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Abstract—Just-In-Time Software Defect Prediction (JIT-SDP) uses machine learning to predict whether software changes are
defect-inducing or clean. When adopting JIT-SDP, changes in the underlying defect generating process may significantly affect the
predictive performance of JIT-SDP models over time. Therefore, being able to continuously track the predictive performance of JIT-SDP
models during the software development process is of utmost importance for software companies to decide whether or not to trust the
predictions provided by such models over time. However, there has been little discussion on how to continuously evaluate predictive
performance in practice, and such evaluation is not straightforward. In particular, labeled software changes that can be used for
evaluation arrive over time with a delay, which in part corresponds to the time we have to wait to label software changes as ‘clean’
(waiting time). A clean label assigned based on a given waiting time may not correspond to the true label of the software changes. This
can potentially hinder the validity of any continuous predictive performance evaluation procedure for JIT-SDP models. This paper
provides the first discussion of how to continuously evaluate predictive performance of JIT-SDP models over time during the software
development process, and the first investigation of whether and to what extent waiting time affects the validity of such continuous
performance evaluation procedure in JIT-SDP. Based on 13 GitHub projects, we found that waiting time had a significant impact on the
validity. Though typically small, the differences in estimated predicted performance were sometimes large, and thus inappropriate
choices of waiting time can lead to misleading estimations of predictive performance over time. Such impact did not normally change
the ranking between JIT-SDP models, and thus conclusions in terms of which JIT-SDP model performs better are likely reliable
independent of the choice of waiting time, especially when considered across projects.

Index Terms—Just-in-time software defect prediction, performance evaluation procedure, concept drift, data stream learning, online
learning, verification latency, and label noise.
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1 INTRODUCTION

Just-In-Time Software Defect Prediction (JIT-SDP) is a type
of SDP that makes predictions at the software change level,
aiming to label software changes as defect-inducing or clean
upon commit time (i.e., just-in-time) [1]. It has been attract-
ing increased interest from both industry and academia [2],
[3], [4], [5], [6]. In practice, JIT-SDP operates in an online
learning scenario, where additional software changes are
produced and labeled over time, becoming available for
training and evaluating JIT-SDP models as part of a data
stream. Ignoring the chronology nature in research studies
means that JIT-SDP models are trained with future data
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which would not have been available in practice, leading to
over-optimistic estimations of predictive performance [4].

Studies that take such chronological nature into account
found that the predictive performance of JIT-SDP models
suffers significant variations over time [5], [6], [7]. Such
variations are likely a result of variations in the defect-
generating process, which can cause JIT-SDP models to
become less suitable over time. This phenomenon is referred
to as concept drift [8]. Given the variability of JIT-SDP pre-
dictive performance over time, it is of utmost importance
for software companies to be able to continuously track the
predictive performance of JIT-SDP models over time during
the software development, so that practitioners are aware
of when a JIT-SDP model becomes unreliable. However,
there has been little discussion on how to continuously
evaluate predictive performance in practical scenarios, and
such evaluation is not straightforward.

In particular, any procedure for continuously evaluating
predictive performance would rely on labeled data being re-
ceived over time. However, the labels attributed to software
changes over time may not be immediately reliable, because
it takes time for the true label of a software change to be
revealed in real scenarios [6], [8]. So, examples may need to
be created based on observed rather than true labels.

A software change is labeled to produce a defect-
inducing example when a defect is found to be induced by
it. A software change is labeled as clean when no defect has
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yet been found to be induced by it and enough time has
passed for one to be confident that this software change is
clean. Such length of time is referred to as waiting time [6].
As the time it takes to find defects associated to a software
change is a priori unknown and may vary from software
change to software change, the need for adopting a waiting
time is inherently associated to label noise. In particular, the
clean observed label resulting from the waiting time may
or may not be the same as the true label of the software
change. Whenever it is not the same, a noisy example is
created. Such noise caused by the waiting time may affect
not only the training of JIT-SDP models, but also the validity
of any procedure to continuously evaluate the predictive
performance of JIT-SDP models over time. However, the
impact of such noise has not yet been investigated.

Waiting time is a controllable parameter and different
values may induce different observed labels for the same
software change. A large waiting time may alleviate label
noise as we wait for longer time for defects to be found.
However, a large waiting time increases the time it takes
for labeled examples to be produced. So, by the time an
example is produced, it may be obsolete and not represent
the current defect-generating process well anymore, due
to concept drift [5]. Therefore, the chosen waiting time
has ramifications on the evaluation procedures of JIT-SDP
models. Any evaluation based on high levels of label noise
or on obsolete / unrepresentative examples as a result of an
inadequate waiting time can potentially be invalid.

However, such ramifications have not yet been analyzed
in the literature. In particular, whether and the extent to
which waiting time has an impact on the procedure to
continuously evaluate JIT-SDP models is unknown. An
evaluation procedure that ignores the fact that observed
labels produced based on a waiting time are being used
rather than the true labels, or that adopts inappropriate
waiting times could possibly lead to invalid conclusions.
Understanding such potential impact is thus very impor-
tant. Otherwise, practitioners would not know whether and
to what extent they can trust the performance estimated by
continuous performance evaluation procedures for JIT-SDP
models being adopted during software development.

Therefore, this paper formulates the procedure for con-
tinuously evaluating predictive performance during soft-
ware development in JIT-SDP. It then provides the first
investigation of whether and the extent to which waiting
time (and its resulting label noise and delay) has an impact
on the validity of continuous performance evaluation in JIT-
SDP. We answer four Research Questions (RQs) as follows.

[RQ1] How large is the amount of label noise caused
by different waiting times in JIT-SDP? Intuitively, larger
waiting time would induce smaller amount of label noise,
but one cannot wait forever as larger waiting time would
also cause examples to become obsolete. So far, no one
knows how much label noise different waiting times would
cause. We will quantitatively analyze the impact of different
waiting times on label noise in JIT-SDP.

[RQ2] To what extent different levels of noise resulting
from different choices of waiting time impact the validity of
the continuous performance evaluation procedure? So far,
no one knows the extent of the impact of such label noise
on the validity of the procedure for continuously evaluat-

ing predictive performance and how much the estimated
predictive performance varies when different waiting times
are used. This knowledge is important for practitioners to
decide whether or not to adopt a JIT-SDP model, as they will
use an estimated performance calculated based on observed
labels to make such decisions. This investigation will enable
us to check how reliable the estimated performance tracked
continuously over time in JIT-SDP is, given the label noise
caused by different waiting times.

[RQ3] To what extent is the validity of the continuous
performance evaluation procedure impacted by waiting
time? Part of this can be answered by combining the conclu-
sions of RQ1 and RQ2: if waiting time has significant impact
on label noise (RQ1) and label noise has significant impact
on the validity of the continuous performance evaluation
procedure (RQ2), waiting time may have significant impact
on the validity of the continuous performance evaluation
procedure through the label noise it generates. However,
another perspective still needs to be explored: whether wait-
ing time has additional impact on the validity of continuous
performance evaluation that cannot be captured by label
noise. Such additional impact could happen as a result of the
obsolescence of the examples created based on a given wait-
ing time. This is our main research question enabling us to
check how reliable the continuous estimation of predictive
performance retrieved by a continuous performance evalua-
tion procedure is given the waiting time. Such knowledge is
important because the estimated predictive performance can
be used to decide whether JIT-SDP performs well enough to
be adopted in practice.

[RQ4] If waiting time has significant impact on the va-
lidity of the continuous performance evaluation procedure,
can inappropriate waiting times change the conclusions in
terms of the ranking of different JIT-SDP models? Even if
waiting time has significant impact on the validity of the
continuous performance evaluation procedure, if all JIT-SDP
models are influenced in exactly the same way, this will not
change the relative rankings of JIT-SDP models. Therefore,
the conclusions in terms of which models perform better
than others would still be reliable. This investigation is
important because practitioners may wish to decide which
JIT-SDP models to adopt over time in their company, based
on which of them is better ranked in terms of its predictive
performance over time on their projects.

To answer these RQs, we conduct experimental studies
based on 13 GitHub software projects and statistically ana-
lyze them. We find that waiting time has significant impact
on the validity of the continuous performance evaluation
procedure for JIT-SDP. Though typically in small magni-
tude, the differences in estimated performance caused by
different waiting times were sometimes large. Therefore,
inappropriate choices of waiting time can lead to misleading
estimations of predictive performance over time. Never-
theless, the results also show that such impact does not
normally change the estimated ranking of JIT-SDP models.
Therefore, the conclusions in terms of which JIT-SDP models
perform better are likely reliable independent of the choice
of waiting time.

The main contributions of this paper are listed below:
• The first study on how to continuously evaluate predic-

tive performance of JIT-SDP during software develop-
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ment.
• A mathematical formulation of the continuous predic-

tion, training and evaluation procedures for JIT-SDP in
the online learning scenario, enabling a non-ambiguous
understanding of such procedures.

• The first investigation of whether and to what extent
the conclusions of the JIT-SDP continuous performance
evaluation procedure is potentially invalid when adopt-
ing different waiting time values.

• A detailed analysis on why waiting time impacts the
validity of the continuous performance evaluation pro-
cedure.

• Recommendations on how to choose appropriate wait-
ing times to prevent an invalid performance evaluation
procedure.

It is worth noting that this paper investigates the impact
of waiting time on the validity of the performance eval-
uation procedure. This is different from investigating the
impact of waiting time on the predictive performance of
JIT-SDP models. The latter is about training JIT-SDP models
with examples produced based on different waiting times,
and checking which waiting time leads to the best perform-
ing models. It measures the impact of waiting time on the
capability of JIT-SDP models to correctly predict the labels of
new software changes. The former is about how correct the
procedure to estimate such capability is. This involves analyzing
the difference between (1) the true predictive performance
computed with ground-truth evaluation examples, which
are unavailable for continuous performance evaluation in
practice, and (2) the estimated predictive performance com-
puted based on examples associated to a waiting time,
which can be collected through a continuous predictive
performance evaluation procedure in practice.

The remainder of this paper is organized as follows.
Section 2 presents a motivating scenario to illustrate the
need for a continuous performance evaluation procedure
that can be adopted in practice. Section 3 discusses back-
ground and related work. Section 4 explains our notation
system and formulates the continuous prediction, training
and evaluation procedures of JIT-SDP in the online learning
scenario. Section 5 formalizes our four research questions.
Real-world software projects used in the paper are de-
scribed in Section 6, followed by the experimental design
in Section 7. Experimental results are discussed in Section 8,
answering our RQs. Section 9 discusses threats to validity.
The paper is concluded in Section 10.

2 MOTIVATING SCENARIO

Consider a software development manager who read that
researchers proposed a new JIT-SDP method. This method
achieved competitive results against other methods on sev-
eral open source and proprietary projects. This manager is
thus keen to adopt this method in their company. However,
this manager also read that the predictive performance of
such methods may vary over time. They do not wish to rely
on this JIT-SDP method if/when its predictive performance
becomes poor. Therefore, this software manager will only
agree to adopt such JIT-SDP method in their company if they
can continuously monitor the predictive performance of

this method during software development, using a reliable
performance evaluation method.

Alas, even the procedures used to evaluate predictive
performance in online JIT-SDP studies [6], [7] are unsuitable
to continuously evaluate predictive performance in practice,
during software development. This is because these studies
assume that (1) the evaluation of the JIT-SDP model is based
on software changes whose label is immediately known at
commit time, and (2) this label is the true label. In other
words, such evaluation procedures assume that there is
no delay or label noise resulting from verification latency
for evaluation purposes. And, indeed, for the evaluation
purposes of those papers, all data was already available
beforehand. However, if a software manager wishes to mon-
itor the predictive performance of JIT-SDP models over time
during software development, the labels of the software
changes will arrive with a delay and may be noisy due to
verification latency, as explained in Section 1.

Therefore, the software manager wishes to know (1)
what procedure could be used to continuously monitor the
predictive performance of JIT-SDP models over time during
software development, (2) how reliable this continuous eval-
uation procedure itself is, and (3) how to use this procedure.
This paper addresses these issues. Point (1) is addressed by
formulating a continuous evaluation procedure that can be
used during software development. Point (2) is addressed
through RQ1-RQ4 presented in Section 1. Point (3) is ad-
dressed by recommendations on how to choose appropriate
waiting times to use with such procedure.

