
A Novel Data Stream Learning Approach to Tackle
One-Sided Label Noise From Verification Latency

Liyan Song1,2, Shuxian Li1,2, Leandro L. Minku∗3, Xin Yao∗1,2
songly@sustech.edu.cn, lisx@mail.sustech.edu.cn, L.L.Minku@bham.ac.uk, xiny@sustech.edu.cn

1 Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China
2 Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,

Department of Computer Science and Engineering, Southern University of Science and Technology, China
3 School of Computer Science, University of Birmingham, UK

Abstract—Many real-world data stream applications suffer
from verification latency, where the labels of the training ex-
amples arrive with a delay. In binary classification problems, the
labeling process frequently involves waiting for a pre-determined
period of time to observe an event that assigns the example to
a given class. Once this time passes, if such labeling event does
not occur, the example is labeled as belonging to the other class.
For example, in software defect prediction, one may wait to see
if a defect is associated to a software change implemented by a
developer, producing a defect-inducing training example. If no
defect is found during the waiting time, the training example
is labeled as clean. Such verification latency inherently causes
label noise associated to insufficient waiting time. For example,
a defect may be observed only after the pre-defined waiting time
has passed, resulting in a noisy example of the clean class. Due
to the nature of the waiting time, such noise is frequently one-
sided, meaning that it only occurs to examples of one of the
classes. However, no existing work tackles label noise associated
to verification latency. This paper proposes a novel data stream
learning approach that estimates the confidence in the labels
assigned to the training examples and uses this to improve
predictive performance in problems with one-sided label noise.
Our experiments with 14 real-world datasets from the domain
of software defect prediction demonstrate the effectiveness of the
proposed approach compared to existing ones.

Index Terms—Data stream learning, one-sided label noise,
verification latency, confidence level, concept drift, clustering,
just-in-time software defect prediction.

I. INTRODUCTION

Many real-world data stream applications, such as credit
card fraud detection, credit card approval, network intrusion
detection and Just-In-Time Software Defect Prediction (JIT-
SDP), suffer from verification latency, where the labels of
training examples arrive with a delay [1], [2]. In binary data
stream classification problems, the labeling process of training
examples with verification latency frequently involves waiting
for a pre-determined period of time to observe an event that
assigns the example to a given class. Once this time passes, if
such labeling event does not occur, the example is labeled as
belonging to the other class. Take JIT-SDP [3] as an example.
A defect-inducing example created based on a software change
implemented by a developer is created either when a defect
is found to be associated to this software change or when a

∗ the corresponding authors.

pre-defined period of time has passed for one to be confident
that this change should be clean, whichever is earlier. The pre-
determined period of time one needs to wait for labeling the
clean class is called waiting time.

Verification latency inherently causes label noise associated
to insufficient waiting time. Take JIT-SDP again as an exam-
ple. If a defect is found to be associated to a software change
only after the waiting time, a noisy training example labeled
as clean will be created at the waiting time. If a larger waiting
time had been used, the example may have not been labeled
as clean. However, a too large waiting time would mean that
the examples being labeled are obsolete, hindering predictive
performance due to potential concept drifts. Therefore, as the
time it takes to find a defect varies for different software
changes, it is impossible to set a perfect waiting time for
all changes, which inevitably leads to label noise. Due to
the nature of the waiting time, such noise is frequently one-
sided, i.e., it only occurs to examples of one of the classes. In
JIT-SDP, only training examples of the defect-inducing class
would be mislabeled as clean due to insufficient waiting time.

No existing data stream learning approach can handle such
one-sided label noise associated with verification latency. This
paper proposes a novel data stream learning approach to deal
with such label noise by estimating the confidence in the
labels assigned to training examples and uses this to improve
predictive performance. The proposed method is named as
Oversampling based Data Stream bagging with Confidence
(ODaSC), which is then evaluated in the context of JIT-SDP.
We answer the following research questions:

RQ1 How to estimate the label confidence of training exam-
ples? How accurate are such estimates in the context of
JIT-SDP?

RQ2 How to use label confidence to improve the robustness
of classification models against the one-sided label noise
and improve predictive performance? How well does the
proposed approach perform in the context of JIT-SDP?

Our main contributions are:

• we formulate the one-sided label noise associated to
verification latency for the first time;

• we propose a method to estimate the confidence in the

labels assigned to the training examples to tackle one-
sided label noise associated with verification latency and
experimentally evaluate such estimates;

• we propose a novel data stream learning approach named
ODaSC based on the estimates of label confidence and
experimentally evaluate its predictive performance in the
context of JIT-SDP. Our experiments based on 14 real
world datasets demonstrate ODaSC’s effectiveness.

II. PROBLEM STATEMENT

At each time step i, we consider that a new test data point
Xi arrives, where Xi ∈ Rd are the d-dimensional features.
The true label yi ∈ {0, 1} of Xi is unknown. We aim to use
the most up-to-date model M(·) to give a prediction to Xi,
i.e., ŷi = M(Xi). This process continues with time as more
test examples arrive. To be kept up-to-date, before giving a
new prediction, M(·) is updated with any training example
produced between time steps i − 1 and i. Training examples
are produced as explained over the next paragraphs.

Without loss of generality, assume that a training example
(Xj , y

∗
j = 1) of class 1 is produced immediately when a class

1 labeling event associated to Xj occurs, where y∗j is the
observed label. For instance, in JIT-SDP, a training example
(Xj , y

∗
j = 1) of the defect-inducing class is produced as soon

as a defect is found to be associated to Xj . If no class 1
labeling event occurs during a pre-defined waiting time of
W days, the example Xj is assumed to belong to class 0,
producing a training example (Xj , y

∗
j = 0).

