
Artificial Intelligence in Software Project
Management

Liyan Song and Leandro L. Minku

Abstract The success of a software project highly depends on how well the project is
managed. This includes crucial activities such as estimating the effort required to de-
velop the software project, creating a software project schedule including allocation
of human resources, managing project risks, monitoring progress, etc. Inadequate
handling of such activities can thus lead to serious consequences to software com-
panies. However, software project management is also a very challenging task that
involves multiple business and human factors, and conflicting objectives. These chal-
lenges are exacerbated when dealing with medium to large size software projects.
Under such circumstances, artificial intelligence has the potential to play a significant
role in supporting software project managers, enabling them to make more informed
management decisions. This chapter discusses how artificial intelligence techniques
can support software project managers with two key software project management
activities: software project scheduling and software effort estimation.

Liyan Song
Department of Computer Science and Engineering, Southern University of Science and Technology,
China, e-mail: songly@sustech.edu.cn

Leandro L. Minku
School of Computer Science, University of Birmingham, UK, e-mail: l.l.minku@bham.ac.uk

1

songly@sustech.edu.cn
l.l.minku@bham.ac.uk

2 Liyan Song and Leandro L. Minku

Version note: this is the final author accepted version, which contains place
holders for the references to other sections and chapters of the book, instead of the
references themselves.

Software project management is a software engineering task concerned with
ensuring that the software is delivered on time and on budget, and in accordance with
the requirements of the stakeholder organisations [1]. It includes crucial activities
such as estimating the effort required to develop the software project, creating a
software project schedule including allocation of human resources, managing project
risks, monitoring progress, etc.

Inadequate handling of such activities can lead to serious consequences to soft-
ware development companies. For instance, if the software project goes over budget,
the company will lose profit and may even get a negative profit margin. Depending
on how large the monetary loss is, the software company could even go bankrupt. If
the software project overruns, the software development company may lose a client
organisation or even be in breach of contract.

However, software project management is also a very challenging task that in-
volves multiple business and human factors, and conflicting objectives. These chal-
lenges are exacerbated when dealing with medium to large size software projects.
Under such circumstances, Artificial Intelligence (AI) has the potential to play a
significant role in supporting software project managers, enabling them to make
more informed management decisions. This chapter discusses how AI techniques
can support software project managers with two key software project management
activities: software project scheduling and software effort estimation.

Software project scheduling is the process of organising the work to be done in
a software project into different tasks and deciding who will work on which task
and when [1]. AI techniques can be used to help software project managers with
finding good allocations of employees to tasks with certain objectives in mind, such
as minimising the cost and duration of the project. Section 1 introduces software
project scheduling and AI approaches that can be used to support it, focusing on the
work of Alba and Chicano [2], Minku et al. [3] and Shen et al. [4] as examples.

Software effort estimation is the process of predicting the effort required to de-
velop a software project. AI can be used for software effort estimation as a decision
support tool, based on which project managers can justify, criticise or adjust the esti-
mation derived by the experts. Such AI-based estimations are repeatable, objective,
efficient, and can often provide better understanding of the estimation process. There
have been many AI approaches proposed for software effort estimation, and we will
take the effort estimator proposed by Song et al.’s [5] as an example to explain typical
procedures of adopting AI for effort estimation. Section 2 introduces software effort
estimation and AI techniques to support it.

Artificial Intelligence in Software Project Management 3

1 Software Project Scheduling (SPS)

Software Project Scheduling (SPS) consists in organising the work to be done in a
software project into different tasks and deciding who will work on which task and
when [1]. It requires identifying the tasks to be performed in a software project;
the dependencies among the tasks; the employees available to perform tasks, their
skills and salaries; estimating the effort required to develop each task; allocating
employees to tasks; and ultimately producing charts to communicate the project tasks,
their duration and employee allocation. In more traditional software development
processes, a detailed schedule is produced at the beginning of the project, and this
schedule is then adjusted as the project is developed. In agile software development,
the initial schedule is typically more coarse, identifying the different phases of the
project. More detailed schedules are then produced for each phase or iteration of the
project during its development [1].

An illustrative example of project Gantt chart that could have been produced as
part of the SPS process at the beginning of a project is given in Figure 1. In this
project, there are nine tasks 𝑡0 to 𝑡8 and three employees 𝑒0 to 𝑒2. Employees can
be allocated with different amounts of dedication to tasks (shown in parentheses in
the Gantt chart). This dedication corresponds to the percentage of the employee’s
full time work that is dedicated to each task. For example, if an employee’s full time
work is 8 hours per day, then a dedication of 50% would correspond to 4 hours per
day. Tasks can be allocated to more than one employee at the same time, e.g., 𝑒0 and
𝑒2 are both allocated to 𝑡0. A given employee can also be allocated to more than one
task that occur concurrently. For instance, employee 𝑒0 is allocated to both 𝑡1 and 𝑡4,
which co-occur from Day 16 to Day 20. At the beginning of 𝑡1, 𝑒0 works with 100%
dedication to this task, but at the end of this task 𝑒0 shares their time between 𝑡1 and
𝑡4, dedicating 50% of their time to each of these tasks. Employee 𝑒0 remains working
with 50% dedication to 𝑡4 until the end of this task, even though this employee was
not allocated to any other concurrent task in this project. It could be, for example,
that this employee was dedicating the other 50% of their time on another project.

Typically, schedules are created with certain objectives in mind. For instance, one
may be interested in producing a schedule that minimises the cost and duration of
the project. For example, the schedule illustrated in Figure 1 is estimated to take
42 days to complete. Possibly, this project could have taken less time to complete
if more employees were allocated to it. However, allocating more employees might
include some employees with higher salaries, meaning that the cost of the project
could potentially increase. The cost of a software project can be calculated based on
the salaries of the employees allocated to it plus the cost of any other resources that
may need to be used to develop the project.

Creating a software project schedule can be a daunting task especially when the
project is large and the company has a large number of employees. The space of
possible allocations of employees to tasks can be enormous [6]. The complexity
of the allocations can also be high, given that employees can work in parallel on
different tasks and each task can be allocated to more than one employee at the same
time. Constraints such as employees being unable to work on tasks for which they do

4 Liyan Song and Leandro L. Minku

Fig. 1 Illustrative example of project Gantt chart with nine tasks 𝑡0 to 𝑡8 and three employees 𝑒0 to
𝑒2. Arrows represent dependencies between tasks. Percentages in brackets represent the percentage
of the employee’s full time work dedicated to the corresponding task. Each vertical gray line
represents the end of a given working day.

not have the required skills, employees being unable to work more than a maximum
number of hours per day, and task dependencies add to the challenge [3]. Moreover,
the objectives that one may be interested in optimising when creating a schedule
may frequently be conflicting. For instance, a schedule that allocates expensive staff
(those with higher salaries) may lead to a more expensive project, but may result in a
shorter duration. Producing an optimal schedule manually is thus a difficult problem.

An alternative to producing a schedule completely manually is to adopt AI ap-
proaches. These approaches would still require project managers to decide how to
split the project into different tasks and provide information such as task dependen-
cies, employees’ salaries and skills. However, based on such information, AI could
support software managers in creating project schedules with the aim of optimising
certain objectives such as project cost and duration. Section 1.1 discusses some of
the existing AI approaches for SPS.

1.1 AI Approaches for SPS

Despite SPS being typically a human activity, the objectives that the software man-
ager may be interested in optimising when creating a schedule (e.g., project cost
and duration) can be mathematically formulated. Therefore, SPS can be seen as an
optimisation problem, i.e., a problem where we are interested in finding a solution
that minimises or maximises one or more objective functions. Such formulation

Artificial Intelligence in Software Project Management 5

enables the SPS problem to be solved by AI approaches called approximate search
algorithms, such as metaheuristics [7] (see Chapter). Solutions generated automati-
cally by AI can then be used to support software managers in making more informed
decisions during the SPS process.

Several different formulations of SPS as an optimisation problem have been inves-
tigated in the literature. For example, some researchers formulate SPS as the problem
of finding the order with which tasks should be undertaken and the assignment of
employees to tasks that minimises the duration of the software project [8], or the
cost (salaries paid) and the amount of penalties incurred from missing milestone
deadlines in the project [9]. Others formulate it as the problem of finding the alloca-
tion of employees to tasks that minimises the duration and cost (salaries paid) of the
software project, whilst the order with which tasks are performed is calculated by a
separate deterministic algorithm based on the allocations and dependencies among
tasks [2]. Different problem formulations can also take into account different levels
of detail. For example, some formulations take into account different salaries for
work in normal hours or overtime [9], the tasks’ required skills and employees’ skills
[9, 3], the level of proficiency of employees on different skills [9, 4], the potential
mistakes in the estimations of the effort required to complete tasks [4], the dynamic
events that may affect the software project during its development [4], etc.

Section 1.1.1 presents a popular problem formulation that was proposed in [2],
and briefly discusses its extension [4] to take into account additional aspects rel-
evant to SPS. Section 1.1.2 briefly discusses the metaheuristic proposed in [3] to
solve this problem and its extended version [4]. Even though the proposed problem
formulations and metaheuristics have been proposed in [2, 3, 4], this book chapter
concentrates on discussing them in a more didactic manner.

1.1.1 An SPS Problem Formulation

Alba and Chicano [2] formulated the SPS problem as the problem of finding an allo-
cation of employees to tasks that minimises the cost and duration of the project. This
formulation is a landmark formulation that has inspired other more detailed formu-
lations [4]. As it is a simple formulation that is easy to understand, this section will
focus on it, and then briefly explain how it was extended to include more details that
are relevant to realistic SPS scenarios. We explain what information this formulation
requires software managers to provide about the project and available employees,
how a candidate solution to the SPS problem looks like in this formulation, what
objectives are intended to be optimised and what constraints a solution must satisfy
to be feasible.

Information About The Software Project And Available Employees
Alba and Chicano’s problem formulation [2] considers that the following informa-

tion about the software project and the employees available to work on it is provided
by the software manager:

6 Liyan Song and Leandro L. Minku

• Employees – there are 𝑛 employees 𝑒0, 𝑒1, . . . , 𝑒𝑛−1 available for the project, with
salaries 𝑠0, 𝑠1, . . . , 𝑠𝑛−1, sets of skills sk0, sk1, . . . , sk𝑛−1, number of normal work-
ing hours in a day ℎ0, ℎ1, . . . , ℎ𝑛−1, and maximum dedication md0,md1, . . . ,md𝑛−1.
Table 1 provides an illustrative example of information that could have been pro-
vided by a software manager for 𝑛 = 6 employees.

Table 1 Example of Employees Available For a Given Project
Employee Hourly Skills Normal Maximum
Name Salary Hours Dedication
𝑒0 = John 𝑠0 = $10 sk0 = { Python, SQL } ℎ0 = 8 hours md0 = 1
𝑒1 = Tom 𝑠1 = $30 sk1 = { C++, TCP/IP, HTTP } ℎ1 = 8 hours md1 = 1
𝑒2 = Jack 𝑠2 = $25 sk2 = { Java, Javascript, SQL, JSON, Testing } ℎ2 = 8 hours md2 = 1
𝑒3 = Claire 𝑠3 = $27 sk3 = { UML, Java, SQL, Testing, Mocks } ℎ3 = 8 hours md3 = 1
𝑒4 = Mary 𝑠4 = $35 sk4 = { Data science, Python, SQL, JSON } ℎ4 = 8 hours md4 = 1
𝑒5 = Junior 𝑠5 = $20 sk5 = { C++, TCP/IP, HTTP } ℎ4 = 8 hours md5 = 1

The maximum dedication can be specified as a percentage of the normal working
day. For instance, 1 means 100% of a normal working day, whereas 1.25 means
125% of a normal working day. Assuming that a normal working day has 8 hours
as in Table 1, a maximum dedication of 1 would mean 1 · 8 = 8 hours per day,
i.e., the employee is not allowed to work overtime. A dedication of 1.25 would
mean 1.25 · 8 = 10 hours per day, i.e., the employee is allowed to work up to 2
hours overtime.
In practice, a much larger number of employees may be available than those in
the example provided in Table 1. More details about the employees could also
be specified by extending this problem formulation. For instance, Shen et al. [4]
also considered each employee’s overtime salary and level of proficiency on each
skill. Such extra information can be important as it would affect the cost and
duration of the project. In addition, employees’ availabilities may be affected by
dynamic events that may occur over time. For instance, an employee may become
unavailable to work due to illness, or may leave the company. Therefore Shen et
al. [4] also associated each employee to a status indicating whether this employee
is currently available or not to work. A change in such status is considered as
a critical event that immediately triggers rescheduling of the project, so that the
project schedule remains feasible and its cost and duration remains competitive.