3 BACKGROUND AND RELATED WORK

3.1 JIT-SDP
In 2008, Kim et al. published the first study on JIT-SDP,
where they described a set of input features for JIT-SDP
models [9]. Several other studies investigated potentially
beneficial input features for JIT-SDP, such as the day of the
week [10] or the time of the day [11] a software change
was produced, and input features to enable the identifi-
cation of software changes that require a lot of effort to
fix [12]. Shihab et al. [3] showed that the number of lines
of code added, the ratio of bug fixing to total changes
that touched a file, the number of bug reports linked to a
commit, and the developer experience are good indicators
of defect-inducing software changes. Kamei et al. conducted
a large-scale empirical study [1] investigating a variety of
factors extracted from commits and bug reports as input
features for JIT-SDP models. They considered 14 features
grouped into five dimensions of diffusion, size, purpose,
history and experience, and showed such features to be
good indicators of defect-inducing software changes for
yielding high predictive performance on both open source
and commercial projects. Many subsequent studies have
adopted these features [13], [12], [5], [6].

From a machine learning perspective, most existing
work considers JIT-SDP as a binary classification problem,
where a model needs to be built based on examples of
software changes that have been labeled as defect-inducing
or clean. This model can be used for predicting whether
or not new software changes are defect-inducing. Existing
work has investigated the use of support vector machines
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[9], random forests [13], logistic regression [1], [5] and deep
learning [14], [15]. Among them, tree-based and logistic
regression-based models are among the most popular used
learning models that have shown potential in providing
good performance for JIT-SDP. Techniques such as under-
sampling [16] and SMOTE [17] have also been adopted to
deal with the fact that JIT-SDP suffers from class imbalance
[1], [4], [13], where the defect-inducing class is typically a
minority in comparison to the clean class.

All studies above considered JIT-SDP as an offline learn-
ing problem, where all examples for building JIT-SDP mod-
els are available beforehand and no further adjustment or
evaluation of the constructed model with new examples is
performed over time.

3.2 Chronology in JIT-SDP

Most existing work on JIT-SDP overlooks the chronology
of the software changes, for which software changes arrive
sequentially in order over time. Based on one proprietary
project from Cisco and six open source projects, Tan et al. [4]
showed that overlooking chronology leads to JIT-SDP with
deceptively higher predictive performance than could be
achieved in practice, when chronology must be respected.
Possibly, such over-optimistic predictive performance hap-
pens as the characteristics of the software changes vary over
time, which can cause JIT-SDP models trained on old data to
become obsolete (with deteriorated predictive performance)
[5]. If a JIT-SDP model is trained on data that would only
have been available in the future, it may deceptively provide
more accurate predictions on future software changes than
if it had only been trained on past data.

The variations in the characteristics of software changes
discussed above correspond to a phenomenon called concept
drift [8], which in the context of JIT-SDP are changes in
the defect generating process. Examples of non-stationary
characteristics of software development projects that may
result in concept drift include changes in the stage of
the software development process, changes in the type of
software feature currently being implemented, changes in
the development team, changes in management team, etc.
Through a longitudinal case study of the QT and OPEN-
STACK systems on 37,524 software changes, McIntosh and
Kamei [5] showed that the characteristics of defect-inducing
software changes fluctuate over time, and such fluctuations
can negatively impact predictive performance of JIT-SDP
models trained on old examples. Cabral et al. [6] showed
that the proportion of examples of the defect-inducing and
the clean classes also fluctuates over time in JIT-SDP. Based
on an analysis of ten GitHub projects, they showed that
models specifically designed for coping with such fluctu-
ations can improve predictive performance.

The challenges posed by concept drift in JIT-SDP are
exacerbated by verification latency. Verification latency is the
length of time between the production of a software change
and the labeling of this software change [8]. As the bug-fix
software change or bug issue report required to identify a
bug-introducing software change [10] comes after this bug-
introducing change, it takes time for the label of a soft-
ware change to be revealed. The labels of defect-inducing
software changes can usually be determined only months

Fig. 1. Label noise caused by an inadequate waiting time in JIT-SDP.
Software changes are denoted by ‘C’ followed by a number indicating
their order of commit time. Gray (white) circles denote defect-inducing
(clean) software changes. An arrow links the defect-inducing software
change C2 and the one (C4) that fixes the defect. Using waiting time1
will cause a wrong clean label assigned to C2. Using waiting time2 will
lead to the correct defect-inducing label being assigned.

or even years after their commit time [6]. As a result, one
also needs to wait for enough time to be confident that a
given software change can be labeled as clean. Therefore,
in practice, the label of a software change only becomes
available long after this change has been committed. This
can delay adaptation of JIT-SDP models to concept drift.

In file-based SDP, Chen et al. [18] defined dormant bugs
as defects introduced in a version of the software system
but found only several versions later. Based on 20 open-
source Apache foundation software systems, they found
that typically 33% of the defects introduced in a version
were reported in future versions as dormant bugs. They con-
cluded that performance evaluation that ignores dormant
bugs could be misleading. Even though this study was in
the context of module-based SDP, it has ramifications on
JIT-SDP, as it means that defects may take a lot of time to be
discovered, resulting in verification latency.

Cabral et al. [6] further showed in a JIT-SDP study
involving 10 GitHub projects that the time it takes for
defects induced by software changes to be found varied
from 1 to 11.5 years after commit time, with a median
of 90 days. To take such verification latency into account
for training purposes, they explicitly considered a waiting
time strategy, where examples can only be used for training
as clean examples after a period of time (waiting time)
has passed from their commit time, or as defect-inducing
examples when a defect is found to be induced by this
software change, whichever is shorter.

The studies above highlight the importance of studying
JIT-SDP in online learning scenarios, i.e., scenarios that
fully respect the chronological order of arrival of software
changes and their labels. They show that JIT-SDP models
can suffer drops in predictive performance over time and
that recovering from such drops may be challenging due to
verification latency. However, there has been no investiga-
tion of the impact of verification latency on the validity of
the performance evaluation procedure, and no discussion
on how to continuously evaluate predictive performance in
practical scenarios in view of the waiting time.

3.3 Label Noise Caused By Waiting Time in JIT-SDP
Waiting time is a parameter that is inherently necessary
in JIT-SDP for producing clean / defect-inducing labels [6]
and that ought to be carefully chosen. As briefly mentioned
in Section 1, different waiting times may lead to different
observed labels for the same software change, potentially
leading to label noise. Figure 1 illustrates the scenario where
label noise occurs due to an inadequate waiting time. As
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shown in this figure, software change C2 is defect-inducing.
If waiting time1 had been adopted to decide C2’s observed
label, as C4 is nonexistent, C2 will be assigned a ‘clean’
label erroneously, meaning that a training example with
label noise is created. In contrast, if waiting time2 had been
used, the correct label (defect-inducing) would have been
assigned to C2. Indeed, we can get the correct label of C2 at
any time after C4. However, large waiting times could mean
that the labeled examples are already obsolete by the time
they are produced, due to concept drift.

McIntosh et al. [5] suggested to train JIT-SDP models on
software changes that are only up to 90 days old to reduce
the drops in predictive performance potentially caused by
concept drift. This implies that a waiting time much lower
than 90 days would be necessary to avoid hindering predic-
tive performance of JIT-SDP models or to provide adequate
estimates of predictive performance in view of concept drift.
However, the median time to find defects was around 90
days in Cabral et al.’s study [6], suggesting that the waiting
time should typically be set to 90 days or more in view of the
label noise that can result from the defect discovery delay.
Thus, choosing an appropriate waiting time to obtain a good
trade-off between the obsolescence of the resulting labeled
examples and label noise may not be easy.

However, these studies did not investigate the amount
of label noise resulting from different choices of waiting
time and did not investigate the impact of such label noise
on the validity of the performance evaluation procedure.
Moreover, they focused on how to achieve good predictive
performance in JIT-SDP. No study investigated what aspects
should be the driving force for choosing the waiting time
and what waiting times are typically most adequate for the
purpose of continuous performance evaluation. Our work
is the first to provide such analyses. It is worth noting that
any continuous performance evaluation procedure would
require a waiting time to be used, as the generation of
labeled examples depends on it. Therefore, any continuous
performance evaluation procedure risks being affected by
the noise caused by the waiting time choice, leading to being
potentially invalid estimates of predictive performance.

3.4 Label Noise Not Caused By Waiting Time

Existing studies in the module-based SDP literature usually
focus on the mislabeling that occurs when extracting and
collecting data examples from software repositories [19],
[20], [21], [22]. These studies found that issue reports can
often be mislabeled (e.g., reports that describe defects are
mislabeled as “enhancements”), influencing the issue track-
ing system and version control system records based on
which source code modules are labeled as defective or clean.
This can potentially result in labeling defective modules as
clean erroneously or vice-versa. Some studies reported that
such mislabeling can lead to a negative impact on SDP’s
predictive performance [23], while others concluded that
this rarely leads to a severe impediment to SDP [24].

In the JIT-SDP literature, the popular SZZ algorithm [10]
used to collect input features and labels for software changes
and its variants [25], [26], [27] may also result in label noise,
as they may erroneously label a clean software change as
defect-inducing or vise versa. Fan et al. [28] investigated the

impact of mislabeled software changes based on four pop-
ular SZZ algorithms on predictive performance of JIT-SDP.
Considering the model that is trained on examples labeled
by RA-SZZ (Refactoring Aware SZZ, the most recent SZZ
version) [27] as the baseline, they concluded that the SZZ-
related label noise caused by AG-SZZ (Annotation Graph
SZZ) [25] can cause a significant performance reduction,
whereas label noise caused by B-SZZ (the original and most
popular SZZ algorithm) [10] and MA-SZZ (Meta-change
Aware SZZ) [26] were unlikely to cause a considerable
performance reduction. Label noise resulting from waiting
time has not been investigated in these studies.

Our study is concerned with label noise resulting from
inadequate waiting time for JIT-SDP, which has not been
discussed in existing literature. Therefore, hereafter, when-
ever we refer to label noise, we mean the one associated to
waiting time, unless otherwise specified.

4 ONLINE JIT-SDP PROBLEM FORMULATION

As explained in Sections 1 to 3, any procedure to evalu-
ate predictive performance of JIT-SDP models needs to be
based on observed labels, potentially suffering from validity
issues. This paper aims to (1) formulate the procedure for
continuously evaluating predictive performance of JIT-SDP
models during software development and to (2) analyze the
extent to which the results of JIT-SDP continuous perfor-
mance evaluation can be affected by such validity issues. To
achieve this objective, this section will explain our notation
system and formulate the continuous labeling, prediction,
training, and evaluation processes of JIT-SDP in the online
learning scenario. We will formulate the true performance
based on true labels of software changes and the estimated
performance based on observed labels.

4.1 Three Types of Time Step and Data Stream

Time step is a sequential natural number, representing the
order of the usage (i.e., training, prediction and evaluation)
of software changes in the project development process. The
actual time interval between time steps t and t + 1 may be
different from that between t+ 1 and t+ 2.

In online JIT-SDP, there are three types of time step: (1)
the training time step when a software change is labeled
to train a JIT-SDP model, (2) the commit time step when a
new software change is produced and needs to be predicted
as defect-inducing or clean, and (3) the evaluation time step
when the model performance is evaluated. In line with
them, there are three types of data streams: (1) the training
data stream composed of labeled examples ordered accord-
ing to their training time step, (2) the commit data stream
composed of unlabeled software changes ordered according
to their commit time step, and (3) the evaluation data stream
composed of labeled examples ordered according to their
evaluation time step.

Note that any software change appearing at a given
moment in the commit data stream can only appear in
the training and the evaluation data streams at a later
moment, due to verification latency. Any labeled software
change that appears both in the evaluation and training data
streams must not be used for training before it is used for
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evaluation, even if it appears at both streams at the same
moment. Otherwise, this would invalidate the performance
evaluation procedure. Though software changes at commit
and evaluation time steps have to be predicted by JIT-SDP
models, the purpose of such prediction is different. At a
commit time step, a software change is unlabeled and needs
to be predicted to guide decision-making in the real-world
software development process. At an evaluation time step, a
software change is predicted to determine whether the JIT-
SDP model is giving a correct or incorrect prediction, so that
the performance of JIT-SDP models can be evaluated.