The time it takes for a class 1 labeling event to occur is
unknown and may vary from example to example. Therefore,
the class 1 labeling event may occur at any moment within or
after W days. When it occurs after W days, a noisy example
(Xj , y

∗
j = 0) is first produced upon W days. As such kind

of noise resulting from verification latency can only affect
examples with observed label y∗j = 0, we refer to this type
of noise as one-sided label noise. After W days, an example
(Xj , y

∗
j = yj = 1) is then produced upon the class 1 labeling

event, where yj is a label free of one-sided label noise. When
the class 1 labeling event occurs within W days, only a single
example (Xj , y

∗
j = yj = 1) is produced. It is worth noting that

not all noisy training examples (Xj , y
∗
j = 0) will be followed

by a corresponding example (Xj , y
∗
j = yj = 1), because the

class 1 labeling event associated to Xj may never occur. For
instance, in JIT-SDP, a defect associated to a given software
change may never be found within the duration of the project.

We aim to propose a novel data stream learning approach to
tackle one-sided label noise resulting from verification latency
by estimating how confident we are that y∗j = yj when y∗j = 0.

III. RELATED WORK

A. Data Stream Learning to Tackle Verification Latency

There have been a limited number of papers investigat-
ing data stream learning with verification latency [4]–[7].
Kuncheva et al. [4] investigated an online scenario where all
training examples are labeled exactly at a pre-defined number
of τ time steps after their features are generated. Zhang et

al. [6] investigated a scenario where training data arrive in
chunks: part of them can get their true labels and the rest can
only get features without label. In both cases, the duration
of the labeling delay is assumed to be fixed to the same
value for all examples and known a priori. Pozzolo et al. [7]
investigated an online scenario where it is known beforehand
which training examples have their true labels arriving early
and which are likely to have delayed labels. There are also
papers investigating an extreme case of the online scenario
with verification latency, where labeled training examples are
received only in the initial learning stage and after that no
additional labeled training examples become available [5],
[8]. Nevertheless, no existing work investigated the online
learning scenario of this paper, where the time to label training
examples varies and there may be (one-sided) label noise.

B. Data Stream Learning to Tackle Label Noise

Only a few data stream learning approaches have been
proposed to deal with label noise. Cesa-Bianchi et al. [9] pro-
posed a method to improve linear and kernel-based classifiers
to tackle label noise in online learning without verification
latency, based on the assumption that a global bound on
the noise variance is known. Frenay et al. [10] extended a
prototype-based online classifier in a probabilistic manner to
deal with label noise. Oliveira et al. [11] adopted a filter based
on data hardness techniques, but requires a window of data to
be stored for this purpose. There are also studies investigating
“label” noise in regression problems under online learning
scenarios without verification latency [12], [13]. Nevertheless,
none of them aimed to handle the one-sided label noise
resulting from verification latency as this paper investigates.

C. Just In Time Software Defect Prediction (JIT-SDP)

JIT-SDP is a typical problem suffering from one-sided label
noise resulting from verification latency. However, no existing
work has handled such one-sided label noise problem yet.
Kamei et al. conducted a large-scale empirical study [14]
investigating 14 features extracted from commits and bug
reports for JIT-SDP. They showed them to be good indicators
for yielding good predictive performance on both open source
and commercial projects. However, they assumed JIT-SDP to
be an offline learning problem. Since then, several studies have
showed that concept drift often occurs during the life-cycle
of the project development process, which would negatively
impact performance of classifiers trained on old data [3], [15].
Thus, an online learning approach should be taken in JIT-SDP.

JIT-SDP also suffers from class imbalance, where the
defect-inducing class is typically the minority compared to the
clean class [3], [16], [17]. Shuo et al. [18] proposed oversam-
pling and undersampling techniques to deal with the online
class imbalance, creating two online ensemble learning ap-
proaches, namely Oversampling-based Online Bagging (OOB)
and Undersampling-based Online Bagging (UOB). OOB was
more robust against dynamic changes in class imbalance status
[18] and performed competitively for JIT-SDP [19]. Therefore,
we adopt OOB as the foundation framework for our study.

The challenges imposed by concept drift and class imbal-
ance in JIT-SDP could be further exacerbated by verification
latency. Model adaptation to concept drift may be delayed
as a result of the waiting time, and class imbalance may
become more extreme as a result of one-sided label noise [3].
In particular, when the waiting time is insufficient to obtain
the true label of a defect-inducing software change due to
verification latency, a noisy training example labeled as clean
would be produced, further reducing the number of examples
of the defect-inducing class, which is typically a minority.

IV. LABEL CONFIDENCE ESTIMATION

This section aims for answering RQ1: How to estimate the
label confidence of training examples? We propose to estimate
the label confidence by using micro-clusters, which form a
high-level description of the data stream without actually
storing them [20], [21]. We adopt DenStream [21] to produce
micro-clusters, as it can maintain a varying number of micro-
clusters and be robust to the data stream containing noise.
In DenStream, micro-clusters of the evolving data stream
are created via damped windows, in which the weight of
each example decreases exponentially with time t following a
fading function f(t) = 2−λ·t, where λ > 0 balances the con-
tribution of the past examples to micro-cluster construction.
Our preliminary experiments demonstrated good and stable
micro-clustering performance for λ = 0.1, so we use this value
throughout this study. This section explains how to estimate
label confidence based on the created micro-clusters.

A. Micro-Clusters with Label Information

DenStream does not maintain information about the class
label distribution over time. We propose to incorporate such
label information for micro-clusters by tracking the numbers
of examples of each class over time.

