err in ErrorWindow[m,] do
31 fitlistimy] += err

32: end for

33: fitlist[mp) /1= windowSize

34: end function

Each model m,, in M is also associated to an error window
ErrorWindow containing the classifier’s mistakes (1 for
mistake and O otherwise) on the most recent windowSize
instances of Sy.qin, and a list fitlist to keep track of the
hyperparameter values and fitness of that model. Fitness is
the rate of mistakes in the error window for a model (line 28).
Next, ErrorWindow and fitlist are updated for each model
in M (line 6-7). Then, each model m,, in M is trained with
dy (line 8). It is important that the training on d; is done after
this example is used for estimating the error for ErrorWindow,
to avoid underestimations of the error.

After that, Hyperon checks whether it has seen a certain
number of training examples, which is denoted by ealnterval
(line 10). At every ealnterval, ADE-ACM is run to create
a new hyperparameter combination (line 11). Hyperon’s func-
tion Model Eval enables ADE-ACM to evaluate the fitness
of this new combination by creating a new predictive model
by prequentially evaluating-then-training it on each training
example stored in the InstWindow. If ADE-ACM produces a
hyperparameter configuration with better fitness than its parent
configuration, it returns the new hyperparameter combination
and its fitness value fity . Its corresponding model and errors
on InstWindow are named m,new and errors ETTOT Sy, news
respectively. Then, Hyperon selects the model with the worst
fitness my,-s¢ from M, and compares it with fity, (line 12).
If fity is better than the fitness of Mg, then my,.s; and
its corresponding positions in ErrorWindow and fitlist
are deleted (line 13). Next, the new model m,new and its
corresponding fit;, and errors ETTOrSim,new are added to M,
fitlist and ErrorWindow (line 14).

Hyperon always yields the best model from M whenever
a new training example is received (line 17). Therefore, even
when ealnterval > 1, the approach can still continuously
choose the best among the models in the population.

B. ADE-ACM

This section explains ADE-ACM [33] and how Hyperon
interacts with it to optimise hyperparameters in an online
manner. The pseudocode of ADE-ACM is shown in Algorithm
2. ADE-ACM maintains a population P of vectors ;. In
the case of Hyperon, P is taken as fitlist from Hyperon.
A “target” vector Z; is selected randomly from P. Mutation
is applied on it to create a mutant vector (line 1) as follows:

171' = fz + F % (fbest - f’L) + I x (frl - fr2)a (1)

where F' is the mutation factor, &; is the target vector, Tpess 1S
the current best vector in the population, 7,1 and &, are two
randomly selected vectors different from Z; and Zpess. F is
sampled from a Cauchy distribution as below using a location
parameter p - F' and a scale parameter o - F':

F = randc(uF,cF). (2)

This mutation operator moves the vector Z; in the direction
of the best vector to encourage improvement in fitness and in
another random direction to encourage diversity, resulting in
exploration of novel areas of the search space.



Algorithm 2 ADE-ACM pseudocode [33], [35]

Input: current population P, dimension D, learning rate
clr=0.01, mutation factor F'=0.5, location parameter uF'=0.5,
scale parameter o F'=0.1, approximated correlation matrix C

Randomly select a target vector z; from P

1:

2: Create a mutant vector using Eq. 1 with uF, oF

3: § = sample correlation matrix from P

4: Select a random coordinate m and random threshold ¢y,

5: Get set of variables correlated with m from C using Eq. 3

6: Create a trial vector using Eq 4

7. if (trial_vector fitness < target_vector fitness) then

8: C=(0-cr)«C+clr=S

9: Update uF' = (1 — clr)uF+ clr = L2(F) // L2(F)
is a contraharmonic mean of a set of all scale factors
associated with the current population

10: return trial_vector and its fitness

11: else

12: return null

13: end if

Instead of using a crossover rate, ADE-ACM modifies
the crossover operator to take into account pairwise depen-
dencies between the variables. The current population P is
used to calculate a sample correlation matrix (line 3). The
approximation C' of the correlation matrix is cumulatively
adapted through successful evolutionary steps (lines 7—8). The
advantage of covariance matrix adaptation is that it can tackle
ill-conditioned and non-separable problems. By analysing all
elements of the adaptive correlation matrix C, ADE-ACM
identifies correlated variables, which define a subspace in the
search domain.