In our mathematical formulation, we will frequently
need to convert between a time step and an actual Unix
timestamp in a data stream of software changes. We will
use an uppercase letter such as T and Ts to indicate a Unix
timestamp, and a lowercase letter such as t and ts to denote
its corresponding time step in a data stream. Lower and
uppercase will be used interchangeably whenever we need
to emphasize the time step or timestamp in our formulation.

4.2 Labeling Procedure

As true labels of software changes are usually unknown
in practice due to verification latency, observed labels are
actually used for training and evaluating JIT-SDP models.

We use y∗u,t to denote the label observed at time step t for
the software change at commit time step u, where U < T
and ”∗” indicates that this is an observed label. We can use
y∗u,T to denote the same label. We will denote an observed
label in the form of y∗u,t or y∗u,T when we need to emphasize
the time step or timestamp of the labeling time. We use the
value 0 to indicate clean and 1 to indicate defect-inducing.

Given a software change Xu at commit time step u, its
observed label is obtained based on the cases below [6]:

1) If the software change is not found to be defect-
inducing until Unix timestamp T = U +W , where W
is the waiting time parameter, y∗u,T is labeled as clean,
producing the example (Xu, 0) at time step t. This case
is illustrated by software change X2 in Figure 2 – no
defect was found until the end of the waiting time.

2) If it is found to be defect-inducing at a Unix timestamp
T ′ < T , then y∗u,T ′ is labeled defect-inducing, produc-
ing the example (Xu, 1) at time step t′. This case is
illustrated by software change X5 in Figure 2 – a defect
was found to be associated to it based on the fix by
software change X7, before the end of the waiting time.

3) It may also happen that the software change is first
labeled as clean at timestamp T , but later is found to
have induced a defect at timestamp T ′′ > T . This hap-
pens when the waiting time is not enough to correctly
label a training example, resulting in this example being
mistakenly labeled as clean and found to be defect-
inducing afterwards. In such case, a training example
(Xu, 0) is first produced based on case 1) at time step
t, and then a new training example (Xu, 1) is produced
at t′′. This case is illustrated by software change X1 in
Figure 2 – this software change is not associated to any
defect by the end of the waiting time, but a defect is
found to be induced by it through the fix change X4.

Fig. 2. Illustration of the three different example labeling cases. Software
changes (input features) are denoted by ‘X ’ followed by a number indi-
cating their order of commit time. Solid (hollow) circles denote software
changes that are truly defect-inducing (clean). Note that such knowledge
does not exist at commit time in practice. A gray arrow links the defect-
inducing change and the one that fixes the defect. The moments when
software changes X2, X5 and X1 are labeled are indicated by blue
arrows. The moments when other software changes are labeled is not
shown, so that the figure does not get too crowded.

4.3 Prediction, Evaluation and Training Procedures

Whenever a software change is produced, it is inserted
into the commit data stream and the most up-to-date JIT-
SDP model available is used to predict it. Whenever a
labeled example is created based on the labeling procedure
presented in Section 4.2, it is immediately inserted into the
evaluation data stream and used to estimate the predictive
performance of the JIT-SDP model. After being used for eval-
uation purposes, the labeled example will be inserted into
the training data stream and used for training purposes, i.e.,
for updating the JIT-SDP model. If desired, online machine
learning algorithms [6] that are able to learn example-by-
example without requiring access to past examples could be
used for training purposes.

These prediction, evaluation and training procedures
ensure that chronology is always respected. No data from
the future is ever used to train a model for the present,
and no example is ever used for training before being used
for evaluation in any of our experiments and analyses.
A detailed mathematical formulation of the training and
prediction procedures can be found in Sections II and III of
the supplementary material. The mathematical formulation
of the evaluation process is presented in Section 4.4.

We will adopt online JIT-SDP models in this study, i.e.,
JIT-SDP models able to learn over time. However, it is
worth noting that the continuous predictive performance
evaluation procedure discussed in this paper could also be
applied to offline JIT-SDP models that do not learn over
time. The predictive performance of offline models may
also vary over time depending on the incoming software
changes being predicted. Therefore, not only online JIT-SDP
models, but also offline JIT-SDP models would benefit from
a continuous performance evaluation procedure.
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4.4 Formulating the Evaluation Procedure

The predictive performance computed based on observed
labels through an evaluation procedure is referred to as
the estimated performance. This is in contrast to the true
performance that is calculated based on true labels without
label noise. This section will formulate the procedure to
compute the true and the estimated performance.

As discussed in Section 1, the predictive performance of
JIT-SDP models should ideally be continuously monitored
in practice, so that its fluctuations can be traced to judge
how (un)reliably a model is becoming over time. For that, a
continuous performance evaluation procedure is necessary. In
the data stream learning literature, prequential calculation
of the predictive performance based on a forgetting factor
has been recommended to continuously track predictive
performance over time [29], [30], [31], [32]. Prequential here
means that, whenever a new labeled example is received,
it is first used to test the model and incrementally update
the value of its predictive performance. Only after that it
can be used for training this model, if desired. The forgetting
factor is a predefined value used to emphasize the predictive
status of most recent evaluation steps and weaken the effect
of evaluation examples from older time steps. This enables
tracing fluctuations in predictive performance over time.

This section explains how the prequential performance
based on a forgetting factor can be used to formulate the
true and the estimated predictive performance using a con-
tinuous performance evaluation procedure in JIT-SDP.

4.4.1 True Performance of JIT-SDP at Unix Timestamp T

Given a timestamp T , one would ideally evaluate the
predictive performance of JIT-SDP based on the predicted
and true (not observed) labels of evaluation examples. In
the ideal scenario where the true labels are available, the
evaluation data stream available at T can be formulated as

E = {(Xu, yu)}tu=1,

where the mathematical bold E is used to represent that this
data stream is used for evaluation, Xu denotes the software
change being used for evaluation at evaluation time step
u, yu is the true label of Xu, and t is the evaluation time
step corresponding to T . As t represents the last evaluation
time step, we can also use it to denote the number of time
steps in the evaluation process. In the illustrative example
of Figure 3, E would be composed of all software changes
from X1 to Xt with their true labels from y1 to yt.

The true continuous performance of a JIT-SDP model at
timestamp U ≤ T is calculated based on software changes
that are predicted up to U based on their true labels recur-
sively as

Ecn(u) = θ · Ecn(u− 1) + (1− θ) · ||ŷu − yu||G, (1)

where the subscript cn is used to indicate a performance
computed through a continuous evaluation procedure, u
denotes the time step of U in evaluation data stream E, ŷu
(yu) represents the predicted (true) label of Xu, ||ŷu − yu||G
measures the correctness of the prediction given by the JIT-
SDP model on the example received at evaluation time step
u, the subscript G can denote any performance metric such
as accuracy, G-mean [33] or F1-score, and θ ∈ (0, 1) is the

Fig. 3. Illustration of evaluation data streams that are used to com-
pute the true performance Ecn, the estimated performance based on
surrogate time steps Es

cn, and the estimated performance based on
surrogate time steps and observed labels Es,∗

cn at evaluation timestamp
T given waiting time W . The underscore in y∗s, is used to denote any
given timestamp T ′ < Ts when this label was observed. In particular,
the observed labels y∗s, can be observed at any timestamp before Ts.

forgetting factor that controls how much emphasis should
be placed on past evaluation examples compared to the
new one. Larger/smaller values for θ place more emphasis
on the past/present. The predicted and true labels used
for computing Ecn(u) in the scenario where u = t are
illustrated in the green box of Figure 3.

We can compute the continuous performance measure-
ment at each evaluation time step u ∈ {1, · · · , t} in E,
enabling us to track the fluctuation of true continuous
performance [31]. We can then use the average of those true
performance metrics to quantify the total true continuous
performance for the whole evaluation data stream E as

Ecn =
1

t

t∑
u=1

Ecn(u), (2)

where Ecn(u) is defined in Eq. (1). Such averaging process
would not be used in practice when tracking predictive
performance of JIT-SDP models, but it will be useful to
evaluate the impact of waiting time on the validity of the
continuous performance evaluation procedure, as will be
explained in Section 5.

Computing the true performance nevertheless requires
the true labels yu of evaluation examples in the evaluation
procedure, being infeasible in practice due to verification la-
tency. Therefore, practitioners need to evaluate their models
through an evaluation procedure that uses estimations of
such true performance. In Sections 4.4.2 and 4.4.3, we will
discuss two types of estimations of the true performance
based on surrogate time steps and true labels, and surrogate
time steps and observed labels, respectively.

4.4.2 Estimated Performance of JIT-SDP at Timestamp T
Based on Surrogate Time Steps

If we use, for example, training examples corresponding to
changes produced 90 days ago or older to estimate the cur-
rent true performance, the time step of 90 days ago becomes
a surrogate time step of now, and the true performance at
the surrogate time step becomes an estimate of the true
performance at current time step. In this sense, the true
performance at a surrogate time step could be used as an
estimate of the current true performance.
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Given the waiting time W , the evaluation data stream
at Unix timestamp T based on surrogate time steps that is
used to estimate the true performance can be formulated as

Es = {(Xu, yu)}tsu=1,

where the mathematical bold E is used to represent this data
stream is used for evaluation, the superscript s is used to
indicate that this is using surrogate time steps, and time
step ts corresponds to the surrogate timestamp Ts = T −
W of T in the evaluation data stream. As ts represents the
last evaluation time step, we can also use it to denote the
number of evaluation time steps used in the estimation of
the true performance. In the illustrative example of Figure 3,
Es would be composed of software changes from X1 to Xs

with their true labels from y1 to ys.
The estimated continuous performance of a JIT-SDP model

at timestamp U ≤ T based on the surrogate time steps given
the waiting time W can be formulated as

Es
cn(u) = θ · Es

cn(us − 1) + (1− θ) · ||ŷus − yus ||G (3)

where the subscript cn is used to indicate a predictive
performance computed through a continuous evaluation
procedure, the superscript s is used to indicate that this pro-
cedure uses surrogate time steps, time step us corresponds
to the surrogate timestamp Us = U − W of U in Es, and
θ ∈ (0, 1) is the forgetting factor. The predicted and true
labels used for computing Es

cn(u) in the scenario where
u = t are illustrated in the orange box of Figure 3. This
means that, even though the current timestamp is T , we can
only use software changes committed up to Ts to estimate
the true predictive performance at timestamp T .

We can compute the estimated continuous performance
measurements at each time step u ∈ {1, · · · , t} in Es

using the continuous evaluation procedure explained above,
enabling us to track the fluctuation of the estimated continu-
ous performance based on surrogate time steps. We can then
use the average of those estimated performance metrics to
quantify the total estimated continuous performance for the
whole evaluation data stream Es as

Es
cn =

1

ts

ts∑
u=1

Es
cn(u), (4)

where time step ts corresponds to the surrogate timestamp
Ts = T − W of T in Es and Es

cn(u) is formulated in
Eq. (3). As in Section 4.4.1, the averaging process from Eq. (4)
would not be used in practice when tracking the predictive
performance of JIT-SDP models, but it will be useful to
evaluate the impact of waiting time on the validity of the
continuous performance evaluation procedure in our study,
as will be explained in Section 5.

4.4.3 Estimated Performance of JIT-SDP at Timestamp T
Based on Surrogate Time Steps and Observed Labels
The estimated performance explained in Section 4.4.2 still
assumes that the true predictive performance at the sur-
rogate time step is available. However, the estimated per-
formance at timestamp T based on surrogate time steps
and observed labels is typically what would be available in
practice. As T represents a given current time, no knowl-
edge that comes after T would be available to determine

the observed labels. This section formulates the continuous
evaluation procedure introduced in Section 4.3, which can
be adopted during software development in practice.

Given a waiting time W , we can set up the evaluation
data stream at an arbitrary timestamp T when a JIT-SDP
model is evaluated by using (1) software changes that have
at least W waiting time for their observed labels and (2)
those that are found defect-inducing after the surrogate
evaluation timestamp Ts = T − W and before T . The first
part can be formulated as

Es,∗
1 = {(Xu, y

∗
u,T )}

ts
u=1,

where E represents this data stream is used for evaluation,
and the superscript s, ∗ indicates that this is using observed
labels of evaluation examples at surrogate time steps. The
second part can be formulated as

Es,∗
2 = {(Xu, 1)}tu=ts+1.

Altogether, the evaluation data stream at T based on surro-
gate time steps and observed labels is formulated as

Es,∗ = Es,∗
1 ∪ Es,∗

2 .