Suppose that a micro-cluster C has been updated with n
training examples at the current Unix timestamp t. The micro-
cluster with label information is represented as

{CF 1, CF 2, CT,C0, C1}, (1)

where CF 1, CF 2 and CW are internal micro-cluster statis-
tics kept by DenStream [21], with CF 1 being the weighted
linear sum of the training examples; CF 2 being the weighted
squared sum of the training examples; CT =

∑n
k=1 f(t−Tk)

measuring the obsolescence of this micro-cluster and Tk being
the Unix timestamp the kth training example used to update
the micro-cluster. C0 and C1 are counters of the number of
training examples with y∗ = 0 and y∗ = 1, respectively.
However, as these numbers may be affected by one-sided label
noise, these counters are adjusted based on the estimates of
label confidence, as will be explained in Section V-B.

Based on this, P (0)(C) := C0
C0+C1 and P (1)(C) := C1

C0+C1
are the estimated probabilities of examples of class 0 and
class 1 in this micro-cluster, respectively. During training,
several micro-clusters {Cj} are usually produced to describe
the data stream, based on which P (0)(D) :=

∑
j C0j∑

j C0j+C1j
and

P (1)(D) :=
∑

j C1j∑
j C0j+C1j

are used to denote the probability of
examples of class 0 and class 1 of the data stream, respectively.

B. Micro-Cluster Representativeness

This procedure aims to measure the degree with which
a micro-cluster can individually represent classes 0 and 1.
We use representativeness for a micro-cluster to measure the
degree this micro-cluster as a whole to represent a specific
data class. Figure 1(a) illustrates a case where P (1)(C2) <
P (0)(C2), so micro-cluster C2 is less representative for class
1 than for class 0. In addition, P (1)(C2) > P (1)(D), so the
representativeness of C2 for class 1 should be tuned upwards
from P (1)(C2). Based on these ideas, the representativeness
of micro-cluster C for class l ∈ {0, 1} is defined as

rep(l)(C) := P (l)(C) · [1 + d(P (l)(C)||P (l)(D))] (2)

where P (l)(C) and P (l)(D) denote the probability of exam-
ples of class l in micro-cluster C and in the whole data stream,
respectively. The value d(P (l)(Cj)||P (l)(D) is the directed
probability distance, defined as d(P (l)(C)||P (l)(D)) := 1

2 ·
P (l)(C)−P (l)(D)
P (l)(C)+P (l)(D)

. Specifically, when P (l)(C) ̸= P (l)(D), the
representativeness of micro-cluster C for class l is tuned
upwards when P (l)(C) > P (l)(D) or downwards when
P (l)(C) < P (l)(D). Take micro-cluster C2 of Figure 1(a)
again as an example. Its representativeness for class 1 is
rep(1)(C2) = 0.4 · [1 + (0.4 − 0.25)/(2 · (0.4 + 0.25)] =
0.4 · (1 + 3/26), being a slight increase over P (1)(C2).

C. Micro-Cluster Weight

Given a training example, this procedure aims to compute
the weight of the micro-cluster for the purpose of estimating
the label confidence of this training example later. The pro-
posed micro-cluster weight is computed by considering two
factors: (a) the correlation between the training example and
the micro-cluster and (b) the obsolescence of the micro-cluster.

We define the micro-cluster correlation between training
example (X, y∗) and micro-cluster C as

cor(X,C) := exp(−T · d(X,C)) (3)

where T = 10 is a temperature to enlarge the correlation for
different examples, the distance d(X,C) := max(0, ||X −
o(C)||2 − r(C)), and o(C) and r(C) denote the centroid and
the radius of micro-cluster C, respectively. When the training
example locates within the micro-cluster, the correlation can
reach the maximal 1; whereas, when it is far from the micro-
cluster, the correlation is very small.

If a micro-cluster has not been updated with new examples
for a relatively long time, this micro-cluster is getting obsolete
and cannot depict the current status of the data stream. Thus,
we should decrease the weight of this micro-cluster when we
estimate the label confidence of this training example later.
We define the micro-cluster obsolescence of C as

obs(C) := tanh(t(C)/T), (4)

where t(C) = CT > 0 (Eq. (1)) of DenStream, tanh(x) ∈
[0, 1] for ∀x ∈ R+ is chosen to convert the micro-cluster time

(a) Micro-cluster representativeness. (b) Two data scenarios to compute class-1 label confidence. (c) Micro-cluster pruning.

Fig. 1. Estimate of label confidence. Micro-clusters C1 and C2 of Figure 1(a) are produced by 10 training examples. The label information is P (0)(C1) = 0.9
and P (1)(C1) = 0.1 for C1, and P (0)(C2) = 0.6 and P (1)(C2) = 0.4 for C2. For the entire data stream D, P (0)(D) = 0.75 and P (1)(D) = 0.25. As
micro-cluster C3 of Figure 1(c) is far away from the training example (the red dot), so it is better excluded from the estimation of label confidence.

information to be within 0 and 1 in a monotonic way, and
T = 10 is the temperature. Smaller values of obsolescence
mean more obsolete micro-clusters and thus should play a
smaller role in the estimate of label confidence later.

We define the micro-cluster weight of C on training exam-
ple (X, y∗) as

w(X,C) := cor(X,C) · obs(C) (5)

where cor(·) and obs(·) are defined in Eqs. (3) and (4),
respectively.

D. Class 1 Label Confidence of Training Examples

This procedure aims to compute the confidence a training
example would belong to the class 1 free from one-sided label
noise, by making use of one-sided label noise associated to
verification latency. We name it the class-1 label confidence
of training example, denoted as α(1)(·) ∈ [0, 1]. Class 0
label confidence of the same training example is computed
automatically as 1−α(1)(·). We propose two steps to achieve
this aim, as explained next.

Step 1. Computing the class 1 label confidence of training
examples.

There are two possible cases for the calculation of the
class 1 label confidence of a training example: (1) when this
example has micro-clusters in its neighborhood and (2) when
this example does not have micro-clusters in its neighborhood,
such that its class 1 label confidence cannot be calculated
based on existing micro-clusters. Figure 1(b) shows an exam-
ple of that, where “Data1” and “Data2” correspond to training
examples under cases (1) and (2), respectively.