For a random index m and a randomly selected threshold
cthr, the algorithm identifies variables correlated with m as
(line 4-5):

{Im} = V] :‘ Cmj |> Cthr- 3)

Crossover moves all components of mutant vector ¥; whose
indices are in {I,,} to a trial vector @;, and other components
are taken from the target vector &; (line 6) as shown below,
eliminating the need for a crossover rate:

if je{In}
otherwise.

“4)

Next, we compare the fitness of the trial vector and the target
vector. We get the fitness of the target vector from fitlist
from Hyperon, that contains fitness values of solutions in the
current population. The fitness of the trial vector is computed
over InstWIndow using the ModelEval function in line
19 of the Hyperon algorithm, where my,, is a new model
initialised with the hyperparameters defined in the trial vector
;. If the trial vectors’ fitness is better than the fitness of the
target vector, C' and pF' are updated, and the trial vector is
returned as the new hyperparameter combination (line 7-13).

Zhang et al. [36] investigated different variants of differ-
ential evolution and found that automatic adaptation of the

control parameters as done above can be effective and helpful
in improving the algorithm’s robustness.

V. DATASETS

For this study, we used 13 datasets extracted from open-
source software repositories [16]. Table I summarises key
dataset characteristics. They represent sequential software
change data described by 13 numeric and 1 binary feature,
with associated labels indicating whether they are defect-
inducing changes, allowing us to evaluate online hyperparam-
eter tuning approaches in a real-world, evolving data stream
scenario. These datasets have been shown to present temporal
dependencies and evolving data distributions [4], [16], [37],
making them ideal for studying online hyperparameter tuning.
Additionally, they are affected by class imbalance, as defect-
inducing changes are less frequent, and verification latency,
since labels for defects are only available after later cor-
rective commits. These properties make the datasets highly
representative of dynamic, non-stationary data streams. Three
of these datasets were used for the sole purpose of tuning
the hyperparameters of the hyperparameter tuning approaches
themselves, enabling us to choose default values to be adopted
for all other 10 data streams, which were used in our analyses.

VI. EXPERIMENTAL SETUP
A. Compared Approaches

To answer RQI1, the predictive performance achieved by
Hyperon is compared against the following approaches:

o Offline Grid Search (Fixed Configuration): This baseline
uses a conventional grid search performed on the initial
3,000 data instances. The hyperparameter combination
that achieves the best average predictive performance
during this initial phase is then fixed throughout the
data stream. This approach is widely used in data stream
learning due to its simplicity and reflects standard practice
in many existing studies [4], [16], [37], [38]. It is included
to check whether automatically tuning hyperparameters
over time through Hyperon would outperform standard
practice.

e Theoretical Upper Bound (Online Grid Search with Per-
fect Hindsight): This is a hypothetical and non-realizable
scenario, where at each time step, the best-performing
hyperparameter configuration is selected with perfect
hindsight from the predefined grid of 243 combinations.
While not applicable in practice, this setting serves as
a theoretical upper limit, representing the best possible
performance achievable by methods relying on fixed
configuration sets. It also represents the theoretical max-
imum achievable performance of Dycom [13], the most
recent non-explicit online hyperparameter approach that
operates in a strict online manner without requiring a pre-
defined validation set.

e A dummy classifier that predicts class 1 or 0 uniformly
at random was also used to support the analysis. This
is important as it has been found that some past studies
were obtaining results worse than random guess [39].



TABLE I: An overview of the datasets (adapted from [4])

Dataset Total | # Examples % Class 1 | Class 1 Median Verification Time Period
examples Latency 6; (days)
Tomcat 18907 5207 27.54 200.5798 27-03-2006 - 06-12-2017
JGroups 18325 3153 17.21 116.1565 09-09-2003 - 05-12-2017
Spring-integration 8750 2333 26.66 415.1201 14-11-2007 - 16-01-2018
Camel 30575 6255 20.46 28.1947 19-03-2007 - 07-12-2017
Brackets 17364 4047 23.31 14.454 07-12-2011 - 07-12-2017
Nova 48989 12430 25.37 88.56015 28-05-2010 - 28-01-2018
Fabric8 13106 2589 19.75 39.1833 13-04-2011 - 06-12-2017
Neutron 19522 4607 23.6 82.5097 01-01-2011 - 27-12-2017
Npm 7920 1407 17.77 111.514 29-09-2009 - 28-11-2017
BroadleafCommerce | 15010 2531 16.86 42.5818 19-12-2008 - 21-12-2017
Datasets used for tuning Hyperon’s Hyper-Parameters