In this way, the whole evaluation data stream is produced
and updated with time.

When all defect-inducing software changes are found
before surrogate time step ts (Es,∗

2 = ∅), it is actually the last
evaluation time step in Es,∗. When there are defect-inducing
software changes found after ts and before T (Es,∗

2 ̸= ∅),
the largest time step where software changes are found to
be defect-inducing is the last evaluation time step in Es,∗.
Without loss of generalization and for the sake of simplicity,
we will assume that ts is the last evaluation time step in
Es,∗ in the remaining of this section. In this way, we can
also use ts to denote the number of evaluation time steps,
which makes it explicit that surrogate time steps are being
used. In the illustrative example of Figure 3, Es,∗ would
be composed of software changes from X1 to Xs with the
observed labels from y∗1, to y∗s, .

The same evaluation example may appear more than
once with different observed labels in the evaluation data
stream, first as clean and then as defect-inducing. If a
software change that was previously labeled as clean is
afterwards found to be defect-inducing, the corresponding
evaluation example will be updated with the label “defect-
inducing” and presented again in the evaluation data stream
for evaluation. Such change in the label of a given software
change occurs when the chosen (evaluation) waiting time is
smaller than the time it takes to find a defect associated to
this software change. It results in an initially noisy clean
evaluation example, whose label is later on changed to
defect-inducing when the defect is found and fixed.

The estimated continuous performance of a JIT-SDP model
at timestamp U ≤ T based on surrogate time steps and
observed labels given waiting time W can be formulated as

Es,∗
cn (u) = θ · Es,∗

cn (us − 1) + (1− θ) · ||ŷus − y∗
us,u||G (5)

where the subscript cn indicates that this is a predictive
performance computed through a continuous evaluation
procedure, the superscript s, ∗ indicates that this estimated
performance is based on observed labels at surrogate time
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Fig. 4. Evaluation waiting time W tt should be no larger than training
waiting time W tn in JIT-SDP. This figure shows the case W tt > W tn.
The JIT-SDP model will be trained on examples at surrogate training
timestamp T tn

s before using them for evaluation at surrogate evaluation
timestamp T tt

s , violating the principle of the online evaluation scheme.

steps, time step us corresponds to the surrogate times-
tamp Us = U − W of U in Es,∗, and θ ∈ (0, 1) is the
forgetting factor. The predicted and observed labels used
for computing Es,∗

cn (u) in the scenario where u = t are
illustrated in the blue box of Figure 3. This means that
we can only use software changes committed up to Ts to
estimate the predictive performance at T , and their labels
are the observed labels rather than the true labels.

We can compute the estimated continuous performance
measurements at each time step u ∈ {1, · · · , t} in Es,∗

using the continuous evaluation procedure explained above,
enabling us to track the fluctuation of estimated continuous
performance based on surrogate time steps and observed
labels. We can then use the average of those estimated per-
formance metrics to quantify the total estimated continuous
performance for the whole evaluation data stream Es,∗ as

Es,∗
cn =

1

ts

ts∑
u=1

Es,∗
cn (u), (6)

where time step ts corresponds to the surrogate timestamp
Ts = T − W of the last timestamp T in the evaluation
data stream Es,∗ and Es,∗

cn (u) is formulated in Eq. (5). As
in Section 4.4.2, such averaging process will be useful to
evaluate the impact of waiting time on the validity of the
continuous performance evaluation procedure in our work.

4.4.4 Evaluation Waiting Time in the Evaluation Procedure
The continuous evaluation procedures explained in Sec-
tions 4.4.2 and 4.4.3 employ the waiting time W to cater
for verification latency in the evaluation process, so the true
performance of a JIT-SDP model at evaluation timestamp
T (Section 4.4.1) can be estimated based on surrogate time
steps or both surrogate time steps and observed labels. This
is similar to the strategy to cater for verification latency
in the training process [6], as a waiting time is also used
to label the examples used for training. Nevertheless, the
waiting time used for the training procedure and that used
for the evaluation procedure do not need to be set the same.
In particular, one may wish to choose a training waiting
time that leads to a JIT-SDP model with better predictive
performance, which might not be the same as the optimal
evaluation waiting time that leads to the best trade-off be-
tween label noise and obsolescence of evaluation examples.

Whenever the two cases of waiting time need to be
distinguished from each other, from this point onward, we
will refer to the waiting time in the evaluation procedure as
the evaluation waiting time (W tt) and to the waiting time in
the training procedure as the training waiting time (W tn). In
line with them, we will refer to the amount of label noise

associated to the evaluation waiting time as the evaluation
label noise (ηtt) and to the amount of label noise associated
to the training waiting time as the training label noise (ηtn),
when the two cases of label noise need to be distinguished.

In practice, evaluation waiting time should be no larger
than training waiting time (W tt ≤ W tn). Figure 4 illustrates
the reason for such requirement. At an evaluation times-
tamp T , when W tt > W tn as shown in this figure, the sur-
rogate training timestamp T tn

s = T−W tn would come later
than the surrogate evaluation timestamp T tt

s = T −W tt. As
a result, the JIT-SDP model would be trained on examples
before using them for evaluation. This violates the principle
of the online evaluation scheme that we should only use
examples for evaluation before using them for training.

5 FORMULATION OF RESEARCH QUESTIONS

This section aims to formalize our four research questions
based on the notations and the online learning formulation
of JIT-SDP in Section 4. In particular, we will define the va-
lidity of the performance evaluation procedure based on the
difference between the true and the estimated performance.

5.1 RQ1: Impact of Waiting Time on Label Noise
RQ1 investigates the impact of waiting time on label noise
for JIT-SDP. For that, we will adopt a metric corresponding
to the proportion of defect-inducing software changes that
are labeled as clean. This is because only defect-inducing
examples can be mislabeled as clean as a result of waiting
time (Section 4.2). Clean software changes cannot be mis-
labeled as defect-inducing. As our investigation considers
a continuous performance evaluation procedure, we need
to compute such proportion continuously over time. This
section defines the metric for that.

It is worth noting that the investigation conducted for
RQ1 is independent of whether the waiting time corre-
sponds to the training or the evaluation procedure, because
no actual training or evaluation needs to be performed in
order to analyze the impact of waiting time on the amount
of label noise in the data streams.

Denote a data stream D = {(Xu, yu)}tu=1, where the
mathematical bold D represents this is an arbitrary data
stream and t denotes the last time step (a.k.a. the length
of the data stream). We will formulate the impact of waiting
time on label noise from a continuous evaluation perspec-
tive. Given a waiting time W , the amount of label noise
associated to it calculated continuously at each time step u
of the data stream D can be formulated as

ηcn(u) =

∑us
s=1 θ

(us−s) · |y∗
s,u − ys|∑us

s=1 θ
(us−s) · ys

, (7)

where the subscript cn indicates that this refers to a con-
tinuous evaluation procedure, time step us corresponds to
the surrogate timestamp Us = U − W of time step u in D
and θ ∈ (0, 1) is the fading factor that controls the emphasis
on software changes closer to the investigated time step u,
enabling to track fluctuations in the amount of label noise
over time.

This equation represents the proportion of noisy exam-
ples over the number of defect-inducing software changes at
time step u, to which we will refer as continuous label noise.
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As the type of label noise investigated in this paper can only
happen to defect-inducing software changes, the numerator
is not influenced by the status of clean data. A large ηcn(u)
indicates severe label noise induced by waiting time at time
step u in a continuous evaluation scenario.

In this way, we can compute the impact of waiting time
on the amount of label noise continuously at each time step
u ∈ {1, · · · , t} of the data stream D, tracking the fluctuations
of continuous label noise. We can use the average of those
metrics to quantify the total impact of waiting time on label
noise calculated continuously for the whole data stream D,
which can be formulated as

ηcn =
1

t

t∑
u=1

ηcn(u). (8)

5.2 RQ2: Impact of Label Noise on the Validity of the
Performance Evaluation Procedure
RQ2 investigates how reliable the predictive performance
estimated by a continuous evaluation procedure based on
observed labels is, given the amount of label noise incurred
by waiting time. For that, we need to define a validity metric
corresponding to how accurate the estimated predictive
performance based on noisy data is with respect to the true
predictive performance. This section defines such metric.

The estimated performance based on surrogate time
steps approximates the true performance of a JIT-SDP model
by considering concept drift in the evaluation procedure,
whereas the estimated performance based on surrogate time
steps and observed labels approximates the true perfor-
mance by considering both concept drift and label noise in
the evaluation procedure. Therefore, the difference between
the two types of estimated performance can measure the
impact of label noise (as the impact of concept drift cancels
off) on approximating the true performance, which will be
used to formulate the validity of the performance evaluation
procedure for RQ2.

Given an amount of label noise η, the validity of the
continuous performance evaluation procedure for a JIT-SDP
model at Unix timestamp T can be measured based on the
discrepancy between the estimated continuous performance
based on surrogate time steps and that based on both surro-
gate time steps and observed labels, which is formulated as

∆cn(η) = 1− |Es
cn − Es,∗

cn |, (9)

where the subscript cn denotes that this refers to a contin-
uous evaluation procedure and Es

cn and Es,∗
cn are the two

types of estimated performance defined in Eqs. (4) and (6),
respectively. It quantifies the accuracy of the continuous
performance evaluation procedure in view of label noise
η. A larger value for ∆cn(η) indicates a better validity
of the continuous performance evaluation procedure. The
continuous label noise associated to a waiting time used in
this context is computed according to Eq. (8).

5.3 RQ3: Impact of Waiting Time on the Validity of the
Performance Evaluation Procedure
In JIT-SDP, a small waiting time may cause large label
noise in the evaluation data stream, whereas a large waiting
time may lead to obsolete data being used for performance

evaluation. RQ2 investigates only the impact of label noise
on the validity of the continuous performance evaluation
procedure. RQ3 will investigate the combined impact of
label noise and data obsolescence on such validity. For
that, we need to define a validity metric corresponding to
how accurate the estimated predictive performance based
on noisy data and surrogate time steps is with respect to
the true predictive performance. In other words, this metric
reflects the similarity between the estimated continuous
evaluation that can be done in practice and the true con-
tinuous evaluation that is inaccessible in practice.

As explained in Section 4.4.3, the estimated performance
Es,∗

cn is computed based on the evaluation time steps that
are W period of time earlier than the current timestamp
T . Therefore, the discrepancy between Es,∗

cn and the true
performance Ecn can measure the impact of waiting time
on approximating the true performance, which will be used
to formulate the validity of the performance evaluation
procedure for RQ3.

Given a waiting time W , the validity of the continuous
performance evaluation procedure for a JIT-SDP model
at Unix timestamp T can be measured by the difference
between the estimated continuous performance based on
surrogate time steps and observed labels and the true con-
tinuous performance, which is formulated as

∆cn(W ) = 1− |Ecn − Es,∗
cn |, (10)

where the subscript cn indicates that this refers to a contin-
uous evaluation procedure and Ecn and Es,∗

cn are the true
and the estimated performance defined in Eqs. (2) and (6),
respectively. It quantifies the accuracy of the continuous per-
formance evaluation procedure in view of the waiting time
W . A larger value for ∆cn(W ) indicates a better validity of
the continuous performance evaluation procedure.

5.4 RQ4: Impact of Waiting Time on the Validity of
Model Ranking

As waiting time has significant impact on the validity of
the performance evaluation procedure (RQ3), we want to
know whether such impact will change the relative ranking
of JIT-SDP models (RQ4). Then, we can judge how much
the conclusions in terms of which JIT-SDP models perform
better are potentially affected by validity issues. For that,
we need a metric to quantify the similarity between (1)
the estimated ranking produced based on the estimated
predictive performance using observed labels and surrogate
time steps and (2) the true ranking produced based on the
true performance. This section proposes to use an existing
ranking correlation metric for this purpose. This metric
represents how concordant or discordant these rankings are.

Kendall Tau is a popular measure of ranking correlation
that counts the numbers of concordant and discordant pairs
to measure the similarity of two rankings [34]. Denote mi

(m̂i) as the true (estimated) ranking of the ith out of n
models. If mi > mj and m̂i > m̂j , the pair of the ith and
the jth model is concordant; if mi > mj and m̂i < m̂j , the
pair is discordant; if mi = mj or m̂i = m̂j , the pair is neither
concordant nor discordant.
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The similarity between the estimated and the true rank-
ings of n JIT-SDP models can be formulated as

τ(R, R̂) =
#(concordant pairs)−#(discordant pairs)

C2
n

, (11)

where τ(·, ·) denotes the Kendal similarity, R (R̂) denotes
the true (estimated) ranking of JIT-SDP models in a certain
performance evaluation scenario, C2

n = n(n−1)
2 is the bi-

nomial coefficient for the number of ways to choose two
from n models and the operator #(·) denotes the number
of items. Kendall Tau is larger when the two rankings are
more similar and is smaller if they are less similar.