Given training example (X, y∗) and micro-clusters {Cj},
this training example belongs to case (1) if the criterion is
satisfied that

∑
j w(X,Cj) ≥ ρw, where w(X,Cj) is defined

in Eq. (5) and ρw = 10−5 is a predefined threshold. Otherwise,
the training example is considered to belong to case (2).

When the training example belongs to case (1), the class 1
label confidence of this example X is formulated as

α(1)(X, y∗) =

∑
j∈F rep(1)(Cj) · w(X,Cj)∑

l∈{0,1}
∑

j∈F rep(l)(Cj) · w(X,Cj)
, (6)

where l ∈ {0, 1} is the class label, rep(l)(·) and w(·) are
defined in Eqs. (2) and (5), respectively, F is the “filtered”
set of micro-clusters {Cj |w(X,Cj) ≥ ρ(X)}, and ρ(X) is
a threshold used to filter out micro-clusters that have too

low weight with respect to the example X . For example,
in Figure 1(c), micro-cluster C3 is too far from the training
example shown in red. Therefore, its weight would be very
small (below the threshold) and it should not be used to
compute the label confidence of this example.

Given a training example (X, y∗) and the set of micro-
clusters {Cj} available at current time, we define the filtering
threshold ρ(X) by simulating the “68-95-99” rule of the Gaus-
sian distribution as ρ(X) := µ{w(X,Cj)} − σ{w(X,Cj)},
where µ{·} and σ{·} denote the mean and standard deviation
of micro-cluster weights for this example (Eq. (5)).

When the training example belongs to case (2), the class
1 label confidence cannot be calculated based on the existing
micro-clusters. Therefore, it is computed based on the entire
data stream, as

α(1)(X, y∗) :=

{
1 for y∗ = 1

P (1)(D) for y∗ = 0
(7)

where P (1)(D) denotes the probability of examples with y∗ =
1 in the data stream.

Step 2. Calibrating the class 1 label confidence of training
examples based on one-sided label noise.

As only examples whose observed label is y∗ = 0 may
suffer from one-sided label noise resulting from verification
latency, we know that training examples with observed label
y∗ = 1 should have the maximum possible class 1 label
confidence value of 1. Therefore, examples of class 1 can be
used as “training data” to further calibrate the estimation of
the class 1 label confidence derived previously. It is worth to
noting that this step is only performed when a training example
with observed label y∗ = 1 arrives.

Without loss of generality, suppose that n new training
examples become available between test time steps i and i+1,
among which d examples are free from one-sided label noise.
We derive the benchmark class-1 label confidence as{

α(1)− := α(1)(X, 1) if d = 1

α(1)− := max(µ− kmin · σ, 0) otherwise
(8)

where (X, 1) represents the only training example of class
1 when d = 1; µ and σ denote the mean and the standard
deviation of the class 1 label confidence values of all d
training examples of class 1, respectively, and kmin is the
minimal k ∈ {1, 2, 3}, such that the below inequality that
simulates the “68-95-99” rule of the Gaussian distribution
is satisfied as µ − k · σ ≤ α(1),min, where α(1),min :=

min{α(1)(Xi, y
∗
i)|y∗i = 1} for i = {1, · · · , n} and we have

α(1)− ≤ α(1),min. Literally, the benchmark value approxi-
mates the lower bound of the class 1 label confidence a training
example of class 1 can possibly have. Then, we find the
training example(s) that have larger class 1 label confidence
than the benchmark value (i.e., α(1)(Xi, yi) ≥ α(1)−), and
calibrate their class 1 label confidence with the formula:

α(1)(Xi, y
∗
i) ≡ min(1, α(1)(Xi, y

∗
i)/α

(1),min). (9)

For simplicity, we keep using α(1)(·) to denote the final class-1
label confidence that may be calibrated.

Finally, we estimate the label confidence of training example
(X, y∗) based on the calibrated class 1 label confidence, as

α(X, y∗) :=

{
α(1)(X) if y∗ = 1

1− α(1)(X) if y∗ = 0
(10)

Training examples with a larger label confidence would be
used more times to update our online learning approach.

V. THE PROPOSED ONLINE LEARNING APPROACH

This section aims at answering RQ2: How to use label
confidence to improve predictive performance? The main idea
is to encode the derived label confidence of training examples
into an online learning framework. As explained in Section
III-C, we use Oversampling Online Bagging (OOB) [18] as our
underlying online learning framework due to its competitive
results [19], [22] in data stream problems that may suffer from
class imbalance. As in previous work with this approach [19],
[22], Hoeffding trees [23] are used as the base learners as they
can be updated incrementally in a strict online manner.

A. Over-Sampling Based Online Bagging With Confidence

OOB [18] is an oversampling approach that tracks the
proportion of examples of each class over time in the data
stream based on exponential smoothing. Whenever a new
training example of the minority class arrives, it is presented
k ∼ Poisson(λ) times to the base learner (Hoeffding tree),
where λ = Pmaj/Pmin is a class imbalance factor to control
the oversampling rate, and Pmaj and Pmin are the tracked
proportions of examples of the current majority and minority
classes, respectively. Poisson distribution is adopted for the
same reason as in [18], [24]. An ensemble of M base
learners is kept and k is drawn independently for each of
them. Predictions are based on the majority vote among the
predictions of each base learner.

As there may be one-sided label noise, we propose to
change λ into a new factor Λ that incorporates label confi-
dence, giving rise to our proposed Oversampling based Data
Stream bagging with Confidence (ODaSC) approach.