• Tasks – the project has𝑚 tasks 𝑡0, 𝑡1, . . . , 𝑡𝑚−1 with required efforts ef0, ef1, . . . , ef𝑚−1
and sets of required skills rsk0, rsk1, . . . , rsk𝑚−1. Table 2 provides an illustrative
example of tasks for a project with 𝑚 = 10 tasks to develop a system to monitor
and track cattle in a farm.
The tasks are determined by the software project manager, and could be either
coarser grained tasks (e.g., architecture design, database design, communication
protocol design, front end development, back end development, front end testing,
etc), or more detailed tasks resulting from the initial design of the system (e.g.,
develop a specific class, a specific table for the database, etc). The required efforts
are also determined by the software manager, potentially with the support of AI

Artificial Intelligence in Software Project Management 7

Table 2 Example of Tasks in a Cattle Monitoring and Tracking Project
Task Name Required Effort Required Skills
𝑡0 = Design Database ef0 = 24 person-hours rsk0 = {SQL}
𝑡1 = Implement Database ef1 = 24 person-hours rsk1 = {SQL}
𝑡2 = Design GUI ef2 = 32 person-hours rsk2 = {Javascript}
𝑡3 = Implement GUI ef3 = 40 person-hours rsk3 = {Javascript}
𝑡4 = Design Communications Protocol ef4 = 80 person-hours rsk4 = {TCP/IP}
𝑡5 = Implement Communications Protocol Class ef5 = 40 person-hours rsk5 = {TCP/IP, C++}
𝑡6 = Implement Cattle Class ef6 = 40 person-hours rsk6 = {Java, Javascript}
𝑡7 = Implement Monitor Class ef7 = 40 person-hours rsk7 = {C++}
𝑡8 = Implement Data Transmission Class ef8 = 80 person-hours rsk8 = {C++}
𝑡9 = Test System ef9 = 160 person-hours rsk9 = {Testing}

approaches for software effort estimation such as the ones presented in Section 2.
Coarser task granularity may mean that each task is actually composed of many
sub-tasks that have dependencies with each other, potentially making their effort
estimation more difficult. Finer granularities may require more detailed design,
but their required effort may be easier to estimate.
In the example shown in Table 2, we assume that a UML diagram for the classes
that compose the system has already been designed by the software project man-
ager, leading to a more detailed set of tasks. In practice, a much larger number of
tasks may need to be scheduled, especially when dealing with large projects and
when a more detailed level of granularity is used. There may also be much more
tasks related to software testing, e.g., testing each of the classes separately before
an integration test.
Shen et al. [4] extended this problem formulation to also consider that new tasks
may be added as a result of changes in the requirements of the project during the
software development lifecycle. New tasks can be critical or non-critical tasks.
New critical tasks immediately trigger rescheduling of the project, so that they
can be incorporated into the project schedule as soon as possible. Regular tasks
are accumulated over time and are only incorporated into the project schedule
when another critical event occurs or when they need to start so that other existing
tasks that depend on it can commence.

• Task Precedence Graph – tasks in software projects typically have precedence
relations, i.e., some tasks cannot start before other tasks are completed. For
instance, the implementation of a GUI cannot start before its design is completed.
This could be captured in the form of a task precedence graph, where each node
represents a task and an arc going from a given task 𝑡𝑖 to 𝑡 𝑗 means that task 𝑡 𝑗
depends on the completion of task 𝑡𝑖 . Figure 2 shows an illustrative example of
task precedence graph that could have been generated by the software manager
for our illustrative project.

It is worth noting that a software project may also suffer from other types of
uncertainty and dynamic events in addition to changes in employees’ status (avail-
able or non-available) and new tasks. For instance, there may be changes in task
precedence, new employees being hired by the company, removal of tasks from the

8 Liyan Song and Leandro L. Minku

Fig. 2 Example of Task Precedence Graph for a Cattle Monitoring and Tracking Project

project due to changes in requirements, etc. These other dynamic events were not
taken into account in Shen et al. [4]’s work, but could potentially be dealt with in a
similar way to changes in employees’ status and new tasks.

Candidate Solutions and Gantt Charts
A candidate solution to the SPS problem corresponds to a matrix of dedications

of employees to tasks. An AI algorithm to solve the SPS problem will thus attempt to
automatically find a good allocation of employees to tasks, specifying the dedication
of each employee to each task.

An example of possible (not necessarily optimal) solution generated manually
for our Cattle Monitoring and Tracking project is shown in Table 3. Each cell [𝑖, 𝑗]
contains a numeric value corresponding to the percentage of employee 𝑒𝑖’s normal
working time dedicated to task 𝑡 𝑗 . For example, employee 𝑒0 will dedicate 100% of
their time (i.e., 8 hours per day) to task 𝑡0 when this task is active, whereas employee
𝑒5 will dedicate 50% of their time (i.e., 4 hours per day) to task 𝑡5 when this task
is active. The dedications have a pre-defined granularity that prevents assigning
employees to tasks with too fine grained dedications, which would be difficult to
follow in practice. For instance, we could say that dedications can only take the
values of 0, 0.25, 0.50, 0.75 and 1. It is possible for a given employee not to be
allocated to any task. For example, employees 𝑒1 and 𝑒4 were not allocated to this
project despite being available. This could have been done, for example, because
these two employees are the ones with the highest salaries, and the software manager
might be trying to reduce the cost of the project.

Based on the project tasks, task precedence graph and a given solution, it is
possible to generate a Gantt chart for the project in an automated manner. The Gantt

Artificial Intelligence in Software Project Management 9

Table 3 Example of Solution for Scheduling a Cattle Monitoring and Tracking Project. The
numbers in each cell [𝑖, 𝑗] correspond to the percentage of employee 𝑒𝑖’s normal working time
dedicated to task 𝑡 𝑗 .

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9
𝑒0 1 1 0 0 0 0 0 0 0 0
𝑒1 0 0 0 0 0 0 0 0 0 0
𝑒2 0 0 1 0.25 0 0 0.5 0 0 1
𝑒3 0 0 0 0 0 0 0 0 0 1
𝑒4 0 0 0 0 0 0 0 0 0 0
𝑒5 0 0 0 0 1 0.5 0 0.5 1 0

chart for the solution in Table 3 is shown in Figure 3. An algorithm that can be
used to generate this Gantt chart is presented in [3]. This algorithm iteratively adds
tasks that can commence given the task precedence graph to the Gantt chart, with
their lengths calculated based on the tasks’ required effort and the total amount of
dedication of employees allocated to them.

Fig. 3 Gantt Chart for the Solution from Table 3. Task dependencies are illustrated in Figure 2 and
are omitted here so that the Gantt Chart is easier to read. The duration of the project is 40 days and
the project cost is $12,240 based on this solution.

The time it takes for a task to complete is calculated by dividing the task’s required
effort by the sum of the dedications of all employees allocated to this task [2]. For
instance, in our example project, task 𝑡0 has no dependency from the beginning, and
can thus start on Day 1 as shown in Figure 3. This task takes 3 days to complete. This
is because it requires 24 person-hours (Table 2) and one employee (𝑒0) is allocated
to it with 1 = 100% of their time (Table 3). So, this task will require 24/1 hours (=3
days) to be completed. If there were two employees assigned to this task, one with a

10 Liyan Song and Leandro L. Minku

dedication of 1 and the other with a dedication of 0.5, then this task would require
24/(1 + 0.5) = 16 hours (=2 days) to be completed.

Simply dividing the task’s required effort by the sum of the dedications of the
employees allocated to it means that the time it takes to complete a task decreases
linearly with the total amount of dedication allocated it. This means that AI SPS
algorithms following this problem formulation could suggest software managers to
allocate a very large number of employees to tasks in an attempt to reduce the
project duration. However, it is well known that larger teams lead to communication
overheads [10]. A larger total dedication resulting from a large number of employees
allocated to a task would result in such communication overhead. Shen et al. [4]
extended this problem formulation by applying a penalty which increases the task’s
required effort if the team allocated to it exceeds a maximum size. They also extended
the formulation to consider that employees with lower proficiency on the skills
required for the task would cause this task to take longer to complete. Such extensions
are important because they would prevent AI algorithms from simply allocating an
excessively large number of employees to a given task to reduce its duration.

Objectives
Alba and Chicano’s formulation [2] considers two objectives to be minimised:

project cost and duration. An AI algorithm for the SPS problem based on this
formulation would thus help the software manager to find an allocation that minimises
the project cost and duration. These objectives are computed as follows:

• Duration – the duration of the project can be automatically obtained when the
Gantt chart is generated. For example, in Figure 3, we can see that the project will
take in total 40 days to be completed, as task 𝑡9 is the last task to be completed
and it finishes at the end of Day 40.

• Cost – this formulation considers that the cost of the project corresponds to
the total amount of salaries paid to the employees allocated to the project. In
practice, other costs may also be incurred, depending on whether other resources
are required for the development of the project. However, these other costs would
normally be unrelated to the project schedule itself, and so are not taken into
account in the formulation. The total amount of salaries paid can be determined
automatically based on the Gantt chart and the information about the employees’
salaries. In particular, for each employee, we need to compute the total number of
hours that they will spend on the project. We can then calculate the total salary paid
for this employee. For example, for the solution presented in Table 3, employee 𝑒0
works in total 3 days for 𝑡0 and 3 days for 𝑡1 (= 6 days · 8 hours = 48 hours). So,
their total payment is 48 · $10 = $480. After computing the salaries paid to each
employee, we can sum the salaries paid for all employees to determine the cost of
the project. The total cost of the project based on this Gantt chart is $12,240.

Besides the two objectives above, Shen et al. [4] also considers two additional
objectives:

• Robustness – the task effort estimations may involve uncertainty, i.e., the actual
task efforts may not be equal to the estimated ones. Therefore, the allocation of

Artificial Intelligence in Software Project Management 11

employees to tasks should ideally be as robust as possible to potential variations
in task effort. The robustness objective evaluates such robustness. In general
terms, it represents the average increase in project cost and duration obtained
when simulating variations in task effort based on a Gaussian distribution. The
higher the increase in cost and duration, the worse the robustness of the candidate
solution to task effort uncertainty.

• Stability – software projects may suffer changes over time, such as changes
in the status (available or unavailable) of employees and new tasks being added.
Whenever a critical event occurs, the project needs to be immediately rescheduled
so that its cost and duration remains feasible and competitive. To avoid project
disruption, the new allocation of employees to tasks should ideally not be too
different from the previous one. The stability objective measures the amount of
changes in the dedication of employees to tasks that were previously available in
the project. The larger the amount of changes, the more disruptive and undesirable
the new project schedule is.

Constraints
Alba and Chicano’s formulation [2] also takes into account certain constraints. A

solution can only be feasible if it satisfies these constraints. If a given solution does
not satisfy these constraints, it is considered infeasible and cannot be adopted for
the software project being scheduled. An AI algorithm would thus attempt to find a
solution that not only minimises the project cost and duration, but also satisfies the
constraints. These constraints are explained below:

• Maximum Dedication – at any point during the project, the total dedication of a
given employee 𝑒𝑖 to tasks should not exceed the maximum dedication md𝑖 .
For example, based on the Gantt chart from Figure 3, employee 𝑒5 works con-
currently on tasks 𝑡5 and 𝑡7 from days 11 to 20. As this employee’s dedication
to each of these tasks is 0.5, this employee is working with a total dedication of
0.5 + 0.5 = 1 from days 11 to 20. This does not exceed the maximum dedication
of this employee (md1 = 1). Therefore, the maximum dedication constraint is sat-
isfied during this period of time. However, had the dedication of this employee to
task 𝑡7 been 0.75, this employee’s total dedication during this period would have
been 0.5 + 0.75 = 1.25, which exceeds their maximum dedication of md1 = 1. In
this case, the maximum dedication constraint would have been violated, i.e., the
solution would have been infeasible.
Minku et al. [3] proposed to fix infeasible solutions by adjusting their correspond-
ing Gantt charts. This means that the AI algorithm itself would not need to try
and find a solution that satisfies this constraint. Instead, any solution that violates
this constraint would be fixed into a Gantt chart that satisfies this constraint. The
strategy to fix the Gantt chart is called “normalisation” and its idea is as follows.
Consider the infeasible solution discussed above, where the dedication of em-
ployee 𝑒5 to tasks 𝑡5 and 𝑡7 is 0.5 and 0.75, respectively. The total dedication of
this employee to tasks from Days 11 to 20 is 1.25. If we divide the dedications
to tasks 𝑡5 and 𝑡7 by 1.25 when creating the Gantt chart from days 11 to 20, the

12 Liyan Song and Leandro L. Minku

resulting dedications will be 0.5/1.25 = 0.4 to task 𝑡5 and 0.75/1.25 = 0.6 to task
𝑡7 from days 11 to 20. Therefore, the constraint would not be violated anymore.
Such fixes are only applied for the periods of time when violations would have
occurred. Therefore, an employee may initially have a given dedication to a task,
and then decrease this dedication at a later date in order to avoid a violation. For
instance, in the Gantt chart from Figure 1, employee 𝑒0 started to work on task
𝑡1 with a dedication of 1 and then reduced it to 0.5 once task 𝑡4 started. Such
reduction in the dedication to task 𝑡1 avoided a total dedication larger than 1 from
Day 16 to Day 20. It also enabled the project to complete faster, because employee
𝑒0 did not need to work on the whole task 𝑡1 with a dedication of 0.5, only from
Day 16 onward. This enabled this task to complete faster than if employee 𝑒1 was
working with dedication 0.5 during this whole task.

• Required Skills – the team (group of employees) allocated to a given task must,
together, have all the skills required to conduct that task. For example, a team
composed of one employee who knows Java and one employee who knows SQL,
together, holds the skills Java and SQL. This team could thus be allocated to a
task that requires Java and SQL, but could not be allocated to a task that requires
Java and Javascript. Any solution that assigns a team of employees that do not,
together, hold all skills required to develop that task is an infeasible solution.
This definition for the required skills constraint has some problems. In particular,
each employee in the team does not need to have all the skills required by the task,
so long as the team as a whole has all skills. For instance, it could happen that
all employees from Table 1 are allocated to task 𝑡9 of Table 2, even though only
employees 𝑒2 and 𝑒3 have testing skills. Employees with no proficiency on the
skills required for a given task would be unable to efficiently work on this task, as
they would have to learn the skill on the go. Shen et al. [4] extended this problem
formulation to take this into account when computing the duration of each task
as mentioned in the explanation of how to generate the Gantt chart. Therefore,
an AI algorithm to solve the SPS problem based on the extended formulation
would only allocate an employee who is not proficient on a given task’s required
skill only if this would bring a worthwhile benefit to the cost and duration of the
project as a whole.
Alternatively, it is possible to replace Alba and Chicano [2]’s required skills
constraint by a constraint that states that each and every employee allocated to a
given task must have all the skills required to develop that task. For instance, if a
given task requires Testing and SQL in our example project, the only employees
that could be assigned to this task would be 𝑒3 and 𝑒4.