Given a waiting time W , the validity of continuous
model ranking in JIT-SDP at Unix timestamp T is

Θcn(W ) = τ(Rcn, R̂cn), (12)

where the subscript cn indicates that this is related to
a continuous evaluation procedure, Rcn denotes the true
ranking of JIT-SDP models compared according to the true
continuous performance (Ecn in Eq. (2)), and R̂cn denotes
their estimated ranking compared according to the esti-
mated continuous performance (Es,∗

cn in Eq. (6)). A larger
value for Θcn indicates better validity of model ranking in
the practical evaluation scenario.

6 DATASETS

We use 13 GitHub open source projects shown in Table 1 to
investigate our research questions. They were chosen among
projects with more than 4 years of duration, rich history
(>10k commits) and a wide range of defect-inducing change
ratio (from 2% to 45%). The first six projects were made
available by Cabral et al. [6] and were chosen in this study
for having relatively more software changes.

We use Commit Guru [35] to collected datasets from
these software projects, which is a tool to extract the input
features and labels of software changes. It implements the
SZZ algorithm [10] when an issue tracking system is avail-
able and its approximate [1] otherwise. Eight of our projects
used an issue tracking system (Brackets, Broadleaf, Fabric8,
Rails, Rust, Tensorflow, VSCode and wp-Calypso), and five
did not (Camel, Nova, Django, JGroups and Corefx).

The input features include 14 change metrics [1]: NS
(number of modified subsystems), ND (number of modified
directories), NF (number of modified files), Entropy (distri-
bution of modified code across each file), LA (lines of code
added), LD (lines of code deleted), LT (lines of code in a
file before the change), FIX (whether or not the change is
a defect fix), NDEV (number of developers that changed
the modified files), AGE (average time interval between
the last and the current change), NUC (number of unique
changes to the modified files), EXP (developer experience),
REXP (recent developer experience) and SEXP (developer
experience on a subsystem). These metrics have been shown
to be adequate indicators for JIT-SDP for both open source
and commercial projects [1], [13], [5]. The second column
of Table 1 shows the total number of extracted software
changes for each project.

Our study requires collecting true and observed labels
of software changes. The observed label can be determined
based on the waiting time [6], as explained in Section 4.2.

However, collecting true labels of software changes is less
straightforward, as there is always a non-zero chance of
a software change labeled as clean to be in fact defect-
inducing. Consequently, we may never get the true label of a
software change that is labeled as clean. The longer we wait
to label a clean software change, the more confident we are
that this change is really clean. For this consideration, all
data streams used in this study contain software changes
covering a period of at least four years, with most of them
covering a period of more than eight years.

To collect true labels of software changes, we eliminate
software changes from the latter periods of the data stream,
as they are not ‘old’ enough for us to be confident on their
true labels. We can then be confident about the true labels of
the remaining software changes. Considering a data stream
with a 10-year duration, the procedure to determine what
software changes to eliminate is explained as follow. First,
find the 99%-quantile of the verification latency of defect-
inducing software changes (amount of time to find defects
induced by a software change) in the whole data stream.
Let’s consider that the 99%-quantile value is 1.5 years. Then,
eliminate the software changes that were committed during
the latter 1.5 years of the data stream, which are referred
to as the tail of this data stream. The remaining software
changes cover a period of 8.5 years and will have had at least
1.5 years to find whether they have induced any defects. As
the 99%-quantile of the verification latency is 1.5 years, we
are very confident (with at least 99% confidence level) that
the changes labeled clean are really clean. Defect-inducing
labels are always considered to be true labels, as they cannot
involve label noise caused by inappropriate waiting time.
As explained in Section 3.4, label noise that does not result
from waiting time is out of the scope of this study.

The 4th column of Table 1 lists the number of retained
software changes for which we have at least 99% confi-
dence that the labeling is correct. All projects have at least
5,000 software changes we are confident of their labeling.
Therefore, we will retain the first 5,000 time steps in each
software project for answering our research questions, so
that all investigated projects have the same maximum data
stream length. In this way, the impact of the length of the
data stream will also be investigated in our analyses. As
most software projects have considerably more than 5,000
time steps, the confidence level in the labels of their clean
changes is higher than 99%, as more software changes at the
tail of the valid data stream have been removed.

7 EXPERIMENTAL SETUP

We adopt G-mean [33] to investigate our research questions.
Different from other metrics such as F-measure and pre-
cision, G-mean is known to be robust to class imbalance,
which is particularly important for studies suffering from
class imbalance evolution such as JIT-SDP [6], [32], [36].
Consider that the positive (negative) class in JIT-SDP cor-
responds to defect-inducing (clean). G-mean is

G-mean =

√
tp

tp+ fn
· tn

tn+ fp
, (13)

where tp denotes true positives (the number of defect-
inducing software changes that are predicted correctly), fn
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TABLE 1
An overview of the software projects investigated in this work. ‘%Defect-inducing’ denotes the percentage of defect-inducing software changes

over the total number of extracted software changes for each project.

Project Total %Defect-inducing Retained Changes Time Period Main LanguageChanges Changes at 99%-quantile
Brackets 11,601 34.02 5,997 12/2011 - 12/2017 JavaScript

Broadleaf 12,336 20.28 5,190 11/2008 - 12/2017 Java
Camel 30,229 20.67 9,850 03/2007 - 12/2017 Java
Fabric8 12,495 20.65 9,310 12/2011 - 12/2017 Java
jGroup 18,003 17.48 13,028 09/2003 - 12/2017 Java
Nova 26,313 44.34 14,900 08/2010 - 01/2018 Python

Django 26,360 42.64 14,236 07/2005 - 09/2019 Python
Rails 57,949 25.64 28,421 11/2004 - 09/2019 JavaScript

Corefx 26,627 6.91 7,611 11/2014 - 10/2019 python
Rust 73,876 2.02 35,766 06/2010 - 10/2019 python

Tensorflow 65,034 24.85 21,466 11/2015 - 11/2019 python
VScode 51,846 2.28 19,413 11/2015 - 10/2019 JavaScript

wp-Calypso 31,206 22.75 8,708 11/2015 - 10/2019 JavaScript

denotes false negatives (the number of defect-inducing soft-
ware changes that are erroneously predicted as clean), tn de-
notes true negatives (the number of clean software changes
that are predicted correctly) and fp denotes false positives
(the number of clean software changes that are erroneously
predicted as defect-inducing). As the false positive rate is
defined as 1− tn/(tn+ fp), G-mean takes into account the
trade-off between true positives and false positives. Larger
G-means represent better predictive performance.

We use G-mean to implement the metrics || · ||G from
Eqs. (1), (3) and (5) as the basic element to evaluate the
predictive performance in JIT-SDP. The forgetting factor
θ = 0.99 is used in this paper following previous studies
[6], [7]. Our preliminary experiment on studying various
values of θ also showed the effectiveness of setting θ = 0.99
for tracking the trend in performance fluctuation without
emphasizing single examples too much.

Oversampling Online Bagging (OOB) with Hoeffding
trees was adopted whenever JIT-SDP models needed to be
created. This approach was chosen for being the state-of-
the-art in dealing with online class imbalance learning [31]
besides having been applied for JIT-SDP [6], [7].

A grid search based on the first 500 (out of the total 5,000)
software changes in the data stream of a software project
was conducted to choose the parameter settings based on
G-mean. The parameters of the investigated JIT-SDP model
(OOB ensemble of Hoeffding trees) include the decay factor
∈ {0.9, 0.99} and the ensemble size ∈ {5, 10, 20}. Given a
software project, the parameter combination leading to the
best average G-mean across 30 runs at the first 500 time steps
was adopted. The predictive performance of the JIT-SDP
model with the best parameter setting was then evaluated
based on the whole data stream of a software project. Ho-
effding trees adopted the default parameters in the python
package scikit-multiflow [37], following previous studies in
JIT-SDP [6], [7]. All analyses and statistical tests are based on
the mean performance across 30 runs based on the chosen
parameter settings. Section V of the supplementary material
lists the chosen parameter settings for each project. The code
used for our experiments is available at https://github.
com/sunnysong14/ContinualPerformanceValidityTSE2022.

8 EXPERIMENTAL RESULTS AND DISCUSSION

8.1 RQ1 – Impact of Waiting Time on Label Noise

This section answers RQ1 based on the formulation in
Section 5.1. This investigation is suitable to analyze both
the impact of evaluation waiting time (for model evaluation,
the focus of this paper) and training waiting time (for model
training) on label noise in JIT-SDP.

8.1.1 Methodology

We perform Analysis of Variance (ANOVA) [38] to analyse
the impact of waiting time on continuous label noise in
the data stream D. The length of the data stream will also
be investigated to check whether it has an impact on the
analysis. If we had assigned θ = 1 in Eq. (7), it would be
reasonable to hypothesize that larger data streams are less
affected by the amount of label noise, as there would be
more time to reveal the true labels of a large portion of older
software changes. In practice, when computing the current
amount of label noise sequentially with a fading factor as we
did in the continuous evaluation scenario, the fading factor
always places more emphasis on the most recent evaluation
examples. So, the length of the data stream may not have a
significant impact on the amount of label noise anymore.

The within-subject factors for ANOVA are the waiting
time W and the length t of the data stream. The factor
W varied among four levels (15, 30, 60 and 90 days). The
waiting time of 90 days was investigated because it has been
shown to be appropriate for training JIT-SDP models [6].
Waiting time values smaller than 90 days were investigated
following McIntosh and Kamei’s suggestion [5]. Waiting
time older than 90 days may be too obsolete in view of
concept drift [5]. The factor t varied among five levels (1000,
2000, 3000, 4000 and 5000 time steps). We set up the upper
bound of 5000 time steps to get high confidence that the
true labels in use are genuine as explained in Section 6. The
response variables is the amount of continuous label noise
(defined in Eq. (8)). ANOVA will be performed across the 13
datasets shown in Table 1, with level of significance of 0.05.

Sphericity is an important assumption made by the
repeated measures ANOVA design, which is used in our
study. We have adopted Greenhouse-Geisser corrections
whenever Mauchly’s test of sphericity detected violations
to this assumption.

https://github.com/sunnysong14/ContinualPerformanceValidityTSE2022
https://github.com/sunnysong14/ContinualPerformanceValidityTSE2022


13

(a) Impact of waiting time. (b) Impact of data stream length.

Fig. 5. Plots of median continuous label noise across datasets (y-axis),
for different waiting times and lengths of data streams (x-axis).

8.1.2 Impact of Waiting Time on Continuous Label Noise
Mauchly’s tests show that the sphericity assumptions on W
and t are violated (p-values 3.44-9 and 1.00E-6, respectively).
Thus, Greenhouse-Geisser corrections have been adopted,
based on which ANOVA reports that both W and t have
significant impact on continuous label noise (p-values 0.0085
and 0.040636, respectively), whereas the interaction W ∗ t
does not (p-value 0.258199). Effect size in terms of partial
eta-square is 0.595 for W , 0.368 for t and 0.157 for W ∗ t.
Pairwise comparisons based on the post-hoc Bonferroni test
between waiting times find significant difference between
15 vs 30 days (p-value 0.008), between 15 vs 90 (p-value
0.037) and between 60 vs 90 days (p-value 0.009). Pairwise
comparisons between the data stream lengths do not find
significant difference between any pair, possibly because the
post-hoc comparisons are weaker than ANOVA.

Figure 5(a) shows the plots of median continuous label
noise across projects for different waiting times. We can see
that larger waiting times are associated to smaller amounts
of continuous label noise. This is reasonable as a larger wait-
ing time allows for higher possibility to find defect-inducing
software changes, contributing to smaller continuous label
noise. We can also see that the magnitude of the differences
in continuous label noise when varying waiting time from
15 to 90 days was high, causing a drop of 26.43% in the
proportion of noisy defect-inducing examples. Therefore,
the differences are typically considerable, even though they
can be smaller for some projects (minimum of about 10%
in jGroup) and very large for others (maximum of 71.32%
in wp-Calypso). Section 8.2.2 will investigate whether such
amounts of label noise lead to a significant impact on the va-
lidity of the continuous performance evaluation procedure.