Definition 1 (Confidence-based sampling rate). The expected
number of times a training example (X, y∗) of the minority
class is used to train the online base learner is formulated as

Λ(X, y∗) := λ ∗ eα(X,y∗)−δ (11)

where λ denotes the original class imbalance factor [18],
α(X, y∗) is defined in Eq. (10) and δ ∈ [0, 1] denotes a

threshold hyper-parameter that controls the increase / decrease
in the oversampling rate. Particularly, the number of times an
example is used for training is enlarged if the label confidence
is larger than the threshold δ and is reduced if the label
confidence is smaller than δ.

Each base learner of the online ensemble in our ODaSC
approach is then trained k times with the training example
(X, y∗), where k ∼ Poisson(Λ(X, y∗)) is obtained indepen-
dently for each base learner. Training is performed as soon as
new training examples with label confidence become available.

B. Update Micro-Clusters

Given a new training example (X, y∗), after its label confi-
dence α(X, y∗) is computed based on Section IV-D, the micro-
clusters are updated with this new example.

Clustering elements CF 1, CF 2 and CW of Cj are updated
by the DenStream learning algorithm [21]. C0 and C1 are
updated by taking into account not only the numbers of
examples received so far with y∗ = 0 and y∗ = 1, but also the
label confidence as follows. For every micro-cluster Cj where
X ∈ Cj , apply the following rules to update Cj’s C0 and C1: C1new = C1old + 1, if y∗ = 1

C0new = C0old + 1, if y∗ = 0
C1new = C1old + 1, if y∗ = 0 & α(X, y∗) < 1− δ

(12)

where these rules are not mutually exclusive, 1 − δ is a
threshold representing the minimum amount of confidence in
the label of an example with y∗ = 0, and δ is the parameter in
Eq. (11). When the confidence does not reach the threshold,
the example will be counted both as an example of class 0
(through the second rule above) and as an example of class
1 (through the third rule above). This represents the fact that
there is not enough confidence in its label and that the example
may be suffering from one-sided label noise.

VI. EXPERIMENTAL SETUP

A. Datasets

Our study uses 14 real-world datasets from the domain of
JIT-SDP to demonstrate the effectiveness of our approach, as
shown in Table I. They were chosen among projects with more
than 4 years of duration, rich history (>10k commits) and
a wide range of defect-inducing change ratio (2% ∼ 45%).
The first six projects were made available by Cabral et al. [3]
and the others were selected randomly among GitHub projects
that match the aforementioned criteria. The Commit Guru
[25] tool was used to collect the data with 14 features [14]
(Section III-C). The labels are defect-inducing (class 1) or
clean (class 0). For a uniform investigation, we use the first
10k software changes of each project in the experiments.

B. Competing Methods

To evaluate our proposed approach, we need to compare
it against two special label confidence setups – the optimal

TABLE I
AN OVERVIEW OF THE DATASETS. THE TOP 10,000 SOFTWARE

CHANGES (COMMITS) ARE USED IN OUR EXPERIMENTS.

Project Total %Defect- %Defect- Time PeriodChanges inducing inducing
Brackets 11,477 33.876 36.1 12/2011 - 12/2017
Broadleaf 12,034 20.542 22.79 11/2008 - 12/2017

Camel 29,860 20.8 34.5 03/2007 - 12/2017
Fabric 12,282 20.738 21.27 12/2011 - 12/2017

jGroups 17,947 17.524 20.34 09/2003 - 12/2017
Nova 22,872 43.516 52.56 08/2010 - 01/2018

Corefx 26,191 6.911 6.8 11/2014 - 10/2019
Django 25,662 42.156 47.89 07/2005 - 09/2019
Rails 56,049 25.374 36.74 11/2004 - 09/2019
Rust 68,344 2.032 6.2 06/2010 - 10/2019

Tensorflow 64,135 24.877 30.36 11/2015 - 11/2019
Tomcat 18,559 27.933 33.25 03/2006 - 06/2017
VScode 51,459 2.268 3.79 11/2015 - 10/2019

wp-Calypso 30,015 22.529 24.61 11/2015 - 10/2019

label confidence and the random label confidence. Optimal
label confidence for training example (X, y∗) is defined as

α(X, y∗) :=

{
1 if y∗ = y
0 if y∗ ̸= y

where y∗ is the observed label and y is the label free from one-
sided label noise. The random label confidence for training
example (X, y∗) is defined as α(X, y∗) ∼ U [0, 1], where
U [0, 1] denotes uniform distribution between 0∼1. Optimal
label confidence is the best label confidence that could possibly
be obtained based on the available information throughout the
whole data stream, whereas random label confidence reflects
an approach that estimates label confidence randomly.

By replacing our label confidence in our proposed ODaSC
with the optimal and the random label confidences, two
benchmark online approaches ODaSC-opt (short for ODaSC-
optimal) and ODaSC-rnd (ODaSC-random) are produced. It
is conjectured that ODaSC-opt would usually deliver superior
predictive performance due to the optimal estimates of label
confidence for training examples; on the contrary, ODaSC-
rnd would provide a bottom line of predictive performance
as a result of the random estimates on label confidence.
A third benchmark classifier is produced based on training
examples free from one-sided label noise, by filtering out
examples with y∗ ̸= y, named as ODaSC-flt (short for ODaSC-
filter). We should note that ODaSC-opt and ODaSC-flt are not
applicable in practice as true labels of training examples are
not accessible. They are used for the sole purpose of evaluating
our proposed approach. Based on our conjectures, it would be
desirable for our ODaSC to perform better than ODaSC-rnd
and as close as possible to ODaSC-opt.

We also compare the proposed ODaSC against Online
Bagging (OB) [24] and Oversampling-based Online Bagging
(OOB) [18]. As explained in Section III, OOB ensemble
of Hoeffding trees [23] has shown to gain state-of-the-art
predictive performance in the context of JIT-SDP [19], but
was not designed for dealing with the one-sided label noise.