Django 27364 11614 42.44 150.3181 13-07-2005 - 27-09-2019
Rails 74651 15085 20.21 153.2868 24-11-2004 - 27-09-2019
Vscode 56399 1187 2.1 37.48 13-11-2015 - 26-10-2019

Note: the class 0 verification latency is always 90 days.

The online data stream learning approach to be tuned in the ex-
periments was All-in-One Oversampling Rate Boosting (AIO-
ORB), as it has shown to perform well for the datasets used
in our experiments [37]. It has 5 hyperparameters expected to
significantly affect performance (ma_window_size, th, 10,
1 and m). To answer RQ2, computational cost of Hyperon is
compared with Offline Grid search, which will provide deeper
understanding on the feasibility of the proposed approach. All
experiments were based on thirty runs.

B. Predictive Performance

We adopt the Geometric Mean (G-Mean) of Recall on Class
0 (Recallp) and Recall on Class 1 (Recall;) as measures
of predictive performance. These metrics were computed pre-
quentially and using a fading factor to enable tracking changes
in predictive performance over time, as recommended for
problems that may suffer concept drift [40]. The fading factor
was set to 0.99 as in [16]. It is worth noting that Recally=1-
FalseAlarmRate, i.e., false alarms are taken into account
through Recally in the G-Mean. These metrics were chosen
because they have been recommended as unbiased metrics for
online class imbalance learning [17], [41], [42].

C. ORB, Grid Search and Hyperon Hyperparameters

Hyperon itself has 4 hyperparameters, which are tuned by
executing 5 runs of the algorithm with a grid search, using
3 datasets (Django, Rails and Vscode), which are different
from the 10 datasets used for evaluation as mentioend in
Section V. Being a hyperparameter tuning approach, Hyperon
is only a valid approach if it can itself work well using
default hyperparameter values. Otherwise, the problem of
tuning model hyperparameters would merely shift to tuning
Hyperon’s own hyperparameters. Therefore, these additional
datasets were used exclusively to determine default values
for Hyperon, ensuring that the algorithm can be applied
effectively in other data stream scenarios without requiring
further manual configuration. The grid search was based on
total of 144 different combinations from the following set
of values minAge = {50,500, 1000, 3000}, windowSize =
{50, 500, 1000, 3000}, ealnterval = {1000, 3000, 5000} and
ns = {20, 50,70} for each of the 3 datasets using 7000 initial

training examples. We assign a rank for each combination
for each dataset based on average G-Mean of 5 runs. The
combination with best average rank across the 3 datasets
was selected: {500;50;3000;70}. Once this hyperparameter
combination was set, it remained fixed over time, i.e., Hyperon
is used to tune the underlying machine learning algorithm, and
not to tune itself.

For initialisation of the pool in Hyperon, n hyperparameter
combinations were sampled from the following set of AIO-
ORB hyperparameter values, where the grid was based on
[16] and the values in bold are the default values adopted
in [4], [16], [37], [38]: ma_window_size = {50,100, 200},
th = {0.3,0.4,0.5}, 10 = {5,10,15}, I1 = {6,12,18} and
m = {1.5,3,5}. These combinations were also used for the
compared Grid Searches.

D. Statistical Tests and Effect Size

The predictive performances obtained using Hyperon will be
compared with Grid Search across data sets using the Scott-
Knott procedure, which ranks the models and separates them
into groups with different rankings, where smaller rankings are
better rankings. Non-parametric bootstrap sampling is used to
make the test non-parametric, as recommended by Menzies
et al. [43]. As explained by Demsar [44], non-parametric
tests are adequate for comparison across datasets. In addition,
the Scott-Knott test adopted in this paper uses the Vargha-
Delaney A12 effect size to rule out statistically significant
but small differences in performance. Specifically, Scott-Knott
only performed statistical tests to check whether groups should
be separated if the A12 effect size was not insignificant [43].
If the A12 effect size was insignificant, groups were not
separated. We will refer to Scott-Knott based on Bootstrap
sampling and A12 as Scott-Knott. BA12.