Figure 5(b) shows the plots of median continuous label
noise across projects for different lengths of data streams.
We can see that larger data streams are generally associated
to larger amounts of continuous label noise. A smaller data
stream length of 1,000 caused a drop of 12.99% in the
proportion of noisy defect-inducing examples compared to a
larger length of 5,000. Therefore, the differences are typically
considerable, even though they can be smaller for some
projects (minimum of around 5% in Fabric8) and larger
for others (maximum of 19.62% in VScode). The increasing
amount of continuous label noise as the length of the data
stream increases is rather unexpected. We will discuss the
reasons behind this result in Section 8.1.3.

8.1.3 Why Are Larger Data Streams Associated to More
Continuous Label Noise?
We will first present our original conjecture on the impact
of waiting time on continuous label noise and then explain

why it does not hold true. Then, we will discuss the reason
why larger data streams have larger (rather than smaller)
amounts of continuous label noise.

Original conjecture. We conjectured that the length of the
data stream would not have any particular (neither signifi-
cant positive nor significant negative) impact on continuous
label noise for the following reason. By using a fading factor,
continuous label noise ηcn(u) at time step u (Eq. (7)) is
mainly determined by a few neighboring software changes
that arrived shortly before time step u. Examples from
much earlier time steps than u contribute little to ηcn(u) as
their effect is exponentially decayed with time. As ηcn(u) is
calculated based on the observed labels received up to time
step u (rather than the knowledge obtained until the end t
of the data stream D), the snapshot of the data stream that is
effectively used to compute ηcn(u) would be given the same
amount of time to obtain the observed labels for different
time steps u, and any time step u should thus typically
hold the same amount of label noise. So, the total amount
of continuous label noise ηcn (Eq. (8)) would remain similar
for different lengths t of the data stream.

Why our conjecture does not hold true? Figure 6 shows the
continuous label noise throughout time steps with waiting
time 15 days on the projects. Other waiting times have also
been studied, showing similar patterns. Many projects, such
as Bracket, Broadleaf, Tensorflow, Nova, Django and Rails,
demonstrate a positive correlation between the amount of
label noise and the length of the data stream, meaning that
there is typically more label noise in the latter portions of
the data stream. So, despite the snapshot effectively used to
compute ηcn(u) being given the same amount of time to collect
the observed labels is independent of the value of u, the
amount of label noise in different portions of the data stream
still differs considerably from each other. And, as different
time steps are associated to considerably different amounts
of continuous label noise, the length t of the data stream can
have a significant impact on the total amount of label noise
ηcn. Though there are a few projects, such as jGroups and
Calypso, for which continuous label noise and the length of
the data stream have slightly negative correlation, they are
rather weak negative correlations.

Why there is typically more continuous label noise at latter
portions of the data streams? As all time steps u were given the
same amount of time to observe labels, the larger amounts
of continuous label noise at the latter portions of the data
streams probably arise from increasing levels of verification
latency for defect-inducing software changes, which is an
intrinsic property of the data stream regardless of waiting
time. The continuous level of verification latency of software
changes in a data stream D can be formulated as

τcn(u) =

∑u
s=1 θ

(u−s) · τs∑u
s=1 θ

(u−s) · ys
, (14)

where the subscript cn indicates that this refers to a con-
tinuous evaluation process, u denotes a time step between
1 ∼ t in D, θ ∈ (0, 1) denotes the fading factor that controls
the emphasis on older examples and those closer to u, τs
denotes the amount of time taken to find the defect-inducing
label associated to the software change at time step s or zero
if this change is clean and ys denotes the software change’s
true label. In this way, we can compute verification latency
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(a) Bracket (b) Broadleaf (c) Camel (d) Fabric8

(e) jGroups (f) Corefx (g) Tensorflow (h) VScode

(i) Calypso (j) Nova (k) Django (l) Rails

Fig. 6. Continuous label noise throughout time steps on the projects investigated in the paper with the waiting time 15 days. The x-axis represents
the length of data stream and the y-axis represents the continuous label noise. The fading factor is 0.99. We randomly omit the dataset Rust for a
better and simpler graph allocation (the length of data stream is firstly positively and then negatively correlated with the continuous label noise).

continuously at each time step u ≤ t of the data stream D,
tracking the fluctuations of the delay to find defect-inducing
software changes. We can use the average of these values to
quantify the total continuous verification latency for the whole
data stream D, which can be formulated as

τcn =

∑t
u=1 τcn(u)

t
. (15)

To better understand the reason for larger data streams
to be associated to larger continuous label noise in JIT-SDP,
we will first investigate the impact of the length t of the
data stream on the continuous verification latency τcn, and
then investigate the relation between τcn and the continuous
label noise ηcn (Eq. (8)). We report our results as follows.

Step 1. Positive correlation between the length t of data stream
and continuous verification latency τcn. To check whether t has
a positive impact on τcn, we will calculate the Spearman’s
rank correlation between the length of data stream and
the median value of continuous verification latency across
the 13 projects. Spearman’s rank correlation rs ∈ [−1,+1]
is a non-parametric statistic that assesses how well the
relationship between two variables can be described by a
monotonic function [39]. The value +1/-1 means a perfectly
increasing/decreasing monotone of one variable over the
other. Conventionally, the correlation strength |rs| is inter-
preted according to Fieller and Pearson’s [39] as 0.00 – 0.19
”very weak”, 0.20 – 0.39 ”weak”, 0.40 – 0.59 ”moderate”,
0.60 – 0.79 ”strong”, and 0.80 – 1.00 ”very strong”.

Spearman correlation reports a strong positive correla-
tion (0.7000) between the length of data stream t and the
median of continuous verification latency τcn, confirming
the positive impact of the length of data stream on continu-
ous verification latency.

Considering the fact that verification latency is the length
of the delay to detect a defect induced by a software
change, the positive correlation between t and τcn means
that, the later in the software development process a change
is created, the longer it takes to find and/or fix defects
induced by it. Possibly, during earlier stages, the code is put

more under scrutiny, so that defects would be found more
quickly. It may also be that, as the software code becomes
larger (and probably more complex and tangled) over time,
it typically becomes increasingly more time consuming to
fix a defect. And, the longer it takes to fix a defect, the
longer time it takes to find out the corresponding defect-
inducing software change, meaning that more continuous
label noise would likely be generated. Therefore, we in-
vestigate whether larger verification latency is associated to
larger amounts of continuous label noise in our next step.

Step 2. Positive impact of continuous verification latency
τcn on continuous label noise ηcn. We will perform bi-variate
linear regression across 13 projects to investigate the relation
between τcn and ηcn. Specifically, τcn and waiting time W
are the independent variables, and ηcn is the dependent
variable. W is included because it has been shown to have
significant impact on ηcn. ANOVA is not applicable as
the independent variable is continuous rather than ordinal.
We have checked the assumptions of linear regression to
investigate the impact of both τcn and W on ηcn. The
analysis shows that the assumptions are well satisfied and
is presented in Section IV-A of the supplementary material,
due to space restrictions.

The linear regression statistics show that the linear rela-
tionship between the independent variables and the depen-
dent variable is significant (p-value 1.5087E-12), indicating
the suitability of using the linear regression statistic for
this analysis. The model coefficients show that both τcn
and W have significant impact on ηcn (p-values 7.144E-9
and 2.6753E-9, respectively). The standardized coefficient
is 0.572 for τcn and −0.595 for W , showing that larger
continuous verification latency (waiting time) is associated
to significantly larger (smaller) continuous label noise.

Summary of the two-step analysis. Latter points in time in
a data stream tend to have larger continuous verification
latency, whereas larger continuous verification latency is
associated to larger amounts of continuous label noise.
Therefore, it is reasonable for the length of data stream to
have positive impact on continuous label noise.
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Answer to RQ1: Smaller waiting times were found to be
associated to significantly larger label noise. The amount
of continuous label noise increased by up to 71.32% as a
result of smaller waiting time. The length of data stream
had significant impact on continuous label noise, with larger
data streams leading to more continuous label noise due to
the larger verification latency of defect-inducing software
changes in the latter portions of the data streams.

8.2 RQ2 – Impact of Label Noise on the Validity of the
Performance Evaluation Procedure
This section investigates RQ2, formulated in Section 5.2.

8.2.1 Methodology
We will use linear regression to investigate the impact of
evaluation label noise (i.e., the label noise associated to
waiting time in the evaluation data stream) on the validity
of the continuous performance evaluation procedure. Both
the continuous evaluation and training label noise will be
included as independent variables, for a more thorough
analysis. Including training label noise enables the analysis
to consider the extent to which different trained JIT-SDP
models could impact the conclusions of the study. They are
both computed based on Eq. (8), but the training label noise
is computed based on the training waiting time, and the
evaluation label noise is computed based on the evaluation
waiting time. The dependent variable is the validity of
the continuous performance evaluation procedure (Eq. (9)).
ANOVA, which was used to answer RQ1, is not viable
for RQ2 because the independent variables are continu-
ous rather than ordinal, and thus we cannot set up the
levels of within-subject factors [38]. A discussion of linear
regression’s assumptions for this analysis is provided in
Section IV-B of the supplementary material.

8.2.2 Impact of Label Noise on Continuous Validity
Linear regression shows that the linear relationship between
the two independent variables and the dependent variable
is significant (p-value 3.2885E-4). Thus, we can continue to
investigate the model coefficients.

Continuous evaluation label noise has significant impact
on the validity of the continuous evaluation procedure
(p-value 0.0485). The standardized coefficient is −0.01935,
showing that the continuous evaluation label noise has sig-
nificant negative impact on such validity. Even though the
impacts of continuous evaluation label noise on the validity
in individual projects were different, most of them presented
decreasing trends (except for Camel, Fabric8, jGroup, Corefx
and wp-Calypso). Therefore, larger continuous evaluation
label noise typically means significantly worse validity of
the continuous performance evaluation procedure.

Nevertheless, the drops in the magnitude of the validity
suffered by larger evaluation continuous label noise were
small. The median drop across projects was only 0.3614%.
The maximum drops were observed in Django and VScore
(up to about 3%). Therefore, a larger continuous evaluation
label noise means a worse validity of the evaluation proce-
dure, but the magnitude of the drop in the validity is small.

Moreover, the validity of the performance evaluation
procedure with respect to label noise was typically high

(median value of around 97% across projects and waiting
times). This suggests that the use of observed labels is
acceptable for the continuous performance evaluation pro-
cedure in online JIT-SDP.

No significant impact of continuous training label noise
has been found on the validity of the performance evalua-
tion procedure (p-value 0.0611). It is worth noting that this
does not mean that training label noise has no impact on the
quality of the resulting model. Rather, it has no impact on
the validity of the evaluation of the resulting model.

Answer to RQ2: Continuous evaluation label noise had
significant negative impact on the validity of the continu-
ous performance evaluation procedure. However, different
amounts of label noise led to differences of up to around
3% in the validity of the evaluation procedure, being of
small magnitude. The validity of the evaluation procedure
was typically high (median of around 97%) despite the label
noise resulting from waiting time.

8.3 RQ3 – Impact of Waiting Time on the Validity of the
Performance Evaluation Procedure

This section answers RQ3, formulated in Section 5.3.

8.3.1 Methodology
We will use linear regression to analyse the impact of
waiting time on the validity of the performance evaluation
procedure. Both the evaluation and the training waiting
time will be included as independent variables to enable
a more thorough analysis of the validity. The validity of
the performance evaluation procedure (defined in Eq. (10))
is the dependent variable. ANOVA used in RQ1 is not
viable for RQ3. This is because there is a constraint between
the two independent variables: the evaluation waiting time
should be equal to or smaller than the training waiting
time, as discussed in Section 4.4.4, and thus the number
of levels to be investigated for the evaluation waiting time
varies depending on the training waiting time. Section IV-C
of the supplementary material provides a discussion of the
assumptions of the linear regression analysis.

8.3.2 Impact of Waiting Time on Continuous Validity
Linear regression analysis shows that the linear relationship
between the two independent variables and the dependent
variable is significant (p-value 0.008720). Thus, we can con-
tinue to investigate the model coefficient.