1.1.2 An AI Algorithm for Solving SPS

Given a specific SPS problem formulation, AI algorithms can be adopted to solve it.
Different approximate search algorithms have been applied to the SPS problem [7],
among which evolutionary algorithms are among the most popular. Evolutionary
algorithms are explained in Section . The current section explains an example of

Artificial Intelligence in Software Project Management 13

evolutionary algorithm design for SPS. This algorithm design was proposed by
Minku et al. [3] and is based on the problem formulation introduced by Alba and
Chicano [2], but adopting the normalisation strategy to fix the Gantt chart to avoid
violations of the maximum dedication constraint as explained in Section 1.1.1.
This strategy, together with some other design choices, enabled this algorithm to
significantly outperform other existing algorithms designed for the same problem
formulation.

As explained in Section 1.1.1, this problem formulation does not take into account
certain details that are important when scheduling software projects in practice.
Therefore, it was extended in subsequent work such as the work of Shen et al. [4].
However, the more detailed problem formulation proposed by Shen et al. requires a
more complex evolutionary algorithm to be solved, which in turn requires advanced
knowledge of evolutionary algorithms to understand. Therefore, this section focuses
on Minku et al.’s algorithm [3]. In practice, software managers would not need to
understand in detail how different evolutionary algorithms for SPS work to be able to
adopt them, as they would only need to interact with a software tool that implements
such algorithms by inputting information about the employees and tasks in order to
obtain an allocation.

The evolutionary algorithm proposed by Minku et al. [3] for SPS is depicted
in Algorithm 1. It requires us to pre-define certain parameters, namely the pop-
ulation size 𝜇, number of parents 𝜆, probability of crossover 𝑃𝑐 and maximum
number of iterations MaxIt. The best values for these parameters may vary depend-
ing on the software project in hands. However, default values of 𝜇 = 64, 𝜆 = 64,
𝑃𝑐 = 0.75, MaxIt = 69 led to good results in experiments with several simulated
software projects with different features in [3]. Therefore, if the software manager
is not familiar with evolutionary algorithms, we recommend the use of these default
parameter values.

Algorithm 1 Evolutionary Algorithm for SPS
Parameters: population size 𝜇, number of parents to be selected 𝜆, probability of crossover 𝑃𝑐 ,
maximum number of iterations MaxIt.
1: Initialise population 𝑃 with 𝜇 candidate solutions.
2: repeat
3: Select 𝜆 parents from 𝑃 using binary tournament selection.
4: for each pair of parents 𝐴 and 𝐵 do
5: With probability 𝑃𝑐 , apply crossover between 𝐴 and 𝐵 to generate 𝐴′ and 𝐵′.
6: Otherwise, 𝐴′ ← 𝐴 and 𝐵′ ← 𝐵

7: Apply mutation to each cell of 𝐴′ and 𝐵′ using probability 𝑃𝑚 = 1/(𝑚𝑛) .
8: 𝑃 ← 𝑃 ∪ {𝐴′, 𝐵′}.
9: end for

10: Select the 𝜇 best candidate solutions from 𝑃 to survive for the next generation.
11: until maximum number of iterations MaxIt is reached

The algorithm first initialises a population of candidate solutions 𝑃 with 𝜇 can-
didate solutions (Line 1). Then, a loop is repeated until the maximum number of
iterations MaxIt is reached. In this loop, 𝜆 parent solutions are selected based on

14 Liyan Song and Leandro L. Minku

binary tournament selection (Line 3). For each pair of parents 𝐴 and 𝐵, crossover is
applied with probability 𝑃𝑐 to generate children 𝐴′ and 𝐵′ (Line 5). If crossover is
not applied, the children 𝐴′ and 𝐵′ are clones of the parents (Line 6). Mutation is
then applied to the children with a probability 𝑃𝑚 = 1/(𝑚𝑛) (Line 7), where 𝑚 is
the number of tasks and 𝑛 is the number of available employees. The children are
then added to the population 𝑃 (Line 8). The 𝜇 best candidate solutions (i.e., those
with the best fitness values) from the population 𝑃 are then selected to survive for
the next generation.

As mentioned in Section , some of the key design choices of evolutionary algo-
rithms involve deciding on an appropriate representation, crossover and mutation
operators, fitness function and strategy to deal with constraints. The algorithm pro-
posed by Minku et al. [3] makes use of a direct representation of the candidate
solutions, i.e., a matrix of dedications of employees to tasks with a pre-determined
granularity as explained in Section 1.1.1 and illustrated in Table 3.

Crossover between two parent solutions A and B is applied with a pre-defined
probability 𝑃𝑐. When crossover is applied, one of the following strategies is randomly
used to generate two children solutions A’ and B’:

• Exchange Rows – for each employee, select its corresponding dedications to
tasks from one randomly chosen parent to compose child A’, and from the other
parent to compose child B’. This can be seen as exchanging rows of the matrix of
dedications between the parents A and B. An example of crossover by exchanging
rows is given in Figure 4 for a project with three employees and four tasks.

Fig. 4 Example of crossover by exchanging rows being applied to two parents A and B shown
(left), leading to two children A’ and B’ (right). The rows used to compose child A’ are picked
randomly from parent A or B, and the other rows are used to compose child B’.

• Exchange Columns – for each task, select its corresponding employees’ dedica-
tions from one randomly chosen parent to compose child A’, and from the other
parent to compose child B’. This can be seen as exchanging columns of the ma-
trix of dedications. An example of crossover by exchanging columns is given in
Figure 5 for a project with three employees and four tasks.

Mutation is applied independently to each cell of a child with probability 𝑃𝑚 =

1/(𝑚𝑛), where 𝑛 is the number of employees and 𝑚 is the number of tasks. This

Artificial Intelligence in Software Project Management 15

Fig. 5 Example of crossover by exchanging columns being applied to two parents A and B (top),
leading to two children A’ and B’ (bottom). The columns used to compose child A’ are picked
randomly from parent A or B, and the other columns are used to compose child B’.

means that, on average, one cell of the matrix of dedications gets mutated for each
child. The mutation consists in replacing the current dedication value of the cell by
any other possible dedication value. For example, consider the dedication granularity
of 0, 0.25, 0.5, 0.75, 1 and a given cell with value 0.75. If this cell is mutated, another
value is picked randomly from 0, 0.25, 0.5, 1, e.g., 0. An example of that is shown in
Figure 6.

Fig. 6 Example of mutation being applied to child B’ (left), leading to a mutated child (right). Each
cell has a probability of 1/(3 · 4) ≈ 0.08 of being mutated to a new randomly picked dedication
value. In this example, this resulted in the dedication of employee 𝑒1 to task 𝑡1 being mutated from
0.75 to 0.

Another important component of an evolutionary algorithm is its fitness function
and its strategy to deal with constraints. The fitness function adopted in [3] is the
weighted average between the project cost and duration incurred by the solution, as
shown below:

𝑓 (𝑋) = 𝑤cost · cost(𝑋) + 𝑤duration · duration(𝑋) (1)

where cost(X) and duration(X) are the cost and duration of solution 𝑋 , and 𝑤cost
and 𝑤duration are pre-defined positive real values used to control how much emphasis
the software manager would like to place on the cost and duration of the project,
respectively. These weights can also work to make the magnitude of the cost values

16 Liyan Song and Leandro L. Minku

similar to that of the duration values. For example, if we know the project cost would
be in the region of ten thousands and the duration would be in the region of hundreds,
we could set the weights as 𝑤𝑐𝑜𝑠𝑡 = 0.001 and 𝑤𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1 so that the cost does
not dominate the computation of fitness values. Setting the weights as 𝑤𝑐𝑜𝑠𝑡 = 0.01
and 𝑤𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1 would increase the importance of cost when scheduling this
project. This would guide the algorithm towards finding an allocation that leads to a
cheaper, but possibly longer project.

Good solutions have smaller fitness values according to this function. To deal with
the required skills constraint, the cost(𝑋) and duration(𝑋) of the fitness function
is forced into a very large value which makes the fitness of any infeasible solution
worse than that of any feasible solution. If Alba and Chicano [2]’s original required
skills constraint is adopted, this value gets worse when larger numbers of skills are
missing in the teams allocated to the tasks. Similarly, if the alternative required skills
constraint that states that each and every employee of a team needs to have all skills
required by the task is adopted, this value gets worse when larger number of tasks
are allocated inadequate teams. This helps guiding the algorithm to find feasible
solutions.

The maximum dedication constraint is automatically dealt with by fixing the
Gantt chart of infeasible solutions by using the normalisation strategy explained in
Section 1.1.1.

1.2 Running an AI Algorithm for SPS

This section gives an example of how to run an AI algorithm for SPS. The tool used
here implements Minku et al. [3]’s evolutionary algorithm for SPS and also includes
some variations of it. The variation that we will experiment with in this section is
the one that adopts the alternative required skills constraint that requires each and
every employee allocated to a given task to have all the skills required for that task.

The tool was implemented for research purposes, making use of text files to
collect information about the project and available employees, and for retrieving the
solution in the form of an allocation of employees to tasks. The tool can either be
run from the command line or via a user interface, but this user interface is mainly
used for the purpose of setting up the evolutionary algorithm to be adopted and its
parameters.

In practice, an intelligent SPS tool would have a user interface for collecting
information about the project (such as the information from Table 2 and Figure 2)
and available employees (as in Table 1), and for displaying the solution in the format
of an allocation of employees to tasks (as in Table 3) and its corresponding Gantt
chart (as in Figure 3). The setting of the evolutionary algorithm itself would be
considered as an advanced setting that software managers would not need to change
unless they are familiar with evolutionary algorithms and would like to investigate
whether different settings would lead to better solutions.

Artificial Intelligence in Software Project Management 17

The tool is implemented in Java and is available at [11] under GNU GLP 3.0 li-
cense. It makes use of the Opt4j framework for meta-heuristic optimisation [12],
which supports the implementation of different evolutionary algorithms and is
available under the MIT license. Once you download the tool, you will see that
there is a folder called problem-instance-examples. This folder contains nine dif-
ferent examples of toy software projects to be scheduled. One of them is called
instance sample book.txt, which we will use as a running example in this book.
This example corresponds to the illustrative project discussed in Section 1.1.2. In
particular, the employees are the ones listed in Table 1, the tasks are the ones in
Table 2 and the task precedence graph is the one in Figure 2.

The format of this file follows the format of the generator introduced by Alba and
Chicano [2]. Comment lines can be added by starting a line with #. When opening
this file, you will note that the first lines contain comments listing the numeric
identifiers that are being used to represent each skill. The numeric identifiers used
for the employees and tasks are the same as the ones used in Tables 1 and 2.

After the commented lines, the file contains a number of statements that define
the information from Tables 1 and 2 and Figure 2, i.e., the information about the
employees, tasks and task precedence graph, respectively. The order of the statements
in the file does not matter. The file requires the following statements:

• employee.number – number of employees 𝑛.
• task.number – number of tasks 𝑚.
• skill.number – number of skills.
• graph.arc.number – number of arcs in the task precedence graph (e.g., the graph

from Figure 2 has 12 arcs).
• employee.𝑖.skill.number – number of skills for employee 𝑒𝑖 .
• employee.𝑖.salary – salary of employee 𝑒𝑖 .
• employee.𝑖.skill. 𝑗 – skill sk 𝑗 of employee 𝑖. The number 𝑗 varies from 0 to

employee.𝑖.skill.number-1 and is used just to list employee.𝑖.skill.number different
skills for the employee. The skills themselves (e.g., Java, SQL, etc) are represented
by other numeric identifiers which have been listed in the first commented lines
of the file for our information.

• task.𝑖.skill.number – number of skills required by task 𝑡𝑖 .
• task.𝑖.cost – required effort of task 𝑡𝑖 .
• task.𝑖.skill. 𝑗 – skill rsk 𝑗 required by task 𝑡𝑖 . The number 𝑗 varies from 0 to

task.𝑖.skill.number-1 and is used just to list the different skills required by the
task. The skills themselves (e.g., Java, SQL, etc) are identified by other numeric
values which have been listed in the first commented lines of the file for our
information.

• graph.arc.𝑖 – definition of arc 𝑖 of the task precedence graph. The number 𝑖 varies
from 0 to graph.arc.number-1 and is used just to list the different arcs that define
the task precedence graph. A line “graph.arc.𝑖=j k” means an arc going from task
𝑡 𝑗 to task 𝑡𝑘 , meaning that task 𝑡𝑘 depends on task 𝑡 𝑗 .

This implementation assumes that all employees always have a maximum dedi-
cation of 1. In addition, the unit used for the employees’ salaries must be consistent

18 Liyan Song and Leandro L. Minku

with the unit of required effort for the tasks. For instance, if the required effort is in
person-hours, the salary must be an hourly rate. The monetary unit (e.g., USD) of
the salary itself does not matter, so long as all salaries are using the same monetary
unit. The project cost will be calculated using the same monetary unit as the salaries.
The number of hours of a normal working day is not used by this implementation,
as it computes the Gantt chart using the same time unit as the required effort. For
instance, if the required effort is in person-hours, the x-axis of the Gantt chart is in
hours, rather than days.