C. Performance Evaluation

Root-Mean-Square-Error (RMSE) is chosen to evaluate the
proposed method for estimating label confidence for RQ1. G-

TABLE II
COMPARISON OF THE MEAN PERFORMANCE ACROSS 30 RUNS.

THE LAST THREE ROWS REPORT THE STATISTICAL TESTS ACROSS
DATASETS. ODASC IS THE CONTROL METHOD ATTACHED WITH A

STAR. SIGNIFICANT DIFFERENCE AGAINST ODASC IS
HIGHLIGHTED IN YELLOW (LIGHT GRAY). SMALLER RANKINGS

REPRESENT BETTER PERFORMANCE WHEN THERE IS
STATISTICALLY SIGNIFICANT DIFFERENCE.

Project RMSE G-Mean
Ours Random ODaSC #-opt #-filter #-rnd OOB OB

Brackets 0.4360 0.5770 0.6575 0.6525 0.6564 0.6201 0.6367 0.5186
Broadleaf 0.4310 0.5780 0.6062 0.6403 0.6406 0.4932 0.5732 0.1433

Camel 0.4150 0.5770 0.6498 0.6816 0.6753 0.6247 0.6495 0.3416
Corefx 0.3720 0.5780 0.6058 0.5978 0.5947 0.5958 0.5799 0.0914
Django 0.4170 0.5780 0.6838 0.6930 0.6926 0.6505 0.6534 0.4126
Fabric 0.3980 0.5780 0.6511 0.6596 0.6554 0.6402 0.6303 0.1889

jGroups 0.4650 0.5780 0.5738 0.5684 0.5800 0.5514 0.5453 0.3054
Nova 0.4130 0.5780 0.6475 0.6497 0.6409 0.5762 0.5883 0.4121
Rails 0.4460 0.5780 0.5650 0.5878 0.6228 0.4877 0.5004 0.2581
Rust 0.4530 0.5780 0.5689 0.5200 0.5215 0.5007 0.4948 0.1805

Tensorflow 0.4190 0.5770 0.6854 0.6923 0.7034 0.5927 0.6560 0.2912
Tomcat 0.4640 0.5770 0.6135 0.6234 0.6167 0.4998 0.4944 0.1318
VScode 0.2610 0.5780 0.5811 0.5731 0.4603 0.4225 0.5768 0.1568

wp-Calypso 0.4280 0.5780 0.5310 0.5578 0.5696 0.5319 0.5724 0.1523
aveRank 1.00 2.00 2.43 2.00 2.07 4.50 4.00 6.00
reject H0 1 * 0 0 1 1 1

mean is chosen to evaluate predictive performance of online
learning approaches for RQ2, for being more robust to class
imbalance [3], [22]. It is the geometric mean of the recall
on class 0 (Recall-0) and on class 1 (Recall-1). In the online
learning scenario, the performance metrics are computed pre-
quentially by using a fading factor to track the changes of
predictive performance over time [26]. The fading factor 0.99
is used following previous JIT-SDP studies [3], [19].

We conduct grid search to choose the best parameter set-
ting for each approach. Three parameters are shared among
ODaSC, ODaSC-opt, ODaSC-flt, and ODaSC-rnd: the ensem-
ble size (# Hoeffding trees) ∈ {5, 10, 20, 30, 40}, the decay
factor of class imbalance ∈ {0.9, 0.95, 0.99, 0.999}, and the
resampling threshold (Eq. (11)) ∈ {0.8, 0.9}. OOB has two
parameters: the ensemble size and the decay factor of class
imbalance, with the same setup as ODaSC. OB has one tuning
parameter: the ensemble size. We choose the parameter setting
that achieves the best average G-mean across 30 runs based
on the first 2,000 (out of the total 10,000) software changes in
the data stream of each project. Hoeffding trees use the default
parameters provided in the python package scikit-multiflow
[27], following previous studies in JIT-SDP [3], [19].

The predictive performance of online learning approaches
with the best parameter settings is evaluated based on the rest
2,000∼10,000 software changes of the project. Comparisons
are conducted based on the mean performance across 30 runs.
We report the results corresponding to the waiting time of 15
days for usually delivering good predictive performance with
respect to the median G-means across projects.

VII. EXPERIMENTAL RESULTS

A. How Accurate Are the Estimates of Our Label Confidence?

This section aims to complete the answer to RQ1. The
RMSE of our proposed method for estimating label confidence
and of the random estimator are shown in the second and

third columns of Table II. The RMSE of the random label
confidence is always similar across different datasets, as the
estimation is entirely random. The RMSE of the optimal label
confidence is always zero.

The estimations given by our method did not reach RMSE
very close to zero, meaning that there is room for improve-
ment. However, its RMSEs were always better than those of
the random label confidence method, showing that our method
is effective. Wilcoxon signed rank tests with Holm-Bonferroni
correction [28] at the significance level 0.05 across all datasets
confirm that the superiority of our label confidence against
random label confidence is significant. In particular, the null
hypothesis (H0) that the two methods are equivalent is rejected
with p-value 9.14E-5.

B. How Well Does ODaSC Perform in JIT-SDP?

This section aims to complete the answer to RQ2, based
on the results in the “G-mean” part of Table II. Recall-1 and
Recall-0 are also reported in Table III to support the analyses.

We can see that the proposed ODaSC outperformed OOB in
terms of G-Mean in all datasets except for wp-Calypso. Some
improvement ratios were as high as around 10.07% in Nova,
12.92% in Rails, 14.98% in Rust and 24.08% in Tomcat, being
of large magnitude. Also, ODaSC performed no worse than
ODaSC-opt and ODaSC-flt in all datasets except for Broadleaf,
Camel, Rails, and wp-Calypso.