Evaluation waiting time has significant impact on the
validity of the performance evaluation procedure (p-value
0.004574). The standardized coefficient is −0.284094, show-
ing that the evaluation waiting time has significant nega-
tive impact on the validity of the continuous performance
evaluation procedure. Figure 7 shows the relationship be-
tween evaluation waiting time (in x-axis) and validity of
the evaluation procedure (in y-axis). We can see that even
though larger evaluation waiting times were sometimes
associated to better validity (Fabric8, Tensorflow, Nova and
Django), large evaluation waiting times typically negatively
impacted the validity, as reflected by the negative standard-
ized coefficient found by linear regression.
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(a) Brackets (b) Broadleaf (c) Camel (d) Fabric8 (e) jGroup

(f) Corefx (g) Rust (h) Tensorflow (i) VScode (j) Calypso

(k) Nova (l) Django (m) Rails (n) Medians across projects

Fig. 7. Impact of the evaluation waiting time (in x-axis) on the validity of the continuous performance evaluation procedure (in y-axis). Note that the
range of y-axis may not be the same in all the plots in order to facilitate visualization.

Figure (7(n)) shows the plot of median impact of evalu-
ation waiting time on the validity across projects. A larger
evaluation waiting time of 90 days causes a median drop of
3.73% in the validity compared with that of 15 days. Figure 7
also shows that in some projects, despite the significant
impact of evaluation waiting time on the validity, the drops
in the magnitude suffered by worse choices of evaluation
waiting time were not large, with the validity differing
by less than 1% (e.g., Brackets and Django). However, for
some projects, the differences were larger by up to around
25% (VScode). This means that poor choices of evaluation
waiting time can potentially lead to considerable differences
in estimated predictive performance. Therefore, we should
carefully choose the evaluation waiting time to obtain a
good estimate of predictive performance over time. Such
choice will be further discussed in Section 8.5.

No significant impact of the training waiting time on the
validity of the continuous performance evaluation proce-
dure was found (p-value 0.718232). It is worth noting that it
is encouraging to see that the validity of the evaluation pro-
cedure obtained with the best values for evaluation waiting
time was typically high (median value of a bit less than 97%
across projects). This suggests that the use of observed labels
and surrogate time steps is acceptable for the continuous
performance evaluation procedure in online JIT-SDP when
appropriate evaluation waiting times are used.

8.3.3 Why Evaluation Waiting Time Had a Negative Impact
on the Validity of the Performance Evaluation Procedure?
The results in Section 8.3.2 can sound surprising given the
results from Sections 8.1 and 8.2. Section 8.1 found that
larger waiting time significantly reduced the amount of label
noise, and Section 8.2 found that smaller amounts of label
noise led to significant better validity of the performance
evaluation procedure. Therefore, larger evaluation waiting

Fig. 8. Two-way evaluation waiting times can affect the validity of the
continuous performance evaluation procedure in JIT-SDP. ‘PF’ is short
for ‘performance’. RQ3 shows that evaluation waiting time has a signifi-
cant negative impact on the validity, shown in the solid line.

time should in principle correspond to better validity of
the performance evaluation procedure in view of evaluation
label noise. This is illustrated in the top part of Figure 8.

However, Section 8.3.2 shows that the evaluation waiting
time generally has a significant negative impact on the
validity of the performance evaluation procedure. It means
that, even though larger evaluation waiting time is related
to better validity in view of the smaller label noise that it
produces, there must be something other than label noise
that has an even larger effect on the validity.

It is reasonable that a larger evaluation waiting time
makes the validity of the evaluation procedure better by
reducing the amount of label noise, but one cannot ignore
the fact that JIT-SDP is also likely to suffer from concept
drift [5], [6], [7]. It is difficult to quantify concept drift in
real world problems, because that would require access to
the true underlying probability distribution of the problem,
which is unavailable in practice. Therefore, it is not possible
to perform direct analyses of the impact of waiting time on
the validity of the evaluation procedure in view of concept
drift as done in view of label noise in RQ1 and RQ2.

Nevertheless, by definition larger evaluation waiting



17

times cause obsolete data to be used to estimate the current
status of the predictive performance via surrogate time steps
if there is concept drift. This is illustrated in the lower part of
Figure 8. In this sense, a larger evaluation waiting time will
correspond to a worse validity of the evaluation procedure
in view of concept drift, or more specifically an obsolete
performance evaluation.

To experimentally justify this conjecture, we can isolate
the effect of the obsolescence of evaluation data to conduct
an analyses as specified by the difference between true per-
formance at a given evaluation timestamp T (Section 4.4.1)
and the estimated performance based on surrogate time
steps (Section 4.4.3). The estimated performance based on
surrogate time steps excludes the impact of label noise on
the estimation of the evaluation procedure. Therefore, the
difference between it and the true performance reflects how
valid the evaluation procedure is in view of the obsolescence
of the data being used for evaluation purposes.

The impact of concept drift on the validity of the con-
tinuous performance evaluation procedure can be analyzed
based on the following validity metric:

∆cn(CD) = 1− |Ecn − Es
cn| (16)

where the subscript cn indicates that this is a continuous
evaluation and Ecn and Es

cn are the true and the estimated
performance defined in Eqs. (2) and (4), respectively. A
larger value for ∆cn(CD) indicates a better validity of the
evaluation procedure in view of data obsolescence.

We use linear regression to analyse the impact of data
obsolescence on the validity of the performance evaluation
procedure. Both the evaluation and the training waiting
times are included as independent variables, where the
evaluation waiting time corresponds to different levels of
data obsolescence and the training waiting time corresponds
to JIT-SDP models with different prediction capability. The
validity of the evaluation procedure defined in Eq. (16) is
the dependent variable. Section IV-C of the supplementary
material provides a discussion of the assumptions of the
linear regression analysis.

Linear regression analysis shows that the linear relation-
ship between two independent variables and the dependent
variable is significant (p-value 0.000022). Thus, we can con-
tinue to investigate the model coefficients. No significant
impact of the training waiting time on the validity of the
evaluation procedure in view of concept drift was found (p-
value 0.737560). Evaluation waiting time in view of concept
drift had significant impact on the validity of the evaluation
procedure (p-value 0.000096). The standardized coefficient is
−0.378022, showing that the larger the evaluation waiting
time, the larger the difference between the continuous per-
formance evaluation based on the current data and the sur-
rogate data. This means that larger evaluation waiting time
leads to an obsolete performance evaluation, potentially
due to concept drift. This is consistent with our conjecture
illustrated in the lower part of Figure 8.

We have now shown (as illustrated in Figure 8) that, on
the one hand, larger evaluation waiting time is related to
better validity of the evaluation procedure in view of the
smaller label noise it produces (RQ2); on the other hand, it
can also cause worse validity of the evaluation procedure
in view of producing more obsolete data (RQ3). Given the

results of RQ3, the effect of concept drift were larger than the
effect of label noise, being a more important consideration
to take when choosing evaluation waiting time.

This implies that the concept drifts suffered by JIT-SDP
cause drops in predictive performance that are frequently
larger than the errors in the estimate of the predictive
performance caused by label noise. Indeed, it is known that
JIT-SDP can suffer drops in predictive performance as large
as around 40% G-mean over time [7]. If recent data is not
used to continuously evaluate the predictive performance of
obsolete models, such large drops in predictive performance
will not be noticed until a much later date in practical
scenarios, having a worse effect than label noise.

Answer to RQ3: Evaluation waiting time has significant im-
pact on the validity of the evaluation procedure, with larger
waiting times being typically associated to worse validity.
This implies that concept drift is a more important issue to
take into consideration than label noise when evaluating JIT-
SDP models. The validity of the evaluation procedure had
up to around 25% difference when adopting poor evaluation
waiting time choices.

8.4 RQ4 – Impact of Waiting Time on the Validity of the
Model Ranking Procedure
This section answers RQ4, formulated in Section 5.4.

8.4.1 Methodology
In JIT-SDP, different training waiting times lead to different
JIT-SDP models, which in turn may perform differently.
Therefore, this section will make use of different training
waiting times to produce different models (OOB with Ho-
effding trees), and investigate whether the ranking of these
models changes depending on the evaluation waiting time
being adopted. Given the training waiting time of 15, 30,
60 and 90 days, we will have four JIT-SDP models, denoted
by M15, M30, M60 and M90 (defined in Section 4.3). For
simplicity, the notation of time step ‘t’ is omitted.

As we are analyzing a single factor (evaluation waiting
time), we will perform the non-parametric Friedman test
instead of ANOVA to investigate its impact on the va-
lidity of the model ranking procedure in JIT-SDP, which,
as explained in Section 5.4, is defined based on Kendall
Tao ranking correlation between the true and estimated
rankings. Given an evaluation waiting time W , we will
compute the true ranking RW and the estimated ranking
R̂W between the JIT-SDP models M15, M30, M60 and
M90 in each evaluation data stream. Then, we will compute
the Kendall Tao ranking correlation τ(R, R̂) (Eq. (11)) to
measure the validity of the model ranking procedure. As the
evaluation waiting time should be no larger than the train-
ing waiting time (Section 4.4.4), we will use three evaluation
waiting times (15, 30 and 60 days), leading to three ranking
similarities for each evaluation data stream. Each ranking
similarity measures how close the estimated ranking is from
the true ranking. The evaluation waiting time of 90 days
is not investigated because it only corresponds to a single
model M90. We will conduct Friedman test across projects
to investigate whether the evaluation waiting time has a
significant impact on the validity of the ranking procedure.
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TABLE 2
The similarity in terms of Kendall Tau correlation between the estimated

and true rankings of JIT-SDP models on each project. Each column
corresponds to an evaluation waiting time based on which the

estimated performance is computed.

Project 15 days 30 days 60 days
Brackets 1.0000 1.0000 1.0000

Broadleaf 0.6667 0.3333 1.0000
Camel 0.6667 0.3333 1.0000
Fabric8 1.0000 1.0000 1.0000
jGroup 1.0000 1.0000 1.0000
Nova 1.0000 1.0000 1.0000

Django 0.6667 -0.3333 1.0000
rail 1.0000 1.0000 1.0000

Corefx 1.0000 1.0000 1.0000
Rust 0.6667 0.3333 1.0000

Tensorflow 1.0000 1.0000 1.0000
VScode 0.6667 0.3333 1.0000

wp-Calypso 0.6667 1.0000 1.0000

8.4.2 Impact of Evaluation Waiting Time on Model Ranking

Table 2 shows the Kendall Tao correlation between the
true and estimated rankings for each pair of projects and
evaluation waiting time. In most projects, the estimated
ranking can perfectly approximate the true ranking of JIT-
SDP models, with many Kendal correlation being equal
to 1.0000. This means that the choice of evaluation wait-
ing time has little impact on the validity of the JIT-SDP
model ranking procedure, despite having significant impact
on the validity of the performance evaluation procedure
(the answer to RQ3). The Friedman tests confirm that the
evaluation waiting time has no significant impact on the
validity of the model ranking procedure across projects
(p-value of 0.1376). Therefore, when comparisons among
models are made based on their rankings across projects
(to determine which model is better than others across
projects), the choice of evaluation waiting time is unlikely to
significantly impact the validity of such comparisons when
continuously evaluating JIT-SDP performance. This implies
that the estimation of the true predictive performance of
different models is affected in similar ways when all of them
are evaluated using the same waiting time, resulting in no
significant change in their rankings.

Answer to RQ4: Conclusions on which model performs
better are likely reliable independent of the choice of waiting
time, especially when considered across projects.

8.5 Choosing Appropriate Evaluation Waiting Times

As explained in Section 8.3.3, good choices of evaluation
waiting time are generally affected by (1) the time it takes
to find defects and (2) concept drift. Larger time to find
defects would lead to the need for longer evaluation waiting
times to reduce label noise, whereas more severe concept
drifts would lead to the need for shorter evaluation waiting
times. The choice of an appropriate evaluation waiting time
depends on this trade-off between the time to find defects
and the severity of concept drifts, being not straightforward.
In particular, the reason for upward or downward trends in
Figure 7 is the result of such trade-off. If the time to find de-
fects takes over, the optimal evaluation waiting time should
be larger, and the plot between the evaluation waiting time

and the validity of the evaluation procedure would have an
upward trend. If the impact of concept drift takes over, the
optimal evaluation waiting time should be smaller, leading
to a downward trend.