The file GA.xml contains the setup of the evolutionary algorithm explained in
Section 1.1.2. The other files OnePlusOneEA.xml and RLS.xml contain other algo-
rithms that have also been analysed by Minku et al. [3]. Most information in this file
would not need to be set by the software manager, except for the following:

• Weights 𝑤cost and 𝑤duration explained in Section 1.1.2. These weights can be
set in the following lines of the GA.xml file, where wCost refers to 𝑤cost and
wDuration refers to 𝑤duration:

<property name="wCost">0.01</property>

<property name="wDuration">0.1</property>

• The granularity of the dedications of employees to tasks. The granularity is set
so that the dedications can assume values 0, 1/k, 2/k, . . . , 1. This is specified
through the k value in the following line:

<property name="k">4</property>

• Name of the file containing information about the project to be scheduled. In our
example, this is the file instance sample book.txt. This is specified in the
following line:

<property name="pspInstanceFileName">

instance_sample_book.txt</property>

• Name of the output log file where the solution will be saved. This is specified in
the following line:

<property name="filename">outputGALog.csv</property>

Should the software manager wish to further modify this file to adopt different
parameters for the evolutionary algorithm, or to change to a different evolutionary
algorithm, further instructions are given in the file readme.pdf found with the code.

To run the approach, the following command can be used:

java -cp pspea.jar:opt4j-2.4.jar:junit.jar \

org.opt4j.start.Opt4JStarter GA.xml

The output log file obtained when running the command line above is given in
the file example-output-log/outputGALog-wcost0.01.csv. Each row corresponds to a
different iteration (generation) of the evolutionary algorithm and logs information
about:

Artificial Intelligence in Software Project Management 19

• Iteration – this is the number of the iteration whose information is being recorded.
• Evaluations – this is the number of fitness evaluations performed up to the point

when the information is recorded.
• Runtime[s] – the runtime elapsed until then.
• COSTDUR[MIN] – the value of the fitness function for the best solution (i.e., the

solution with the smallest fitness value) of this iteration.
• Cost – the cost of the project based on the best solution of the population in this

iteration.
• Duration – the duration of the project based on the best solution of the population

in this iteration.
• Undt – number of tasks for which at least one employee in the team does not have

all the skills required by the task. For example, if a given task 𝑡 𝑗 requires skills
0, 1 and 2, and at least one employee allocated to this task does not have all these
three skills, this task will count as one of such tasks. When undt > 0, this means
that the required skills constraint is violated. This column is only used when
the alternative required skills constraint that states that each and every employee
allocated to a task must have all skills required by that task is adopted.

• Reqsk – this is unused for the problem formulation discussed in this section.
• Overwork – this is unused for the problem formulation discussed in this section,

as the normalisation strategy is adopted to deal with this constraint when creating
the Gantt chart associated to the project. So, there is never overwork under this
problem formulation.

• PhenotypeBeforeNormalisation – columns from this one onward contain the ded-
ications of employees to tasks for the best solution of this iteration. This is printed
based on the code below, where allocation is the matrix of dedications of employ-
ees to tasks, 𝑛 is the number of employees and 𝑚 is the number of tasks:

for (e=0; e<n; ++e)

for (t=0; t<m; ++t)

print(allocation[e][t] + ",");

As a research tool, this implementation does not produce a plot containing the
Gantt chart for the solution, even though it computes the Gantt chart internally in
order to calculate the fitness value. Instead of plotting the Gantt chart, this im-
plementation only records the solution itself. In practice, a decision support tool
implementing this algorithm would also produce a plot with the Gantt chart.

In matrix format, the solution retrieved by the algorithm based on 𝑤cost = 0.01
and 𝑤duration = 0.1 is shown in Table 4. This solution places more emphasis on cost
than duration, but still allows duration to play a significant role. The project cost
resulting from this configuration was $13,066.67 and the duration was 237.33 hours
(29.66 days, if we assume that each working day has 8 hours). This is 25.82% (10.33
days) shorter than the duration based on the manual solution from Figure 3, with a
cost just 6.75% ($826.67) higher.

When compared to the manual solution presented in Table 3, we can see that
this allocation includes employee 𝑒1 with some dedication to tasks 𝑡4, 𝑡5 and 𝑡8. This
enabled such large speed ups. As the dedications were not high, the cost of the project

20 Liyan Song and Leandro L. Minku

Table 4 Solution for the Running Example when Using 𝑤𝑐𝑜𝑠𝑡 = 0.01 and 𝑤𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1.
𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

𝑒0 0.75 1 0 0 0 0 0 0 0 0
𝑒1 0 0 0 0 0.5 0.5 0 0 0.25 0
𝑒2 0 0 1 1 0 0 1 0 0 1
𝑒3 0 0 0 0 0 0 0 0 0 1
𝑒4 0 0 0 0 0 0 0 0 0 0
𝑒5 0 0 0 0 1 0 0 1 1 0

did not increase much. Moreover, the evolutionary algorithm did not recommend to
allocate employee 𝑒4 to any task. This is because adding this employee would cause
an increase in the cost of the project without reducing its duration.

The Gantt chart corresponding to this solution is shown in Figure 7. This Gantt
chart figure was not outputted by the research tool adopted in this section. It was
generated manually for the purpose of this book. However, in practice, an SPS
tool would have generated such Gantt chart as part of the output. From the Gantt
chart, we can see that the algorithm adopted the normalisation strategy. In particular,
employee 𝑒2 is the only employee who can work on tasks 𝑡3 and 𝑡6, as these tasks
require the Javascript skill. These tasks co-occur from around Day 6 to Day 11. The
normalisation strategy enabled this employee to be allocated full time (dedication
of 1) to both tasks without leading to overwork. In particular, it adjusted the Gantt
chart so that employee 𝑒2 starts the work on task 𝑡3 with dedication of 1, then
switches to dedication of 0.5 to task 𝑡3 and 0.5 to task 𝑡6 when these tasks co-occur,
then switches to dedication of 1 to task 𝑡6 when task 𝑡3 finishes.

Fig. 7 Gantt Chart for the Running Example when Using 𝑤𝑐𝑜𝑠𝑡 = 0.01 and 𝑤𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1.
This project schedule has a duration of 29.66 days and a cost of $13,066.67.

Artificial Intelligence in Software Project Management 21

If we assume a more extreme scenario where the software manager would like
to save cost as much as possible no matter the increases that this could cause to
the duration of the project, we could adopt an even higher weight for the cost (e.g.,
𝑤𝑐𝑜𝑠𝑡 = 1). This can be achieved by replacing the value of the property wCost in
GA.xml by 1. In this case, the tool would help the software manager to identify that
employees 𝑒1, 𝑒3 and 𝑒4 do not need to be allocated to this project as their skills
are covered by other employees, and that employee 𝑒2 should be allocated to task 𝑡9,
as this is the cheapest employee who can do this task. This would lead to a cost of
$12,080 and a duration of 400 hours (=50 days). The output generated by the tool for
such scenario is available in the file example-output-log/outputGALog-wcost1.csv.

If we assume a scenario where the software manager would like to give a more
balanced importance to cost and duration, we could adopt a weight 𝑤cost = 0.003
instead of 0.01 or 1. In matrix format, the solution retrieved by the algorithm based on
this weight is shown in Table 5. The algorithm produced a solution where the project
cost was $13,440 (9.8% more expensive than in the manual solution presented in
Table 3) but with a duration of just 200 hours (25 days, 37.5% shorter than in the
manual solution).

Table 5 Solution for the Running Example when Using 𝑤𝑐𝑜𝑠𝑡 = 0.003 and 𝑤𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1.
𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

𝑒0 0.75 1 0 0 0 0 0 0 0 0
𝑒1 0 0 0 0 1 1 0 1 1 0
𝑒2 0 0 1 0.5 0 0 0.5 0 0 1
𝑒3 0 0 0 0 0 0 0 0 0 1
𝑒4 0 0 0 0 0 0 0 0 0 0
𝑒5 0 0 0 0 1 0 0 1 1 0

This was achieved by allocating more employees to each task, but only allocating
more expensive employees when this was really useful to reduce the duration, as
the project cost still plays a significant role in the fitness calculation. Therefore,
employees 𝑒3 and 𝑒4 were still not allocated to the project, whereas employee 𝑒1
was allocated full time to tasks 𝑡4, 𝑡5, 𝑡7 and 𝑡8. From the Gantt chart presented in
Figure 8, we can see that the allocation of employee 𝑒1 was very helpful to reduce the
duration of the project by working together with the cheaper employee 𝑒5 on tasks
𝑡4, 𝑡7 and 𝑡8, which have a direct impact on the duration of the project due to their
dependencies to each other. In terms of task 𝑡5, one might have thought that it would
have been better to swap the allocations of employees 𝑒1 and 𝑒5, so that task 𝑡5 is
performed by the cheaper employee 𝑒5. However this would not really have reduced
the cost of the project. Indeed both employees 𝑒1 and 𝑒5 are working full time from
Day 1 to Day 15, meaning that swapping the roles of 𝑒1 and 𝑒5 would not help.

The illustrative project being scheduled here is a small project, not being too
challenging to allocate manually. However, even this way, a significant amount of
reflections need to be done to decide who is worth allocating or not. With larger
projects in companies with a larger number of employees, this challenge increases.
By using an AI tool, software managers would be able to get different suggestions

22 Liyan Song and Leandro L. Minku

Fig. 8 Gantt Chart for the Running Example when Using 𝑤𝑐𝑜𝑠𝑡 = 0.003 and 𝑤𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1.
This project has a duration of 25 days and a cost of $13,440.

with different trade-offs between cost and duration (based on different weights 𝑤cost
and 𝑤duration), helping them to decide on a good schedule to adopt.

Shen et al.’s algorithm [4] also considers that the project may suffer disruptions
during its execution. For example, a given employee may need a sick leave. This
algorithm enables project managers to enter this information during the project, and
then produces an alternative schedule that takes such disruptions into account while
not causing too many changes to the original schedule. This can be very helpful to
maintain the cost and duration of the project as similar to the original one as possible,
while not changing the original schedule too much.

Even though the evolutionary algorithm proposed by Shen et al. [4] is more
complex than the ones proposed by Minku et al. [3], the way to run the two algorithms
would be similar, i.e., the tool would require software managers to input information
about the employees, tasks and task precedence, and would output an allocation of
employees to tasks.

Artificial Intelligence in Software Project Management 23

2 Software Effort Estimation (SEE)

Software Effort Estimation (SEE) is the process of predicting the effort (e.g. in
person-months) required to develop a software project. It is typically the first step
of the software development process and can contribute to a successful software
project management, constituting the basis for the subsequent steps such as planning,
estimating cost, managing and reducing project risks [13, 14, 15].

When estimating the effort of a software project as a whole in the traditional
waterfall-like software development, software requirements of the customers are
elicited at the beginning of the project and typically remain the same or do not
change much throughout the software development process. Therefore, SEE often
takes place in the early stages of software development, and based on it project
managers make important decisions such as the budget, the bidding price and the
subsequent planning and control [16]. The estimation is typically made based on
information regarding the project and the team intended to work on the project, such
as functional size (a metric estimating the size of the software to be developed),
software development type (new development, enhancement, re-development) and
development team skills (low, medium, high) [17, 18].

When adopting agile software development processes, software is typically de-
veloped incrementally in iterations, catering for feedback and requirements from
the customers [19]. Specifically, at the end of each developing iteration, developers
would release the software at the current status to the customer requiring for feedback
such as new functionalities and changes to implemented functionalities. Developers
and customers then negotiate and agree on the requirements to be developed in the
next iteration. In this scenario, the effort for each iteration (not for the remaining
iterations of the project) is typically estimated right before starting to develop this
iteration. Therefore, SEE often takes place multiple times throughout the entire pro-
cess [20, 21]. Similar to the traditional development process, the estimation of an
agile project to be developed is typically made based on information regarding the
project’s iteration and the team assigned to work it, such as task size in this iteration,
development team’s skills (low, medium, high) and development team’s experience
(with / without prior experience on the task) [22, 20, 23].

Good effort estimation is important for software project management. Both over-
and under-estimation can cause serious problems to the organisation. Over-estimation
may result in a company losing bids for contracts or wasting resources. Under-
estimation may lead to poor product quality, unsatisfied customers, delayed or even
incomplete software systems [14, 15]. For example, NASA had to shut down its in-
complete Checkout & Launch Control System project after it massively exceeded the
budget [24]. Nevertheless, providing accurate effort estimations is very challenging.
Project managers have mainly relied on expert judgement to produce estimations.
As a result, the estimation quality is highly affected by the experience and the capa-
bility of the experts [25, 26]. Such expert-based estimation typically suffers from a
number of issues: they can be costly, the prediction process is not explicit, they are
not repeatable, they can be influenced by irrelevant factors such as being sensitive to
political pressure, and they can have personal bias [25, 27].

24 Liyan Song and Leandro L. Minku

Artificial Intelligence (AI) can be used for SEE as a decision support tool. Based
on estimations provided by AI models, software project managers can potentially
justify, criticise or adjust the estimation derived by the experts. Such model-based
estimation can potentially circumvent problems faced by the experts: they are repeat-
able, objective, efficient, and can often provide better understanding of the estimation
process [15]. Therefore, AI approaches could potentially provide a more justifiable
effort estimation than those decided based on ‘gut feeling’. They could also be used
to investigate “what–if” scenarios, where required efforts when using different de-
velopment resources, different development teams and so on could be compared to
each other, enabling practitioners to make more informed planning decisions. Sec-
tion 2.1 explains the main process of applying AI for SEE, and Section 2.2 presents
an example of how to run an AI approach for SEE.