We also report the Al2 effect sizes against the Hyperon
approach for each dataset individually to support the analysis,
indicating how large the differences in performance are.

Wilcoxon rank sum test was also used to support com-
parisons between Hyperon and the Upper Bound with a
confidence level of 95% (i.e., p-value < 0.05). This test was
chosen for being a non-parametric test to compare two groups.



VII. EXPERIMENT RESULTS

A. RQI: Online Hyperparameter Tuning’s Improvements in
Predictive Performance

To evaluate the predictive performance of Hyperon, we com-
pared it with the Offline Grid Search and the dummy classifier.
Table II shows the average G-Mean of 30 runs. According to
Scott-Knott.BA12, Hyperon ranked the best (lowest) overall
ranking across datasets. A12 effect sizes of Grid Search and
dummy classifier against Hyperon were always large. Fig. 1
further shows the G-Mean over time for Hyperon in black and
for Offline Grid Search in red. The plots show that Hyperon’s
superior performance was consistently higher than that of
Offline Grid Search. Notably, even when Offline Grid Search
found strong hyperparameter choices for the initial portion
of the stream, these configurations often became worse over
time. This shows that offline approaches in general would
be unsuitable, even if they were not restricted to a grid of
hyperparameter values like the Offline Grid Search, as they
cannot change the hyperparameter choices over time.

However, it is possible that if an online grid search like
Dycom [13] was adopted, it would be able to select better
combinations from the grid over time, leading to higher pre-
dictive performance. For an impartial comparison, we consider
the Online Grid Search Upper Bound. The Wilcoxon rank sum
test shows that the difference between G-Means of Hyperon
and Upper Bound is significant (p-value=9.605e-10 < 0.05),
with Hyperon outperforming it. Hyperon achieved up to 6.9%
(for Tomcat) absolute improvement in G-Mean over the Upper
Bound. Fig. 1 shows the G-Mean over time for all of the grid’s
hyperparameter combinations in green. At each point in time,
the Upper Bound corresponds to the maximum G-Mean among
these. The plots show that Hyperon’s superior performance (in
black) was consistently higher than that of the Upper Bound.
The comparison against Upper Bound suggests that Hyperon’s
ability to investigate new hyperparameter combinations not
restricted to a grid is helpful. In particular, Hyperon employs
an evolutionary algorithm to generate new hyperparameter
combinations over time in an online fashion. This enables it
to dynamically explore and exploit the hyperparameter search
space as data continuously arrives, rather than being restricted
to a fixed set of configurations.

To obtain a more in depth understanding of this aspect,
Fig. 2 shows new hyperparameter combinations generated by
Hyperon over time that were selected for use in predictions
at least at some point in time, due to their top average
G-mean. New combinations whose models obtained better
performance than those from previous combinations are shown
as different coloured points. Even though there is a chance that
the differences in performance between these configurations
are due to the new models (with the new configurations) being
trained on the most recent window of data while old models
(with the old configurations) were also trained with additional
examples received before this window, previous work has
shown that models trained only on the most recent window of
data did not perform well on these data sets compared to ORB

trained on all examples received so far [16]. This suggests that
the better performance achieved by the models corresponding
to the new coloured combinations is likely due to the new
configurations themselves being better for the current time
period, rather than due to the different training data.

From Fig. 2, we can see that, for 5 datasets, Hyperon
managed to generate at least one new useful combination,
and for the other 5 datasets, it was able to create more
than one (up to 7) new hyperparameter combinations (for
Nova Fig. 2f) over time that performed better than the ex-
isting ones. As Hyperon creates a new combination at every
ealnterval = 3000 time steps, for larger data sets such as
Camel (30575 examples) and Nova (48989 examples), the
number of new generated combinations is larger. Hence, the
possibility of generating better new combinations is higher
compared to smaller data. However, even for some of the
smaller datasets like JGroups (18325 examples), Hyperon
managed to create 5 new better hyperparameter combinations.
These results suggest that Hyperon was able to find new useful
hyperparameter combinations for all datasets, demonstrating
that it is possible and beneficial to run evolutionary algorithms
in an online way for the purpose of hyperparameter tuning.