We conduct Friedman test [28] for statistical comparisons
of all methods across all datasets. The null hypothesis (H0)
states that all methods are equivalent in terms of G-mean.
Friedman test with the significance level 0.05 rejects H0
with the p-value 0.000, showing that the six approaches
obtained statistically different predictive performance. ODaSC
was chosen as the control method to conduct post-hoc tests
with Holm-Bonferroni corrections. ODaSC outperformed the
state-of-the-art OOB significantly with p-value 0.0131. No
significant difference was found between ODaSC vs ODaSC-
opt (p-value is 0.7278) and vs ODaSC-flt (p-value is 0.6932).
This is a very desirable behavior, given that ODaSC-opt is
using the optimal label confidences and ODaSC-flt is optimally
filtering out noisy examples. It means that even though our
label estimations are not perfect (Section VII-A), they are good
enough to achieve very competitive ODaSC results.

Friedman test also provides average ranks of the methods
across datasets, which can provide a reasonable idea of how
the methods compare to each other given rejection of H0
[28]. We can see from Table II that ODaSC, ODaSC-opt
and ODaSC-flt usually outperformed OOB by having bet-
ter average ranks, and achieved similar performance among
themselves. Post hoc tests with Holm-Bonferroni corrections
find significant superiority of ODaSC against ODaSC-rnd with
p-value 0.0017. Such superiority of ODaSC over ODaSC-
rnd also indicates the effectiveness of our label confidence
in delivering better predictive performance, further supporting
our answer to RQ1. OB performs the worst on all datasets as
anticipated, having the worst average rank. This is probably
due to its inability to deal with class imbalance, which occurs

(a) Broadleaf. (b) jGroup.

(c) Rust. (d) wp-Calypso.

Fig. 2. Continuous performance in terms of G-mean throughout test
steps. We choose some representative datasets for the space reason.

in JIT-SDP. Post hoc tests with Holm-Bonferroni corrections
show the inferiority of OB compared to ODaSC to be signif-
icant with p-value 2.20E-07.

Figure 2 shows continuous performance throughout test
time steps in terms of G-mean between OOB and ODaSC
for some representative datasets. Other datasets were omitted
due to space restrictions. ODaSC can constantly outperform
OOB at most test time steps in datasets such as Brackets,
Broadleaf, Corefx, Django, jGroup, Fabric, and Tensorflow.
Two examples are shown in Figures 2(a) and 2(b). For some
datasets such as Rust, Tomcat, Rails and Nova, the superiority
of ODaSC against OOB can have large magnitude during some
periods of time. An example of that is given in Figure 2(c).
Only for wp-Calypso, ODaSC performed worse than OOB
between test step 1,800∼6,000, as illustrated in Figure 2(d),
due to worse Recall-1 of ODaSC in that time span.

C. ODaSC Gets Better Recall-1 by Sacrificing Recall-0

This section aims to explore the reason why ODaSC usually
got better G-mean than OOB. Table III reports the overall
predictive performance in terms of Recall-1 and Recall-0. In
terms of Recall-1, Wilcoxon signed rank tests with Holm-
Bonferroni correction at the significance level 0.05 across
datasets rejects the null hypothesis (H0) that ODaSC and OOB
perform similarly with p-value 6.70E-04. This means that
ODaSC obtained better Recall-1 than OOB. In terms of Recall-
0, the null hypothesis was rejected with p-value 3.76E-03. This
means that OOB obtained better Recall-0 than ODaSC.

Nevertheless, we can also find that the superior Recall-1
of ODaSC usually had differences above around 20% and
sometimes can be more than 40% with respect to OOB, e.g.,
difference of 43.33% in Rails, 51.58% in Rust and 71.42%
in Tomcat. Meantime, the inferior Recall-0 of ODaSC had
differences below 15%, such as 11.83% in Rails, 7.73%
in Rust and 15.95% in Tomcat with respect to OOB. This
means that ODaSC usually achieved much better Recall-1 by

TABLE III
ODASC VS OOB IN TERMS OF RECALL-1 AND RECALL-0

ACROSS 30 RUNS. THE LAST 3 ROWS REPORT STATISTICAL TESTS
ACROSS DATASETS. SIGNIFICANT DIFFERENCE AGAINST ODASC

IS HIGHLIGHTED IN YELLOW (LIGHT GRAY).

Project Recall-1 Recall-0
ODaSC OOB ODaSC OOB

Brackets 0.6416 0.5505 0.6879 0.7616
Broadleaf 0.4837 0.4097 0.7959 0.8445

Camel 0.6621 0.5409 0.6665 0.7900
Corefx 0.4371 0.3930 0.8473 0.8638
Django 0.6435 0.5119 0.7390 0.8501
Fabric 0.6390 0.5524 0.6768 0.7377

jGroups 0.5072 0.4056 0.6816 0.7644
Nova 0.6878 0.6217 0.6585 0.6431
Rails 0.4616 0.3221 0.7420 0.8415
Rust 0.4499 0.2968 0.7902 0.8564

Tensorflow 0.6634 0.5419 0.7187 0.8041
Tomcat 0.5517 0.3218 0.7114 0.8464
VScode 0.3919 0.3770 0.8799 0.9003

wp-Calypso 0.3368 0.4164 0.8657 0.8055
aveRank 1.07 1.93 1.86 1.14
p-value 6.70E-04 0.0038

slightly sacrificing Recall-0, leading to better G-mean. This is
understandable, as some examples with y∗ = 0 will have their
confidence reduced by ODaSC, making it less likely to predict
examples belong to class 0. However, as ODaSC manages to
estimate label confidence effectively, the reduction in Recall-0
is much smaller than the improvement in Recall-1.