2.1 AI Approaches for SEE

Many AI approaches have been investigated for SEE. They are typically machine
learning approaches. Examples of machine learning approaches applied to waterfall-
like software development processes include 𝑘-nearest neighbors [28, 29, 30], linear
regression [31, 32], regression tree [33], linear programming [34] and ensembles
of learning machines [35, 36, 37, 38]. Examples of machine learning approaches
applied to agile software development processes are similar to that in the tradi-
tional development scenario, including decision tree, support vector machine, neural
networks and ensemble of learning machines [20, 21]. There are also approaches
making use of natural language processing and deep learning for effort estimation in
agile software development [39, 40].

This section takes the approach proposed by Song et al. [5] as an example to
explain the typical procedures of using machine learning techniques for SEE. To
build an AI approach for SEE, one needs to extract data features describing previously
completed software projects (or agile iterations) and their project team(s), and to
collect the actual effort spent to fulfil these projects. This can form a training set,
based on which an SEE model can be constructed, following a machine learning
algorithm. After that, software project managers can use the SEE model to estimate
the effort to develop a new software project (or agile iteration). Figure 9 illustrates the
typical process of adopting machine learning approaches to solve a given problem.
Each of the steps in this process is described in the context of SEE in the rest of this
section. For an explanation of machine learning approaches in general, please refer
to Chapter .

2.1.1 Collecting the Training Set

Features to Describe Software Projects or Agile Iterations

Artificial Intelligence in Software Project Management 25

Fig. 9 Typical procedures of SEE from the AI viewpoint. Model adaptation is not illustrated here.

Table 6 COCOMO-format features of software projects in Nasa93 [41].
feature description type value

loc line of codes numerical continuous

dev develop type categorical
{

organic, embedded
semidetached

}
rely required software reliability ordinal

1 = very low
2 = low
3 = normal
4 = high
5 = very high
6 = extra high

data data base size ordinal
cplx process complexity ordinal
time time constraint for CPU ordinal
stor main memory constraint ordinal
virt machine volatility ordinal
turn turnaround time ordinal
acap analysts capability ordinal
aexp application experience ordinal
pcap programmers capability ordinal
vexp virtual machine experience ordinal
lexp language experience ordinal

modp modern programming practices ordinal
tool use of software tools ordinal
sced schedule constraint ordinal

To use AI approaches for SEE, one needs to adopt some quantitative and quali-
tative metrics, as data features, to describe the software projects and their allocated
development teams. Based on them, the effort required to develop the projects can
be estimated. Table 6 lists the features of projects in Nasa93, a popular open-source
data set for SEE in a waterfall-like development process [42]. It follows the famous
COCOMO data format using characteristics such as the (estimated) size of the code,
constraints that the software must satisfy, and information about the development

26 Liyan Song and Leandro L. Minku

team allocated to the project [43]. Other features could also be adopted for SEE.
For example, Kitchenham, another popular data set in SEE, uses features such as
adjusted functional size, project type (A, C, D, P, Pr, U) and client code (C1, ..., C6)
to describe software projects [44].

As pointed out in Usman et al.’s [20] and Marta et al.’s [21], there has been
little consensus on the best features to describe software projects in different agile
contexts. Nevertheless, development team skills (low, medium, high), size of the
task to be estimated (a numerical value) and team’s prior experience (with/without
prior experience) are often highlighted as playing an important role in the estimation
process in the agile context. Besides that, some work uses the textual description of
user stories or issue reports as input features [39, 40].

Unit of Required Effort
To adopt AI techniques for SEE, one also needs to decide on the unit of the

required effort. Required effort is typically a positive real value, measured in (e.g.)
person-months. Alternatively, some agile SEE approaches measure the effort to
develop user stories or issue reports in story points [39, 40].

Training Set
To build an SEE model based on machine learning, a training set containing

examples of completed projects described by the input features and their actual
required efforts is necessary. This is illustrated in Step 1 of Figure 9. Each project
described by its input features and actual required effort is referred to as a training
example. Typically, SEE data sets have from around 20 to 200 examples, though
larger data sets would be desirable. Such data sets usually contain projects developed
by the single company for which estimations are to be provided. This means that
procedures need to be put in place for this company to collect features describing its
software projects and the actual effort that the development team had spent on them.
However, some specific SEE approaches have demonstrated success when adopting
mixed data coming from different companies [45, 46, 47].

2.1.2 Building SEE Models Based on the Training Set

As shown in Step 2 of Figure 9, an SEE model can be constructed based on the
training set by using a machine learning approach. Song et al. [5]’s study uses
Relevance Vector Machines (RVMs) for this purpose, as they have shown good
estimation accuracy compared to other approaches in the context of SEE [48]. An
explanation of RVMs is provided in Section .

Typically, machine learning approaches for SEE are used to provide a point
estimation, i.e., to estimate a single value representing the required effort to develop
a software project [15, 49]. However, as uncertainty is inherent to SEE [50, 51],
point estimates make it difficult to manage risks associated to SEE, potentially
leading project managers to wrong decision-making. Song et al. [5] proposed a
modification to RVMs enabling them to provide not only a point estimation, but also
an interval of values, within which one would have a high confidence that the actual

Artificial Intelligence in Software Project Management 27

Algorithm 2 Training algorithm for SynB-RVM.
Inputs: number of Bootstrap bags 𝑀, degree of synthetic displacement 𝜌.
Output: 𝑀 trained RVM models and their training errors.
1: Bootstrap training bag construction: create 𝑀 Bootstrap training bags from the training set

using Bootstrap re-sampling with replacement.
2: repeat
3: for each Bootstrap training bag do
4: Synthetic project generation: replace the repeated training projects with their synthetic

counterparts. The degree of the dispersion of the synthetic project from the original one
is determined by the hyperparameter 𝜌.

5: RVM training: train the RVM model based on the revised Bootstrap training set.
6: Calculate training error of the RVM model according to some performance metric.
7: end for
8: until the maximum number of Bootstrap training bags is reached

required effort will fall. This allows for risk management, helping project managers
to make better-informed decisions. For example, when bidding for a project, if the
competition is very fierce the project manager can report a lower price within the
interval to enhance the winning chances; when the competition is less fierce, he/she
can propose a higher price. Moreover, such estimation can be a more reasonable
representation of reality that embraces the fact that effort estimates are probabilistic
assessments of a future condition [52].

Song et al. [5]’s approach showed competitive performance compared to others
able to provide prediction intervals [5]. The rest of this section thus concentrates
on explaining how Song et al. [5] extended RVMs to provide prediction intervals in
addition to point estimates. If the reader is not interested in learning more about the
techniques behind this extension, it is possible to jump to Section 2.1.3.

The extension of RVMs is a new approach named Synthetic Bootstrap ensemble of
Relevance Vector Machines (SynB-RVM). The basic idea of SynB-RVM is to create
several SEE RVM models by training them on different samples of the training
set. The predictions given by these SEE models can be aggregated to provide a
point estimate corresponding to the most likely required effort value, and to create
an interval of other possible values around it. The training algorithm of SynB-
RVM is depicted in Algorithm 2, consisting of four steps: 1) Bootstrap training bag
construction, 2) synthetic project displacement, 3) training RVMs and 4) calculating
the training error for each RVM model. Each of these steps is explained below.

Bootstrap Training Bag construction
SynB-RVM first creates 𝑀 different samples (‘bags’) of the training set based

on a procedure called Bootstrap re-sampling with replacement. Each bag has the
same size as the original training set, meaning that some training examples from
the original training set will be missing and some will appear multiple times in the
bag. The number of bags 𝑀 is a hyperparameter that needs to be chosen beforehand.
This can be done based on classical hyperparameter tuning techniques such as 𝑘-
fold cross-validation. For a discussion of existing hyperparameter tuning techniques,
please see Section .

28 Liyan Song and Leandro L. Minku

Synthetic Project Displacement
Due to sampling with replacement, each Bootstrap training bag contains du-

plicated training examples, which would cause invertibility problem of the kernel
matrix when training RVMs [53]. To this end, the training algorithm has a procedure
to generate synthetic counterparts for these repeated training examples by displacing
some of their features. The effectiveness of this displacement technique was verified
in [5].

Figure 10 illustrates the mechanism of synthetic displacement where there is only
one input feature and the output effort composing two dimensions of the vector space
of projects. Given a duplicated project 𝑃1, the synthetic project 𝑃∗ is generated by
displacing it along a different direction, influenced by a different project 𝑃2 from
the original training set. Specifically, the synthetic project is created based on the
parallelogram formed in the vector space, as shown in this figure.

Fig. 10 Illustration of synthetic project generation for a duplicated real project 𝑃1 in a 2-dimensional
data space (one for the input feature and the other for the output effort). The synthetic project 𝑃∗
is generated as a linear summation following Parallelogram Law in the 2-D vector space based on
real projects 𝑃1 and 𝑃2 that are scaled according to the degree of synthetic displacement 𝜌.

Project 𝑃2 is chosen as the most distant project from 𝑃1 in the training set.
The reason for choosing the furthest project are two-fold: 1) this leads to a more
diverse Bootstrap bag which is more likely to relieve the invertibility problem and
2) disturbance along a real project will avoid the synthetic project to be too far away
from the real one. For a project that has more than one replication, the learning
algorithm will repeat this procedure multiple times. In this situation, rather than
choosing the furthest project, the algorithm would choose the second or the third
furthest project and so on.

RVM Training and Computation of Their Training Error
Based on the revised Bootstrap training bags, the training algorithm constructs

𝑀 RVM models, each corresponding to one Bootstrap bag, according to RVM’s
learning algorithm explained in Section . Practically, these RVM models can be

Artificial Intelligence in Software Project Management 29

constructed in parallel to speed up the training process. The training error of each
RVM is also computed by comparing the actual and the estimated effort values across
the training set. Each RVM has one particular training error, which is passed on to
the prediction algorithm explained in Section 2.1.3.

2.1.3 Estimating the Effort for New Projects to Be Developed

After getting a trained SEE model, we can use it to estimate the effort required to
develop new software projects, for which only input features are known. The aim is
to predict their effort values. Figure 9 illustrates a test set containing a number of
projects whose effort is to be estimated. Once the actual effort used for such projects
becomes known, one can evaluate the predictive performance of the SEE model.

Given a new project to be developed, the project manager needs to first produce
the values of the input features describing this project. These input features need to
be the same features used for the training set. For instance, let’s assume that these
features are (code size=2000, language=Java, reliability = ‘high’, ...) as illustrated in
Figure 9. Then, the project manager can feed these feature values to the SEE model
that was built based on the procedure explained in Section 2.1.2, so that it provides
an effort estimation for this project. The estimation will use the same unit (e.g.,
person-months) as defined at the data collection step.

Song et al.’s approach [5] provides a prediction interval associated to a confidence
level. The center of this interval corresponds to the most likely effort value. For in-
stance, the model may predict the interval [60, 100] person-months with a confidence
level of 95%, together with the most likely required effort of 80 person-months. An
approach that only provides point estimates would provide a single value (e.g., 80
person-months). The rest of this section concentrates on explaining how SynB-RVM
produces both a point prediction and a prediction interval with a certain confidence
level. If the reader is not interested in learning more about the machine learning
technique behind SynB-RVM, it is possible to jump to Section 2.1.4. Algorithm 3
demonstrates the SynB-RVM procedure of producing an effort estimation for a new
project to be developed [5]. Each step of this algorithm is explained below.

Multiple Probabilistic Prediction
The output of an RVM model when estimating the effort of a new project comes

in the format of a Probability Density Function (PDF) of the possible effort values
to develop the new project. Specifically, it follows a Gaussian distribution [53].
Figure 11 shows a probabilistic (Gaussian) effort estimation for a new project.
The x-axis represents the effort and the y-axis represents the relative likelihood of
observing different effort values. The corresponding point estimation is the mean of
the Gaussian (1000 person-months), as it is the most likely effort value. When using
SynB-RVM for effort estimation, we would get 𝑀 predicted Gaussian PDFs, based
on which the prediction interval with a certain confidence level is produced.

Model Pruning

30 Liyan Song and Leandro L. Minku

Algorithm 3 Prediction algorithm of SynB-RVM.
Inputs: confidence level 𝛼, pruning rate 𝜏 ∈ [0, 1].
Output: prediction interval with respect to the given 𝛼.
1: repeat
2: Produce the values of input features describing test projects.
3: for each test project do
4: Multiple probabilistic prediction: employ the 𝑀 RVM models constructed by the training

algorithm to produce 𝑀 Gaussian PDF predictions.
5: Model pruning: prune these RVMs with (a) negative estimated mean values and (b)

unsatisfactory training performance according the pruning rate 𝜏.
6: Integrating the remaining estimates: integrate the prediction of the remaining RVMs into

a unified prediction result.
7: Construct prediction interval in line with 𝛼: derive the required prediction interval and

the most likely point estimate based on the integrated prediction.
8: end for
9: until all test project are predicted

0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

Effort Value (person-months)Fig. 11 Illustration of a Gaussian distribution from RVM as the estimations of the possible effort
required to develop a software project. The y-axis represents the relative likelihood of effort values.

The mean values of the Gaussian PDFs produced by some RVMs may be im-
properly negative, whereas effort values cannot be negative. This happens because
each RVM itself is a weak model, which may not perform so well. SynB-RVM will
combine such weak models together to produce a strong, better model. However, it
is prudent to eliminate RVMs that produce negative means when estimating a given
project. The remaining RVMs are ranked based on their training predictive perfor-
mance, and the worst 𝜏 percentage models are also pruned. This pruning prevents
poor models from contributing towards the final estimation given by SynB-RVM.

Project managers can choose the pruning performance metric that best reflects
their preference, based on the practical meaning of those metrics. Mean absolute
error was recommended as the default performance metric for being symmetric and
having no bias against over-/under-estimation [5].