This analysis thus leads to the following additional
questions: How to choose appropriate evaluation waiting
times for a given project in order to obtain good valid-
ity of the evaluation procedure? What evaluation waiting
times would typically be the best to adopt? This section
discusses the answers to these questions based on the in-
sights provided by RQ1∼3. To answer these two questions,
we first provide an analysis of whether the values of the
input features together with information on the time to
find defects could inform the choice of evaluation waiting
time (Section 8.5.1). We then provide an analysis to check
whether concept drifts are more important than the time to
find defects for the purpose of determining a good eval-
uation waiting time (Section 8.5.2). Finally, we provide an
analysis of what evaluation waiting time typically leads to
the best validity of the evaluation procedure across projects
(Section 8.5.3).

8.5.1 Factors That May Influence the Choice of Evaluation
Waiting Time
The time it takes to find defects is potentially affected by
various underlying factors, some of which are more or less
controllable, and more or less objective. For example, a
defect could be in an area of the code that is difficult to
reach by test cases or that is not typically accessed by users.
As a result, it takes longer for the defect to be found. Or,
certain parts of the code could have been more tested or
tested earlier than others, such that certain defects are found
earlier. Or, certain parts of the code could have been tested
by more experienced developers or may be more complex
than others. As a result, the defect would be more or less
difficult to find and fix.

Concept drift may also have multiple underlying causes.
For example, a concept drift may be triggered by a new
functionality being developed, a major refactoring of the
code being conducted, the software maturing, the manage-
ment strategy being used during the software development
changing, or even more indirect factors such as software
developers starting to work from home due to covid19, em-
ployees being over-tired due to another concurrent project
reaching its final stages, or an economic crisis placing the
company under extra stress, etc.

In this section, we conduct a systematic investigation of
whether variations in the values of the input features (listed
in Section 6) over time could inform the choice of evaluation
waiting time. Such input features do not capture all possible
aspects that could be related to the time to find defects or to
concept drift. However, they are concrete and direct factors
that could reflect concept drift and can be automatically col-
lected from software repositories. Therefore, if these features
can be used to inform the choice of evaluation waiting time,
monitoring them could potentially be a feasible approach to
help tuning evaluation waiting time in practice.

We randomly select six software projects for this analy-
sis: Brackets, Broadleaf, Camel, Fabric8, jGroup and Nova.
Given project, we compute the continuous values for each
input feature by making use of a forgetting factor of 0.99
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(a) Broadleaf’s NUC (b) Broadleaf’s EXP (c) Nova’s NUC (d) Nova’s EXP

Fig. 9. Time decayed mean values of features NUC and EXP for Nova and Broadleaf over time (in x-axis) with θ = 0.99.

as previously done in Section 7. We then visually compare
the plots of these input features over time for these projects
to check which of them have relatively large variations. A
project whose features have relatively large variations may
have more severe concept drifts, requiring an evaluation
waiting time that is smaller than its median time to find
defects. Conversely, a project whose features have relatively
small variations over time may require a evaluation waiting
time that is larger than its median time to find defects.

Figure 9 gives an example of how to utilize input features
to help with the choice of evaluation waiting time for
Broadleaf and Nova. These figures show the mean values
of the features NUC (number of unique changes to the
modified files) and EXP (developer experience) over times.
The median time to find defects in Broadleaf was 43 days
[6]. Its NUC and EXP values have large variations over
time (note the scale of the y-axis). Such large variations
are likely to require evaluation waiting times that are even
smaller than 43 days. Indeed, from Figure 7, the evaluation
waiting time that led to the best validity of the performance
evaluation procedure for this project was 15 days. Nova, on
the other hand, had a larger median time to find defects of
97 days [6]. Moreover, the variations in NUC and EXP over
time were much smaller for this project. Such larger median
time to find defects, together with smaller variations in NUC
and EXP, is likely to support the choice of larger evaluation
waiting times. Indeed, from Figure 7, the best evaluation
waiting time was 90 days.

Plots for other features and projects were omitted for
space considerations. Brackets presents a similar behavior
to Nova in the sense that the variations in the input features
were small and its best evaluation waiting time was larger
than its median time to find defects. For Camel and Fabric8,
the variations are larger than those of Nova and Brackets,
but not so large as those of Broadleaf. This makes it more
difficult to use the input features to inform the choice of
evaluation waiting time for these projects. Furthermore, for
jGroup, the variations were similar to those in projects that
did not require smaller evaluation waiting times, despite the
best evaluation waiting times for this project being small.

Therefore, it is not easy to know how large the variations
need to be to support smaller choices of evaluation waiting
time. Moreover, even though large variations in the values
of the features can potentially be used as indicative of the
need for smaller evaluation waiting times, small variations
do not always mean that larger evaluation waiting times
should be used. This is because (1) the number possible fac-

tors potentially reflecting concept drift is very large, going
well beyond just the input features being used for JIT-SDP,
as discussed in the beginning of this section; (2) these factors
may have complex interactions with each other; and (3) they
may affect different pieces of code differently. Therefore,
the choice of an appropriate evaluation waiting time is not
straightforward, and one cannot always rely only on the
variations in the input features to inform this choice.

Monitoring all possible factors that could influence the
choice of waiting time and their interactions would be
impractical. Nevertheless, if in practice a software manager
knows that a significant change is likely to happen to the
project, this could imply a severe concept drift. A shorter
evaluation waiting time could thus be adopted. For exam-
ple, if they know they will start a major refactoring or will
implement a major new functionality, they may opt for a
lower evaluation waiting time.

8.5.2 The Influence of the Time To Find Defects on the
Choice of Evaluation Waiting Time
As explained in Section 8.5.1, monitoring input features
over time is not always enough to inform the choice of
waiting time. Therefore, it would be useful to know to
what extent this choice could be made based on the time
to find defects itself. This amount of time could potentially
be monitored over time to inform the choice of waiting time.
From the discussion on the results of RQ1∼3, we know that
larger evaluation waiting times are associated to smaller
label noise, and that smaller label noise is associated to
better validity of the evaluation procedure. However, those
results also show that concept drift is likely to play a more
important role than label noise on the validity. We also know
that label noise is caused by the effect of verification latency
given the evaluation waiting time. This implies that concept
drift plays a more important role than time to find defects
when determining a good evaluation waiting time.

To double check if that is really the case, we have
computed Spearman (nonlinear) and Pearson (linear) corre-
lations to investigate the possible relationship between the
best evaluation waiting time and the time to find defects in
the evaluation data stream of each of the thirteen projects.
The results did not show any high correlation. This confirms
that knowledge of time to find defects does not really help
in choosing the best evaluation waiting time. Therefore,
concept drift is the primary aspect to be investigated when
trying to tune the evaluation waiting time for a specific
project. Monitoring the time to find defects is on its own
not a good indicator of what waiting time to adopt.
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8.5.3 Setting a Default Evaluation Waiting Time

Sections 8.5.1 and 8.5.2 suggest principles for choosing ap-
propriate evaluation waiting time for a given project when
information about the project is available from project man-
agers and developers or when extensive numerical analyses
can be conducted to tract potential concept drift of input
features of JIT-SDP. However, when no further information
about the project is available, one may wish to adopt an
evaluation waiting time that is known to typically be the
best one across a variety of projects.

Figure 7(n) shows the median impact of the evaluation
waiting time on the validity across projects. We can see that
a smaller evaluation waiting time generally corresponded to
a better validity of the evaluation procedure, reflecting the
trend that smaller evaluation waiting times were usually
better for most projects. Therefore, even though 15 days is
not always going to be the best evaluation waiting time, we
suggest to use 15 days as the default because it is expected
in general to lead to a good estimate of the true predictive
performance up to the most recent evaluation time step.

9 THREATS TO VALIDITY

Internal Validity. A potential threat is the fact that we may
never gain access to true labels of some defect-inducing soft-
ware changes if the defects induced by them are not found
until the end of the data stream due to very large verification
latency. To mitigate this threat, we have deliberately chosen
open source projects covering a period of at least four years
and eliminated software changes from the latter periods of
the data stream, as described in Section 6.

Construct Validity. The evaluation metric (G-mean) used
in the analyses has been carefully chosen for the character-
istics of online JIT-SDP. In particular, this metric is adequate
because it is insensitive to the level of class imbalance
[32], being particularly important for problems that suffer
from class imbalance evolution such as JIT-SDP [6]. We
have also calculated this metric incrementally with fading
factors as recommended for online learning studies [32],
so that it is possible to track the fluctuations in predictive
performance over time. The metric adopted in this study is
the most widely used in online learning studies involving
class imbalance [32]. Investigation of other metrics is left as
future work. The continuous metrics to capture the amount
of label noise and the validity of the performance evaluation
procedure have also been designed based on a fading factor,
being suitable for tracking variations over time [32].

External Validity. We have investigated 13 open source
projects, with 4 levels of (training and evaluation) waiting
time, in addition to 5 lengths for the data stream in RQ1 (see
Section 8.1). These cover a range of different characteristics
presented in previous JIT-SDP work. However, as with any
study involving machine learning, results may not general-
ize to other projects, waiting times or data stream lengths.
We have adopted Commit Guru as the data collection tool
for this study. This is an easy-to-use tool that is readily
available for practitioners. As with other data collection
algorithms for JIT-SDP, this tool may itself result in some
noise during the data collection process (see Section 3.4).
Therefore, our conclusions regarding the impact of waiting

time are valid when such tool is used, and may not gener-
alize to other data collection tools that may inflict consid-
erably different levels of noise. Also, we focus our study
on OOB with Hoeffding trees, which have been previously
adopted for online JIT-SDP [6], [7]. Other machine learning
approaches could be investigated in the future.

10 CONCLUSION

We provided the first discussion on how to continuously
evaluate predictive performance in JIT-SDP over time dur-
ing the software development. We also provide the first
analysis of the extent to which the validity of the contin-
uous performance evaluation procedure can be affected by
the inherent evaluation waiting time in JIT-SDP. Our key
findings and their implications are as follows.

• Smaller evaluation waiting times were typically asso-
ciated to considerably larger amount of label noise, whereas
larger amount of evaluation label noise was associated to
slightly worse validity of the performance evaluation pro-
cedure. In the absence of concept drift, this would mean
that larger evaluation waiting times are recommended in
practice to slightly improve such validity.

• Smaller evaluation waiting times were themselves
associated to better validity of the performance evaluation
procedure, probably due to concept drift. This means that, in
general, the problems caused by label noise resulting from
poor choices of waiting time are minor compared to the
problems caused by concept drift. Even though the differ-
ences in the validity caused by different choices of waiting
time were typically small (median of 3.73% difference),
they were sometimes larger (up to 25%). Therefore, when
choosing an evaluation waiting time in practice, special con-
sideration should be taken to concept drift. If no information
regarding concept drift is available in a given project or
if we expect that concept drifts will happen often in the
data stream of the project, we recommend smaller waiting
times (e.g., 15 days), so that the evaluation is not performed
with obsolete examples. If concept drifts are expected to
be infrequent, larger waiting times should be preferred to
prevent the slightly detrimental effect of label noise.

• Interestingly, verification latency was larger in latter
portions of the data stream, suggesting that it takes longer to
find defects induced by software changes as the projects ma-
ture. In the context of performance evaluation, this means
that larger data streams (e.g., longer projects) are likely to
result in more continuous label noise, which may in turn
be more detrimental to the validity of the performance
evaluation procedure.

• Despite leading to differences in estimated predictive
performance, different evaluation waiting times usually did
not change the rankings of the JIT-SDP models. Conclusions
in terms of which models are ranked better are thus unlikely
to change when using different evaluation waiting times,
especially when investigating the ranking across projects.
It is important to note that overlooking training waiting
time is still a serious problem, as it leads to overoptimistic
estimations of predictive performance [4].

• This paper is also the first to provide a mathemati-
cal formulation of the prediction, training and continuous
evaluation procedures in online JIT-SDP. This formulation
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should help future research studies and the development of
tools to monitor the predictive performance of JIT-SDP in
practice over time during the software development.

As future work, we propose to further investigate the
use of concept drift detection methods for automatically
tuning the evaluation waiting time for the JIT-SDP evalu-
ation purposes. The impact of training waiting time on the
quality of the resulting predictive models is also worthwhile
to be studied. Future qualitative study to complement the
findings that latter portions of data streams are typically
associated to larger verification latency would also be desir-
able, to further investigate the reasons for this observation.
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