Hyperon improved predictive performance across all
datasets compared to Offline Grid Search and the Online Grid
Search Upper Bound. Our results highlight the importance of
changing the hyperparameter choices over time in data stream
learning rather than using offline hyperparameter tuning to fix
them at the beginning of the stream. They also suggest that
Hyperon’s ability to search for new hyperparameter configu-
rations over time (rather than being restricted to a pre-defined
grid of values) is helpful.

B. RQ2: Hyperon’s Computational Cost

Hyperon is designed as an online hyperparameter tuning
approach, where only a single iteration of the evolutionary
algorithm is executed at every ealnterval time steps. Hence,
its computational cost is expected to be much smaller than if a
full evolutionary algorithm had been run at regular intervals.
However, Hyperon still needs to train and track the perfor-
mance of multiple models simultaneously to enable continuous
learning and hyperparameter adaptation, including switching
between hyperparameter combinations that are within the pop-
ulation between EA intervals. Due to this, its computational
cost is naturally expected to be higher than that of a static
Offline Grid Search. It is thus important to check how high this
computational cost is, to understand whether Hyperon would
be feasible enough to adopt in practice. Therefore, this section
compares the computational cost of Hyperon with that of the
Offline Grid Search run on the initial portion of the stream.

Table III presents the total average runtime of Grid Search
and Hyperon in Columns 2 and 3, respectively, computed
across 30 runs for each of the 10 data streams on an Intel(R)
Xeon(R) CPU E5-2690 v3 at 2.60GHz and 16Gb of RAM.
Columns 4-5 list the average runtime per day (total runtime di-
vided by project duration in days). Column 6 shows Hyperon’s
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Fig. 2: New hyperparameter combinations discovered by Hyperon over time that obtained best g-mean. The point corresponding
to a given hyperparameter combination is plotted when this combination is selected to be used for predictions and is omitted
in the consecutive time steps where it is used, to improve readability of the plots.



TABLE II: Average G-Means of Hyperon, Grid search and Dummy classifier, A12 effect sizes, Scott-Knott. BA12 to compare
Hyperon, Offline Grid Search and Dummy classifier.

Dataset Approach G-Mean RO R1
Hyperon 72.24 (0.25) 81.26 (0.63) 64.81 (0.7)
Tomcat Offline Grid | 61.28 (0.57) [-b] | 70.23 (0.87) [-b] 55.25 (0.6) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 65.43 (1.07) 824 (1.15) 5456 (2.14)
Jgroups Offline Grid | 57.17 (0.8) [-b] 69.09 (1.46) [-b] | 51.17 (0.99) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 75.73 (0.24) 81.08 (0.38) 71.82 (0.56)
Spring-Integration Offline Grid | 66.6 (0.88) [-b] 71.91 (0.81) [-b] | 63.51 (1.51) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 74.36 (0.38) 78.96 (0.61) 70.55 (1.09)
Camel Offline Grid | 65.78 (0.57) [-b] | 67.56 (0.81) [-b] | 65.35 (0.6) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 81.51 (0.17) 81.02 (0.37) 82.31 (0.47)
Brackets Offline Grid | 73.77 (0.39) [-b] 72.5 (0.87) [-b] 75.6 (0.88) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 85 (0.15) 80.44 (0.28) 90.34 (0.45)
Nova Offline Grid | 78.97 (0.15) [-b] | 74.56 (0.37) [-b] 84.53 (0.5) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 77.37 (0.24) 79.8 (0.33) 75.26 (0.61)
Fabric8 Offline Grid | 69.01 (0.48) [-b] | 71.09 (0.62) [-b] 67.61 (1.0) [-b]
Dummy 71.59 [-b] 76.4 [-b] 81.64 [-b]
Hyperon 89.09 (0.17) 86.55 (0.37) 91.83 (0.54)
Neutron Offline Grid | 83.36 (0.24) [-b] | 80.76 (0.56) [-b] 86.3 (0.53) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 71.96 (0.39) 76.36 (0.46) 68.97 (0.98)
Npm Offline Grid | 62.64 (0.91) [-b] | 62.42 (1.65) [-b] | 66.51 (1.71) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 76.76 (0.64) 81.55 (0.63) 72.84 (1.52)
Broadleafcommerce | Offline Grid | 70.32 (0.58) [-b] | 72.33 (0.51) [-b] 69.05 (0.9) [-b]
Dummy 50.00 [-b] 50.00 [-b] 50.00 [-b]
Hyperon 1 1 1
Ranking Offline Grid 2 2 2
Dummy 3 3 3