Combining Uncertain Predictions
To generate the final estimation, we need to combine the PDFs provided by

the remaining 𝑀 ′ RVMs into a unified one. As Gaussian distribution is uniquely

Artificial Intelligence in Software Project Management 31

determined by its mean and variance, this issue can be simplified into combining
𝑀 ′ pairs of mean-variance. Song et al. [5] proposed three slightly different ways to
derive the final probabilistic prediction on the test project, namely empirical mean,
uni-variate empirical PDFs and bi-variate empirical PDFs. We discuss the version
of applying bi-variate empirical PDFs in this book chapter as it can usually produce
better prediction intervals when one has got an adequately large number of training
projects. For a full description, please refer to [5].

To combine the PDFs based on the bi-variate empirical PDF method, the algorithm
first creates a 2-dimensional frequency histogram 𝑓 (𝑖, 𝑗) of the mean and standard
deviation of the Gaussians outputted by all remaining RVM models. This can be
implemented by applying MATLAB function histcounts2(), by which the numbers
of bins are automatically determined by the binning algorithm to cover the data range
and reveal the shape of the underlying distribution. Then, the geometric middle point
(𝑦(𝑖), 𝜎(𝑗)) of the mean and standard deviations within each rectangle bin of the
histogram is computed. The frequency 𝑓 (𝑖, 𝑗) of each bin is also computed. Finally,
the sum of the middle points multiplied by the frequencies is used as the mean 𝑦 and
standard deviation 𝜎 of the combined PDF, which is calculated as

(𝑦, 𝜎) =
∑︁

𝑖, 𝑗
(𝑦(𝑖), 𝜎(𝑗)) · 𝑓 (𝑖, 𝑗)

Construct Prediction Interval
Denote �̂� as the final estimated mean and �̂�2 as the final estimated variance of the

Gaussian PDF. Prediction intervals with respect to confidence levels of 68%, 95%
and 99.7% can be easily derived as

[𝑚𝑎𝑥(0, �̂� − 𝑗 �̂�), �̂� + 𝑗 �̂�],

according to the “68-95-99.7” rule of Gaussian distribution [54], where 𝑗 = 1, 2, 3
corresponds to confidence levels 68%, 95% and 99.7%, respectively. For example,
if the predicted final mean is 80 person-months, the most likely effort value is 80
person-months. If the variance is 52, the project manager would have 95% confidence
level that the actual effort of the test project falls within [70, 90] person-months.

Deriving prediction intervals with respect to other confidence levels is a bit more
complex. An explanation can be found in [5]. It is worth noting that the whole
training and prediction process of machine learning algorithms can be automated,
i.e., the derivation of the prediction intervals does not need to be done manually by
the software project manager as will be shown in Section 2.2.

2.1.4 Evaluating the Predictive Performance of an SEE Model

Once software projects are completed, their actual required effort can become known,
so long as the software developers working on the project are recording information
on how much effort they have spent on the project. Projects that have not been
used to train the predictive model can be used to evaluate this model once their

32 Liyan Song and Leandro L. Minku

actual required efforts become known. Evaluating the model is important so that
the software project manager has some idea of how good the estimations given by
this model are expected to be. In particular, before starting to use a given model in
practice, it is worth evaluating it on a number of completed projects that have not
been used for training. This section discusses some popular performance metrics for
evaluating models that produce point estimations and prediction intervals.

Metrics for Point Effort Estimation
There are several performance metrics for evaluation of point effort estimation.

Popular examples are mean/median magnitude of relative error, mean/median abso-
lute error, and percentage of estimates within 𝑝% of actual values.

Magnitude of Relative Error (MRE) [28, 55] measures the error ratio between an
actual effort 𝑦𝑖 and its corresponding estimated point effort �̂�𝑖 as

𝑀𝑅𝐸𝑖 = | �̂�𝑖 − 𝑦𝑖 |/𝑦𝑖 .

The smaller the 𝑀𝑅𝐸𝑖 , the better the prediction performance of the SEE model
performing on this project. For example, if an SEE method predicts that the devel-
opment team will take 120 person-months to develop a project and it turns out that
the team has spent 100 person-months in reality, MRE is |120 − 100|/100 = 20%
meaning that this prediction is 20% away from the actual effort in magnitude.

When computing {𝑀𝑅𝐸𝑖} for several projects, one can compute the Mean MRE
(MMRE) or Median MRE (MdMRE) to get an idea of the typical relative error of the
model. The advantage of these metrics is that they are interpretable as a percentage.
However, they can be biased towards predictive models that underestimate effort,
i.e., a model that underestimates effort has a lower MMRE or MdMRE than another
model that overestimates effort by the same amount [56, 55, 57, 58].

Absolute Error (AE) measures the difference in magnitude between an actual
effort 𝑦𝑖 and its estimated point effort �̂�𝑖 as

𝐴𝐸𝑖 = | �̂�𝑖 − 𝑦𝑖 |.

The smaller the 𝐴𝐸𝑖 , the better the prediction performance of the SEE model per-
forming on this project. For the same example having the predicted and actual efforts
of 120 and 100 person-months, AE is |120−100| = 20 person-months, meaning that
this prediction has a difference of 20 person-months from the actual effort.

When computing {𝐴𝐸𝑖} for several projects, one can compute the Mean AE
(MAE) or Median AE (MdAE) to get an idea of the typical absolute error of the
model. MAE has been recommended by Shepperd and MacDonell for SEE studies,
for being a symmetric metric and not biased towards under or overestimation [58].
For instance, “MAE=250 person-months” means that on average, the predicted effort
would be larger / smaller than the actual value by a magnitude of 250 person-months.
MdAE has shown to be less sensitive than MAE to occasional projects with very large
efforts and is thus a useful addition to MAE [55]. But MdAE is less straightforward
than MAE to be interpreted. One of the disadvantages of MAE and MdAE is that
they cannot be interpreted as a percentage.

Artificial Intelligence in Software Project Management 33

In summary, different performance metrics emphasize different factors and can
behave differently in evaluating point effort estimation models [38]. It is highly
unlikely to exist a single, simple-to-use and universal goodness-of-fit performance
metric for SEE [55]. In practice, practitioners need to choose the performance metrics
according to their particular emphasis and preferences.

Metrics for Uncertain Effort Estimation
Prediction intervals should be wide enough to capture the actual effort and at the

same time sufficiently narrow to be informative for practical use. Therefore, metrics
to evaluate the quality of prediction intervals need to take this into account. The
following two metrics are typically used for that purpose.

Hit rate is the most common evaluation metric for prediction intervals [59, 60, 59].
The idea is as follows. If prediction intervals with confidence level 𝛼 are evaluated
based on 𝑁 software projects, it is expected that around 𝛼 · 𝑁 projects have actual
efforts falling within the corresponding prediction intervals. Therefore, the hit rate
can be calculated by first counting the number of projects whose estimated efforts
are within the prediction intervals, and then dividing that by the total number of
projects.

When the number of test examples is sufficiently large, the obtained hit rate should
be around the chosen confidence level. When the hit rate is higher, the estimated
prediction intervals are too wide; otherwise, the estimated prediction intervals are
too narrow. For example, consider that there are plenty of test projects to evaluate an
SEE model for a confidence level of 90%. If the hit rate is as low as 60%, this means
that only 60%, rather than the desired 90%, of the actual efforts were within the
prediction interval. This indicates that the model is not performing well for having
too narrow prediction intervals or/and cannot achieve good point estimations. It is
worth noting that due to the small SEE data sets, we usually do not have sufficient
test examples. Hence, hit rate may deviate from its corresponding confidence level
although the two values could be very close in essence.

Relative width is another useful evaluation metric for prediction intervals [61].
From two sets of prediction intervals with similar hit rates, the set with the narrower
intervals is more informative. For example, given that two SEE methods can produce
a similar hit rate of 90%, method 𝐴 has an average relative width of 1.5 and method 𝐵

has an average relative width of 2.2, method 𝐴 can be considered better than method
𝐵 for providing narrower (more informative) prediction intervals.

Given a prediction interval of a project, the relative width can be calculated by
first computing the “width” of the prediction interval by subtracting the lower bound
from the upper one, and then dividing that by the estimated point estimation that is
the most likely to happen. For example, given a prediction interval of [500, 1000]
person-months, if the most likely effort is 750 person-months, the relative width
can be calculated as (1000 − 500)/750 ≈ 0.67. This means that the width of the
prediction interval was around 67% of the point estimation. This quantifies how
informative the prediction interval is. One can compute the average relative width
for the prediction intervals estimated for a given test set as a way to quantify the
average amount of information of such prediction intervals.

34 Liyan Song and Leandro L. Minku

It is important to note, though, that wider intervals may have better hit rates,
whereas narrower intervals may have lower hit rates. Therefore, if two methods have
different hit rates, the relative widths of their prediction intervals are not comparable.
It is only possible to compare the relative widths of the intervals provided by two
estimation approaches if their hit rates are similar.

2.1.5 Updating the SEE Model Based on New Incoming Data

Whenever a new project is completed and information on its actual effort is collected,
a new example can be created. As mentioned in Section 2.1.4, these examples can
be used to evaluate the predictive performance of the SEE model. Some approaches
have also been proposed to further update this SEE model based on new examples,
after such examples are used for evaluation purposes. In particular, the approaches
by Minku et al. [45] have been proposed to adapt SEE models to changes suffered
by software companies and that may affect such models.

SynB-RVM is a typical offline effort estimator. To be able to incorporate new
training examples into it, it needs to be re-trained from scratch with a new training
set that includes the new completed projects.

2.2 Running an AI Algorithm for SEE

This section gives an example of how to run an AI algorithm for SEE. Specifically,
we employ SynB-RVM proposed by Song et al. [5] as an example to demonstrate
how to produce effort estimations for software projects.

The tool is implemented in Matlab and is available at [62] under GNU GLP 3.0
license. Once the tool is downloaded, there is a folder called matlab, containing
the codes implementing this tool. Another folder called data example contains the
edited software projects for SEE produced based on Nasa93 [42].

To use the tool, one needs to run the script config.m or typing in the command
window the following line:

>> config()

This function configures the directories between code scripts and the data set and
among all scripts, so that the scripts can call each other and load the data set as
if they are in a single one-layer directory. An example of running the overall im-
plementation of SynB-RVM is given in example run SynB RVM.m in the directory
“matlab/examples/”. This example will be explained in the next subsections.

Artificial Intelligence in Software Project Management 35

2.2.1 Preparing the Training and Test Projects

In the real-world, practitioners need to collect information of completed software
projects (e.g., the features in Table 6) and the efforts spent to complete the develop-
ment in their own organisations, making up the training set. The SEE model is then
constructed based on this training set. Later on, when there comes a new project to be
developed, the practitioner describes this project by the same features and applies the
trained model to estimate the effort. This corresponds to the training and prediction
processes of SEE as described in Sections 2.1.2 and 2.1.3.

Our tool was implemented for research purposes, making use of text files to collect
information about the features describing software projects and their actual efforts.
In our running example, we use nasa93, a data set from the open-source repository
SEACRAFT [17] (https://zenodo.org/record/268419#.YLRQyKgzYUE), to
demonstrate the whole process.

testtrainingNasa93 dataset

timeline 90% projects 10%

Fig. 12 Split Nasa93 into the training and test sets according to the project timeline, described as
‘year of development’ in the title file.

To simulate a real-world SEE scenario, the original Nasa93 is split into a
training and a test set according to the time order of the software projects. As
shown in Figure 12, 90% projects that completed earlier are used as the train-
ing data and the remaining 10% projects are used as the test examples to show-
case point and interval predictions produced by SynB-RVM. The 17 features used
to describe projects of Nasa93 are shown in Table 6 and are in the tool’s folder
data_example/nasa93_edited. The suffix edited means that the data set has
been revised to be used with Matlab. For example, the feature ‘stor’ (main memory
constraint) with the values of vl, l, n, h, vh and xh are converted to the values of 1,
2, 3, 4, 5 and 6, respectively.

To obtain the data division into training and test sets in one step, one can run
get nasa93.m or type in the command window the following line:

>> [X_train, y_train, X_test, y_test] = get_nasa93()

where X_train and X_test contain the input features of the training and test
examples, respectively, and y_train and y_test contain their actual required efforts
in person-months. Through get nasa93.m, the training and test examples are pre-
processed to prune out three outliers and to conduct feature normalisation. If one
would like to run the pre-processing separately, this process is implemented in
data preprocess.m and can be run in the command window by typing the following
line:

https://zenodo.org/record/268419#.YLRQyKgzYUE

36 Liyan Song and Leandro L. Minku

>> [years, X, y] = data_preprocess(Data);

where Data denotes the original projects of Nasa93, years denotes the time of com-
pleting each project, and X and y are their features and actual effort for development.