VIII. CONCLUSIONS

We proposed a novel data stream learning approach to tackle
one-sided label noise resulting from verification latency and
evaluated it in the context of JIT-SDP by answering the two
research questions as follows. Answer to RQ1: We proposed
a method to estimate label confidence of training examples
based on micro-clusters with label information and one-sided
label noise. Experimental results demonstrate the effectiveness
of our label confidence estimation method. Answer to RQ2:
We proposed an online learning approach based on our label
confidence estimation to tackle one-sided label noise in data
streams. Experimental results show that the proposed ODaSC
significantly outperformed the state-of-the-art OOB on real
world JIT-SDP data streams.

Future work includes: (1) further evaluation of our ODaSC
with data streams from other application domains and further
investigation on the impact of the components of our approach;
(2) extension of ODaSC to multi-class classification task; and
(3) proposing mechanisms to cater for concept drift of the data
stream whilst dealing with the one-sided label noise.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (Grant No. 62002148), EPSRC (Grant
No. EP/R006660/2), Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001), the Program for Guangdong
Introducing Innovative and Enterpreneurial Teams (Grant
No. 2017ZT07X386), Shenzhen Science and Technology Pro-
gram (Grant No. KQTD2016112514355531), Research Insti-
tute of Trustworthy Autonomous Systems (RITAS), and a joint
project between Huawei and Southern University of Science
and Technology.

REFERENCES

[1] G. Krempl and V. Hofer, “Classification in presence of drift and latency,”
in ICDMW, 2011, pp. 596–603.

[2] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[3] G. Cabral, L. Minku, E. Shihab, and S. Mujahid, “Class imbalance evo-
lution and verification latency in just-in-time software defect prediction,”
in ICSE, Monteal, Canada, 2019, pp. 666–676.

[4] L. I. Kuncheva and J. S. Sanchez, “Nearest neighbour classifiers for
streaming data with delayed labelling,” in ICDM, 2008, pp. 869–874.

[5] K. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised learning
framework for initially labeled nonstationary streaming data,” IEEE
TNNLS, vol. 25, pp. 12–26, 2014.

[6] P. Zhang, X. Zhu, J. Tan, and L. Guo, “Classifier and cluster ensembles
for mining concept drifting data streams,” in ICDM, 2010, pp. 1175–
1180.

[7] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi,
“Credit card fraud detection: A realistic modeling and a novel learning
strategy,” IEEE TNNLS, vol. 29, no. 8, pp. 3784–3797, 2018.

[8] V. M. A. Souza, D. F., G. Batista, and J. Gama, “Classification of
evolving data streams with infinitely delayed labels,” in ICMLA, 12
2015, pp. 214–219.

[9] N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir, “Online learning
of noisy data,” IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 7907–7931,
2011.

[10] B. Frenay and B. Hammer, “Label-noise-tolerant classification for
streaming data,” in IJCNN, 2017, pp. 1748–1755.

[11] G. Oliveira, L. Minku, and A. Oliveira, “Tackling virtual and real
concept drifts: An adaptive gaussian mixture model approach,” IEEE
TKDE, 2021.

[12] E. Moroshko and K. Crammer, “Online regression with controlled label
noise rate,” in ECML-PKDD, 2017, pp. 355–369.

[13] S. Lei, X. Zhang, L. Zhao, A. P. Boedihardjo, and C.-T. Lu, “Online
and distributed robust regressions with extremely noisy labels,” ACM
TKDD, vol. 16, no. 3, 2021.

[14] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE TSE, vol. 39, no. 6, pp. 757–773, 2013.

[15] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE TSE,
vol. 44, no. 5, pp. 412–428, 2018.

[16] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for
imbalance data,” in ICSE, 2015, pp. 99–108.

[17] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using cross-
project models,” ESE, vol. 21, no. 5, pp. 2072–2106, 2016.

[18] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” TKDE, vol. 27, no. 5,
pp. 1356–1368, 2015.

[19] S. Tabassum, L. L. Minku, D. Feng, G. G. Cabral, and L. Song, “An
investigation of cross-project learning in online just-in-time software
defect prediction,” in ICSE, 2020, p. 554–565.

[20] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework for
clustering evolving data streams,” in VLDB, 2003, pp. 81–92.

[21] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in ICDM, 2006.

[22] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE TNNLS, vol. 29, no. 10,
pp. 4802–4821, 2018.

[23] P. Domingos and G. Hulten, “Mining high-speed data streams,” in ACM
SIGKDD, 2000, p. 71–80.

[24] N. Oza, “Online bagging and boosting,” in IEEE SMC, vol. 3, 2005, pp.
2340–2345.

[25] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: analytics and risk
prediction of software commits,” in FSE, 2015, pp. 966–969.

[26] J. Gama, R. Sebastiao, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” JML, vol. 90, no. 3, pp. 317–346, 2013.

[27] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-multiflow: A
multi-output streaming framework,” JML Research, vol. 19, no. 72, pp.
1–5, 2018.

[28] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
JMLR, vol. 7, pp. 1–30, 2006.

	Introduction
	Problem Statement
	Related Work
	Data Stream Learning to Tackle Verification Latency
	Data Stream Learning to Tackle Label Noise
	Just In Time Software Defect Prediction (JIT-SDP)

	Label Confidence Estimation
	Micro-Clusters with Label Information
	Micro-Cluster Representativeness
	Micro-Cluster Weight
	Class 1 Label Confidence of Training Examples

	The Proposed Online Learning Approach
	Over-Sampling Based Online Bagging With Confidence
	Update Micro-Clusters

	Experimental Setup
	Datasets
	Competing Methods
	Performance Evaluation

	Experimental Results
	How Accurate Are the Estimates of Our Label Confidence?
	How Well Does ODaSC Perform in JIT-SDP?
	ODaSC Gets Better Recall-1 by Sacrificing Recall-0

	Conclusions
	References