Standard deviations are shown in brackets. Symbols [*], [s], [m] and [b] represent 11{51gn1ﬁcant, small, medium and large A12 effect size

IR

against the Hyperon approach. Presence/absence of the sign

in the effect size means that the corresponding approach was worse/better

than the Hyperon approach. Scott-Knott.BA12 was run for all approaches together. The groups’ rankings retrieved by Scott-Knott.BA12
are shown in the ranking rows, with smaller numbers indicating better rankings.

TABLE III: Average Computational Cost for Hyperon and Offline Grid search

Dataset Offline Hyperon | Offline Grid Hyperon Hyperon Runtime Per | # Training Examples | Data Stream
Grid Runtime Runtime Runtime Training After Target Duration
Runtime (s) (s) Per Day (s) Per Day (s) Example (ms) Project Starts (years)
Tomcat 1345.37 74077.76 0.32 17.35 6.067 221752 11.7
JGroups 1138.37 85753.47 0.22 16.49 5.0361 226042 14.25
Spring-integration 1152.73 70823.3 0.31 19.06 5.37707 214379 10.18
Camel 1195.2 96433.35 0.31 24.62 5.47822 218173 10.73
Brackets 1341.43 66864.03 0.61 30.53 8.33808 160880 6
Nova 1451.5 93467.23 0.52 33.34 7.55521 192119 7.68
Fabric8 1252.27 76679.72 0.52 31.59 7.14721 175211 6.65
Neutron 1274.23 81804.29 0.5 32.06 7.01441 181659 6.99
Npm 1085.07 65264.52 0.36 21.91 5.45634 198864 8.16
BroadleafCommerce 1346.53 79799.2 0.41 24.27 6.5336 206093 9.01

runtime per training example. Column 7 shows the number of
training examples in the data stream after the target project
starts, whereas the last column shows the duration of each
project in years. Note that the number of training examples
in Column 7 is larger than the number of examples from
each individual stream (Table I), as AIO-ORB is based on
online transfer learning from the different datasets [37]. The
maximum runtime of Offline Grid Search and Hyperon were
up to 0.61 and 33.34 seconds per day across the duration of
the data streams. Though Hyperon’s runtime was higher than
that of Offline Grid Search, it was still very small. Hence, it is

likely feasible enough for a variety of real-world applications.
Hyperon’s processing time per training example was at most
8.33808ms (Column 6). So, for applications with similar input
feature sizes as the ones in this study, Hyperon would be
applicable so long as the incoming rate of examples is not
larger than 1 per 8.3308ms.

Hyperon had higher computational cost compared to Of-
fline Grid Search. However, the computational cost was still
very small (less than 9ms per training example), evidencing
feasibility for practical deployment.



VIII. CONCLUSION

This study proposed a novel online hyperparameter tun-

ing

for data stream learning called Hyperon. Hyperon was

able to dynamically discover and adopt new hyperparameter
configurations throughout the data stream. It achieved up to
10.96% and 6.9% absolute improvements in G-Mean when
compared with Offline Grid Search run on an initial portion of
the data stream, and the maximum possible G-Mean obtained
by Online Grid Search (Upper Bound). Although higher than
that of Offline Grid search, Hyperon’s computational cost was
very small (less than 9ms per training example).

Our results are based on ten real world datasets. As with
any machine learning study, results may not generalise to other
datasets dissimilar to those used in the study. Future work
may incorporate additional datasets, online learning models,
baselines, and an ablation study to investigate the influence of
each of Hyperon’s components on its performance.
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