2.2.2 Using the Training and Prediction Algorithms of SynB-RVM

The training and prediction algorithms of SynB-RVM (Algorithms 2 and 3, respec-
tively) are implemented in SynB RVM.m in the directory “matlab/train-prediction/”.
Script example run SynB RVM.m in the directory “matlab/examples/” exemplifies
the usage of the training and prediction algorithms, producing point and interval
predictions with a confidence level of 85% for the projects in the test set created in
Section 2.2.1. Type the following command to run this script:

>> example_run_SynB_RVM()

The predicted point and interval prediction may improve or deteriorate with
different hyperparameter settings. Section 2.2.5 shows how to tune hyperparameters.
The hyperparameter setting of SynB-RVM adopted in this example is shown in the
script example run SynB RVM.m as

m_bags = 10; % #(Bootstrap Bags)

pru_m = 0.1; % prune rate

tho = 0.01; % synthetic displacement

This script prints the results below:
Prediction intervals with CL 0.85 of test projects in Nasa93 are:

id actual point estimate prediction interval hit/not

1 210.00 233.33 109.37 - 357.29 1

2 48.00 133.33 1.38 - 265.29 1

3 50.00 55.00 0.00 - 162.96 1

4 60.00 65.00 0.00 - 172.96 1

5 42.00 122.22 6.26 - 238.18 1

6 60.00 144.44 28.48 - 260.41 1

7 444.00 516.67 408.70 - 624.63 1

8 42.00 144.44 28.48 - 260.41 1

9 114.00 183.33 67.37 - 299.30 1

The second column presents actual efforts of test projects. These values would
not have been available in practice at the prediction stage. They would become
available only after the project finishes, if effort information is collected during the
development process. The third column reports the point effort estimations. The
fourth column reports the prediction intervals with a confidence level of 85%. The
last column reports whether or not the prediction interval covers the actual effort
for each test project. Again, this last column would not be available in practice at
prediction time, only after the project is completed.

Let’s take the seventh test project as an example of project being estimated. Its
most probable point effort is 516.67 person-months. With 85% confidence, the actual
effort falls within the interval of 408∼625 person-months. This interval captures

Artificial Intelligence in Software Project Management 37

reasonably well the actual required effort for this project. Some interval predictions
catch the lowest bound of the effort value (0 person-month), such as the third and
the fourth test projects. In such cases, this often indicates that the actual effort values
has higher probability to be a smaller value rather than a larger value.

2.2.3 Evaluating the Performance of a SynB-RVM Model

In practice, completed projects with known effort that have not been used for training
purposes can be used to evaluate SEE models. Such performance evaluation for the
point estimations and interval predictions are implemented in eval point pf.m and
eval PI pf.m in the directory “matlab/evaluate/”, respectively. They will make use of
the test set created in Section 2.2.1 for evaluation purposes. The evaluation of point
predictions can be run with the following command:

>> eval_point_pf(y_true, y_pred)

The inputs y_true and y_pred are column vectors consisting of the true and
predicted efforts of test projects, respectively. The estimated point efforts are obtained
from the function example run SynB RVM() as discussed in Section 2.2.2, and the
actual efforts are collected when the projects finish and the effort spent on the
development has been recorded. This function prints point prediction performance
of SynB-RVM as shown below. Some of these performance metrics have been
explained in Section 2.1.4. For a description of the other metrics, we refer the reader
to [55].
ans = structures consisting of

mae: 57.8214

mdae: 82.3365

mlgae: 3.5704

mdlgae: 4.4108

mmre: 0.9730

mdmre: 0.8201

pred25: 44.4444

pred15: 44.4444

pred10: 22.2222

coor: 0.9536

lsd: 0.6875

rmse: 69.2337

rmdse: 82.3365

sa: 0.4656

The results mean that, the point estimations were around 57.82 person-months away
from the actual required efforts on average (MAE), and that the point estimations
were 97.30% away from the actual effort in magnitude on average (MMRE).

To evaluate the prediction intervals measured in hit rate and relative width as
explained in Section 2.1.4, the following command can be used:

>> [hit_rate, relative_width] = eval_PI_pf(PI, y_pre_mean, y_true)

38 Liyan Song and Leandro L. Minku

The input PI is a data matrix where each row represents the prediction interval
of a test project and y_pre_mean is a column vector consisting of the point effort
estimations. The output includes the information below:

hit_rate = 1

relative_width = 1.6957

The results mean that all prediction intervals covered the actual efforts, and that the
widths of prediction intervals were around 170% of the value of the point estimates
on average.

2.2.4 Using SynB-RVM in What-If Scenarios

Software managers could adopt AI SEE methods such as SynB-RVM to investigate
what-if scenarios helping them to make more informed decisions. For example,
assume a scenario where the project manager is considering whether to develop a
software application that is as much space- and time-efficient as possible. However,
they are unsure on whether this should be done, given the increase in effort that this
could result in. As it is challenging to estimate the extent with which the effort would
increase, artificial intelligence SEE models may be particularly helpful.

To investigate projects with higher computational and storage constraints, we
can increase the values of the resource related features of test projects in Nasa93,
including data base size constraint, time constraint for cpu and main memory con-
straint. For example, we can increase them to the highest value xh (extremely high)
while retaining other features. The generation of such test projects is implemented
in get nasa93 resource.m in the directory “matlab/examples/”, and can be run by
typing the command below:

>> get_nasa93_resource(’highest’)

After that, we can observe SynB-RVM’s effort estimations for these modified
projects. The experiment is implemented in experiment2 resource.m in the same
directory. One can run it by typing the following command:

>> experiment2_resource(’highest’)

where the input highestmeans that the highest resource constraint is evoked. Point
and interval predictions of SynB-RVM are shown below:
==

SynB-RVM_ht2d’s prediction on the test projects in Nasa93 that

are reconstructed with the highest resource constraint.

Prediction intervals are with confidence level of 0.85.

id predicted prediction interval

1 805.56 689.59 - 921.52

2 472.22 372.25 - 572.19

3 516.67 424.70 - 608.64

4 516.67 424.70 - 608.64

5 638.89 522.93 - 754.85

6 527.78 411.82 - 643.74

Artificial Intelligence in Software Project Management 39

7 750.00 642.04 - 857.96

8 527.78 411.82 - 643.74

9 527.78 411.82 - 643.74

Comparing this against the previous estimations from example run SynB RVM.m,
SynB-RVM generally predicts that much higher efforts are required to develop a
project with extremely high computational and storage constraints than to develop a
similar project with less constraints. These estimations can help the software manager
in deciding whether it is worth going ahead with such extreme constraints, given the
increase in effort. Note that these projects have not been developed with such extreme
constraints in practice. So, we cannot determine how accurate these estimations are.

If we assume another extreme scenario where the project manager is considering
to have very light computational and storage constraints. In this scenario, we would
take the lowest constraints on the database size, time and memory constraint features
of Nasa93 projects. This can be implemented by running the function below:

>> get_nasa93_resource(’lowest’)

We can then use SynB-RVM to estimate the efforts required to develop those projects
with the least computational and storage constraints, by running the command below:

>> experiment2_resource(’lowest’)

where the input lowestmeans that the lowest constraint of the development resource
is evoked. The point and interval predictions of SynB-RVM are shown below:
==

SynB-RVM_ht2d’s prediction on the test projects in Nasa93

that are reconstructed with the lowest resource constraint.

Prediction intervals are with confidence level of 0.85.

id predicted prediction interval

1 166.67 50.70 - 282.63

2 128.57 10.32 - 246.82

3 55.00 0.00 - 162.96

4 65.00 0.00 - 172.96

5 125.00 8.04 - 241.96

6 144.44 36.48 - 252.41

7 455.56 347.59 - 563.52

8 125.00 17.04 - 232.96

9 144.44 36.48 - 252.41

Comparing this against the previous estimations from example run SynB RVM.m,
SynB-RVM generally predicts that lower efforts are required to develop a project with
light computational and storage constraints than to develop a similar project with
higher constraints when the same development team is present. These estimations can
help the project manager in deciding whether it is worth adopting lighter constraints.

Now assume a scenario where the project manager would like to give medium
(nominal) computational and storage constraints. This can be achieved by replacing
the resource related features of the projects in Nasa93 with the nominal value. We
can implement this by running:

>> get_nasa93_resource(’balanced’)

40 Liyan Song and Leandro L. Minku

We can then use SynB-RVM to estimate the efforts required to develop those projects
with the balanced constraint by running the below command:

>> experiment2_resource(’balanced’)

where the input balanced means that a nominal constraints are evoked. Point and
interval predictions of SynB-RVM are shown below:
==

SynB-RVM_ht2d’s prediction on the test projects in Nasa93

that are reconstructed with the balanced resource constraint.

Prediction intervals are with confidence level of 0.85.

id predicted prediction interval

1 433.33 301.38 - 565.29

2 188.89 72.93 - 304.85

3 277.78 169.81 - 385.74

4 300.00 192.04 - 407.96

5 383.33 267.37 - 499.30

6 283.33 167.37 - 399.30

7 616.67 508.70 - 724.63

8 300.00 192.04 - 407.96

9 316.67 200.70 - 432.63

Comparing this against the estimations produced by experiment2 resource(‘highest’)
and experiment2 resource(‘lowest’), SynB-RVM generally predicts that the required
efforts to develop a project with nominal resource constraint are smaller (larger) than
that to develop a similar project with lowest (highest) constraint on the resources
when the same development tea is present.

2.2.5 Choose Hyperparameter Values for SynB-SVM

To use SynB-RVM, one needs to pre-define three hyperparameters: the number of
Bootstrap bags 𝑀 , the degree of synthetic displacement 𝜌 in the training algorithm
(Algorithm 2), and the pruning rate 𝜏 in the prediction algorithm (Algorithm 3).

In the previous explanation on how to use the tool, we showed experimental
results by running SynB-RVM with the default hyperparameter setting for Nasa93.
Those values were decided based on our experience and preliminary experiments.
In practice, practitioners may be unaware of the theoretical mechanisms behind the
approach and find it hard to decide what hyperparameter values to adopt in order
to obtain good effort estimations. This section aims to demonstrate how to tune
the hyperparameters of SynB-RVM. Choosing the kernel width, a hyperparameter
specific to RVM, is not included in this process to save computational resources.
However, it can be tuned based on a similar procedure to the one shown below.

The hyperparameter tuning process is implemented in the directory /matlab/example-
para tune/. Hyperparameter values investigated in experiment para tune.m are in
Table 7. Their default values are emphasised in bold and correspond to the hyper-
parameters that can usually lead to good predictive performance according to the
theoretical meaning of these hyperparameters and also to our experiences of using
this approach. Hyperparameter settings are composed by enumerating all values for

Artificial Intelligence in Software Project Management 41

each hyperparameter with all the others set to their default values. Thus, we have
9 hyperparameter settings in total. We believe that the values shown above form a
good range of each of the hyperparameters. We run SynB-RVM with all the hyper-
parameter settings to calculate the performance on the validation set, which is a set
of completed projects with known required efforts and that have not been used for
training the predictive model. From that we can determine the best hyperparameter
setting in terms of point prediction.

Table 7 Hyperparameter Values Investigated in experiment para tune.m.
Hyperparameter Values Description

M 10, 20, 30 the number of Bootstrap bags in the training algorithm
𝜌 0.01, 0.05, 0.1 the degree of synthetic displacement in the training algorithm
𝜏 0.1, 0.2, 0.4 the pruning rate in the prediction algorithm

Given a combination of hyperparameter values, in this example, we will randomly
select 90% of the projects in the training set to construct the SynB-RVM model, and
the remaining 10% to compose the validation set on which this hyperparameter
configuration will be evaluated. From that, we can evaluate the (point) predictive
performance regarding this specific hyperparameter setting. This process is con-
ducted ten times to cancel out the randomness of the process of splitting the training
set into a training and a validation set. The average (point) predictive performance
is used as the indicator of how good this hyperparameter configuration is. Finally,
the hyperparameter configuration that leads to the best predictive performance on
the validation set is selected. The ultimate SynB-RVM model to be adopted in the
next prediction process is produced based on the entire training set with the chosen
hyperparameter configuration.

To run the approach, the following command can be used:

>> experiment_para_tune()

The best hyperparameter configuration decided by this experiment, the point and
interval predictions of SynB-RVM with the chosen hyperparameter setting and their
predictive performance are shown below:
==

The best hyperparameter setting based on this experiment is as below:

the best number of Bootstrap bags is 30

the best degree of synthetic displacement is 0.01

the best pruning rate is 0.1

==

Predictive performance of "Nasa93" with SynB_RVM_ht2d.

--

Overall predictive performance is as below:

mae = 64.1

hit_rate = 1.00

relative width = 1.88

--

42 Liyan Song and Leandro L. Minku

Prediction intervals of CL=0.85 of all test projects are as:

id actual predicted prediction interval hit/not

1 210.00 244.00 101.49 - 386.51 1

2 48.00 166.67 17.57 - 315.76 1

3 50.00 56.11 0.00 - 182.74 1

4 60.00 67.78 0.00 - 194.40 1

5 42.00 137.50 0.00 - 275.46 1

6 60.00 146.15 7.74 - 284.57 1

7 444.00 492.59 360.64 - 624.55 1

8 42.00 140.00 0.37 - 279.63 1

9 114.00 196.30 53.68 - 338.92 1

Further Considerations
This section presents further considerations when adopting a SEE approach such

as SynB-RVM:

1. The data quality of the organisation is the upmost important factor for producing
a good software effort estimation. If the data is of low quality (e.g., large amounts
of noise) and not representative for the current status of software development
process (e.g., the data is very much obsolete), it is highly unlikely to attain good
effort estimations regardless of how intelligent an approach could be.

2. SynB-RVM is suitable to be adopted for interval prediction only when it is found
to achieve good point prediction performance. Otherwise, the prediction intervals
provided by this approach would be less reliable. This is valid to most approaches
that can provide uncertain effort estimation as the preciseness of the prediction
intervals typically depend on the point prediction, being an interval around it.

3. Among the hyperparameters of SynB-RVM, the kernel width of RVM is typically
the most important. If the computational resources for hyperparameter tuning are
limited, the value for this hyperparameter can be decided independent of the others
and can be processed beforehand, by adopting the same procedures discussed in
this section.

4. A larger number of Bootstrap bags 𝑀 probably leads to more computational cost
for training the predictive model, as more base learners need to be learned (though
they can be trained in parallel to save computational time).

5. The assignment of degree of pruning rate 𝜏 should be related to the number of
Bootstrap bags 𝑀 . Given a large 𝑀 , one can assign 𝜏 to as big as 0.4 because
there are potentially more RVMs to be pruned out. For a small 𝑀 , practitioners
are suggested to confine 𝜏 to be less than 0.2 for retaining enough base learners.

Artificial Intelligence in Software Project Management 43

3 Conclusion

SPS and SEE are tasks that play important roles in the software project management
process, for which AI can provide a useful tool to support project managers for
better decision-making. This chapter provided an introduction to these tasks and to
AI approaches that can be used to support software managers in carrying them out.

We explained how the SPS task can be formulated so that AI approaches can be
used to solve it, based on the work of Alba and Chicano [2] and Shen et al. [4].
Alba and Chicano [2] provide a simpler formulation which provides a good plat-
form to start learning about the subject. Shen et al. [4] provide a more detailed
problem formulation that takes into account realistic aspects of software projects
such as uncertainties in the task required efforts and changes such as new tasks or
employee’s leaves. We then introduced the algorithm proposed by Minku et al. [3]
as an example of AI algorithm able to solve SPS based on Alba and Chicano [2]’s
problem formulation. Shen et al. [4] proposes another AI algorithm able to cope
with uncertainties and changes that may occur during software development, being
a good next approach to learn after understanding the approach explained in this
chapter.

We took the approach proposed by Song et al. [5] as an example to explain the
typical procedures for using machine learning techniques for SEE, consisting of four
procedures as 1) collecting training set, 2) building prediction models based on the
training set, 3) estimating the effort for new project, and 4) evaluating predictive
performance of the SEE model. One of the distinctive characteristics of Song et
al. [5]’s approach is its ability to provide not only point estimates of required effort,
but also a prediction interval, within which one would have a high confidence that
the actual required effort will fall. This kind of approach can help software managers
to make better-informed decisions. This approach can also be used to investigate the
“what-if” scenarios as discussed in this chapter. When choosing an AI-based SEE
approach to adopt in a software development company, we recommend evaluating
the predictive performance of a number of different AI-based SEE approaches, to
check which of them is better suited to the specific context of this company. For an
overview of other AI-based SEE approaches, we refer the reader to [63].

44 Liyan Song and Leandro L. Minku

References

1. I. Sommerville. Software Engineering. Pearson, USA, 10 edition, 2016.
2. E. Alba and J.F. Chicano. Software project management with GAs. Information Sciences,

177:2380–2401, 2007.
3. L.L. Minku, D. Sudholt, and X. Yao. Improved evolutionary algorithm design for the project

scheduling problem based on runtime analysis. IEEE Transactions on Software Engineering,
40(1):83–102, 2014.

4. X. Shen, L.L. Minku, R. Bahsoon, and X. Yao. Dynamic software project scheduling through a
proactive-rescheduling method. IEEE Transactions on Software Engineering, 42(7):658–686,
2016.

5. L. Song, L. L. Minku, and X. Yao. Software effort interval prediction via Bayesian inference
and synthetic Bootstrap resampling. ACM Transactions on Software Engineering Methodology,
28(1):1–46, 2019.

6. M. Di Penta, M. Harman, and G. Antoniol. The use of search-based optimization techniques to
schedule and staff software projects: An approach and an empirical study. Software: Practice
and Experience, 41(5):495–519, 2011.

7. F. Ferrucci, M. Harman, and F. Sarro. Search-based software project management. In Günther
Ruhe and Claes Wohlin, editors, Software Project Management in a Changing World, pages
373–399. Springer Berlin Heidelberg, 2014.

8. G. Antoniol, M. Di Penta, and M. Harman. A robust search-based approach to project man-
agement in the presence of abandonment, rework, error and uncertainty. In International
Symposium on the Software Metrics, pages 172–183, 2004.

9. W.-N. Chen and J. Zhang. Ant colony optimization for software project scheduling and staffing
with an event-based scheduler. IEEE Transactions on Software Engineering, 39(1):1–17, 2013.

10. F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison Wesley,
Boston, 1995.

11. L. L. Minku. minkull/SoftwareProjectScheduling, 2022. URL:https://doi.org/10.5281/
zenodo.6308397.

12. M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich. Opt4J - A Modular Framework for
Meta-heuristic Optimization. In Proceedings of the Genetic and Evolutionary Computing
Conference (GECCO 2011), pages 1723–1730, Dublin, Ireland, 2011.

13. A. Trendowica and R. Jeffery. Software Project Effort Estimation: Foundations and Best
Practice Guidelines for Success. Springer, 2014.

14. J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang. Systematic literature review of machine learning
based software development effort estimation models. Information and Software Technology
(IST), 54(1):41–59, 2012.

15. K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens. Data mining techniques for software
effort estimation: A comparative study. IEEE Transactions on Software Engineering (TSE),
38(2):375–397, 2012.

16. B. Baskeles, B. Turhan, and A. Bener. Software effort estimation using machine learning
methods. In International symposium on Computer and Information Sciences, pages 1–6,
2007.

17. T. Menzies, R. Krishna, and D. Pryor. The SEACRAFT repository of empirical software
engineering data. https://zenodo.org/communities/seacraft, 2017.

18. K. Maxwell. Applied Statistics for Software Managers. Prentice Hall PTR, 2002.
19. Pekka Abrahamsson, Raimund Moser, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi.

Effort prediction in iterative software development processes – incremental versus global
prediction models. In International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 344–353, 2007.

20. M. Usman, E. Mendes, F. Weidt, and R. Britto. Effort estimation in agile software development:
A systematic literature review. In International Conference on Predictive Models and Data
Analysis in Software Engineering (PROMISE), pages 82–91, 2014.

https://doi.org/10.5281/zenodo.6308397
https://doi.org/10.5281/zenodo.6308397
https://zenodo.org/communities/seacraft

Artificial Intelligence in Software Project Management 45

21. M. Fernandez-Diego, E. R. Mendez, F. Gonzalez-Ladron-De-Guevara, S. Abrahao, and E. Ins-
fran. An update on effort estimation in agile software development: A systematic literature
review. IEEE Access, 8:166768–166800, 2020.

22. S. Keaveney and K. Conboy. Cost estimation in agile development projects. In European
Conference on Information Systems(ECIS), 2006.

23. N.C. Haugen. An empirical study of using planning poker for user story estimation. In AGILE
Conference, pages 21–31, 2006.

24. Spareref. NASA to shut down checkout & launch control system. http://bit.ly/eiYxlf,
August 2002.

25. M. Jørgensen. A review of studies on expert estimation of software development effort. Journal
of Systems and Software (JSS), 70(1):37 – 60, 2004.

26. M. Jørgensen. Forecasting of software development work effort: Evidence on expert judgement
and formal models. International Journal of Forecasting, 23(3):449 – 462, 2007.

27. M. Jorgensen and S. Grimstad. The impact of irrelevant and misleading information on software
development effort estimates: A randomized controlled field experiment. IEEE Transactions
on Software Engineering (TSE), 37(5):695–707, 2011.

28. M. Shepperd and C. Schofield. Estimating software project effort using analogies. IEEE
Transactions on Software Engineering (TSE), 23(12):736–743, 1997.

29. Y. Li, M. Xie, and T. Goh. A study of project selection and feature weighting for analogy based
software cost estimation. Journal of Systems and Software (JSS), 82(2):241 – 252, 2009.

30. E. Kocaguneli and T.J. Menzies. Exploiting the essential assumptions of analogy-based effort
estimation. IEEE Transactions on Software Engineering (TSE), 38(2):425–438, 2012.

31. P. A. Whigham, C. A. Owen, and S. G. Macdonell. A baseline model for software ef-
fort estimation. ACM Transactions on Software Engineering and Methodology (TOSEM),
24(3):20:1–20:11, 2015.

32. B. Kitchenham and E. Mendes. Why comparative effort prediction studies may be invalid.
In International Conference on Predictor Models in Software Engineering (PROMISE), pages
4:1–4:5, 2009.

33. C. Briand, E. Emam, D. Surmann, I. Wieczorek, and D. Maxwell. An assessment and com-
parison of common software cost estimation modelling techniques. In ICSE, pages 313–322,
New York, USA, 1999.

34. F. Sarro and A. Petrozziello. Linear programming as a baseline for software effort estimation.
ACM TOSEM, 27(3):12.1–12.28, 2018.

35. P. Braga, A. Oliveira, G. Ribeiro, and S. Meira. Bagging predictors for estimation of software
project effort. In International Joint Conference on Neural Networks (IJCNN), pages 1595–
1600, 2007.

36. L. L. Minku and X. Yao. Ensembles and locality: Insight on improving software effort
estimation. Information and Software Technology (IST), 55(8):1512–1528, 2012.

37. E. Kocaguneli, T. Menzies, and J. Keung. On the value of ensemble effort estimation. IEEE
Transactions on Software Engineering (TSE), 38:1403–1416, 2012.

38. L. L. Minku and X. Yao. Software effort estimation as a multi-objective learning problem.
ACM Transactions on Software Engineering and Methodology (TOSEM), 22, 2013.

39. R. G. F. Soares. Effort estimation via text classification and autoencoders. In International
Joint Conference on Neural Networks, pages 1–8, 2018.

40. M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T. Menzies. A deep learning
model for estimating story points. IEEE Transactions on Software Engineering, 45(7):637–656,
2019.

41. B. W. Boehm. Software engineering economics. IEEE Transactions on Software Engineering
(TSE), 10(1):4–21, 1984.

42. Nasa93 doi. https://doi.org/10.5281/zenodo.268419, 2008.
43. Barry W. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ,

1981.
44. B. Kitchenham, S. L. Pfleeger, B. McColl, and S. Eagan. An empirical study of maintenance

and development estimation accuracy. Journal of Systems and Software (JSS), 64(1):57–77,
2002.

http://bit.ly/eiYxlf
https://doi.org/10.5281/zenodo.268419

46 Liyan Song and Leandro L. Minku

45. L. L. Minku and X. Yao. How to make best use of cross-company data in software effort
estimation? In International Conference on Software Engineering (ICSE), pages 446–456,
New York, NY, USA, 2014.

46. L. L. Minku, F. Sarro, E. Mendes, and F. Ferrucci. How to make best use of cross-company data
for web effort estimation? In International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–10, 2015.

47. E. Kocaguneli, B. Cukic, T. Menzies, and H. Lu. Building a second opinion: Learning cross-
company data. In International Conference on Predictor Models in Software Engineering
(PROMISE), Baltimore, USA, 2013.

48. L. Song, L. Minku, and X. Yao. The potential benefit of relevance vector machine to software
effort estimation. In International Conference on Predictor Models in Software Engineering
(PROMISE), pages 52–61, Turin, Italy, 2014.

49. L. Song, L. Minku, and X. Yao. A novel automated approach for software effort estimation
based on data augmentation. In ACM Symposium on the Foundations of Software Engineering
(FSE), Lake Buena Vista, Florida, USA, 2018.

50. B. Kitchenham, L. M. Pickard, S. Linkman, and P. W. Jones. Modeling software bidding risks.
IEEE Transactions on Software Engineering (TSE), 29(6):542–554, 2003.

51. M. Jorgensen. Realism in assessment of effort estimation uncertainty: It matters how you ask.
IEEE Transactions on Software Engineering (TSE), 30(4):209–217, 2004.

52. M. Klas, A. Trendowicz, A. Wickenkamp, J. Munch, N. Kikuchi, and Y. Ishigai. The use of
simulation techniques for hybrid software cost estimation and risk analysis. In Advances in
computers, volume 74 of Software Development, pages 115–174. Academic Press, 2008.

53. M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning, 1:211–244, 2001.

54. B. Wlodzimierz. The Normal Distribution: Characterizations with Applications. Springer-
Verlag, 1995.

55. T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model
evaluation criterion MMRE. IEEE Transactions on Software Engineering (TSE), 29:985–995,
2003.

56. B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd. What accuracy statistics really
measure. IEE Proceedings - Software Engineering, 148(3):81–85, 2001.

57. I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative studies of
software prediction models. IEEE Transactions on Software Engineering (TSE), 31(5):380–
391, 2005.

58. M. Shepperd and S. McDonell. Evaluating prediction systems in software project estimation.
Information and Software Technology (IST), 54:820–827, 2012.

59. M. Klas, A. Trendowizc, Y. Ishigai, and H. Nakao. Handling estimation uncertainty with boot-
strapping: Empirical evaluation in the context of hybrid prediction methods. In International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages 245–254,
2011.

60. M. Jørgensen. Evidence-based guidelines for assessment of software development cost uncer-
tainty. IEEE Transactions on Software Engineering (TSE), 32(11):942–954, 2005.

61. M. Jørgensen, K. H. Teigen, and K. Molokken. Better sure than safe? Overconfidence in
judgement based software development effort prediction intervals. Journal of Systems and
Software (JSS), 70:79–93, 2004.

62. L. Song. sunnysong14/SoftwareEffortEstimation, 2022. URL: https://github.com/
sunnysong14/SoftwareEffortEstimation.

63. A. Ali and C. Gravino. A systematic literature review of software effort predictionusing
machine learning methods. Journal of Software: Evolution and Process, 31(10), 2019.

https://github.com/sunnysong14/SoftwareEffortEstimation
https://github.com/sunnysong14/SoftwareEffortEstimation

	Artificial Intelligence in Software Project Management
	Liyan Song and Leandro L. Minku
	Software Project Scheduling (SPS)
	AI Approaches for SPS
	Running an AI Algorithm for SPS

	Software Effort Estimation (SEE)
	AI Approaches for SEE
	Running an AI Algorithm for SEE

	Conclusion
	References
	References

