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Abstract Just-In-Time Software Defect Prediction (JIT-SDP) is concerned
with predicting whether software changes are defect-inducing or clean. It oper-
ates in scenarios where labels of software changes arrive over time with delay,
which in part corresponds to the time we wait to label software changes as
clean (waiting time). However, clean labels decided based on waiting time may
be different from the true labels of software changes, i.e., there may be label
noise. This typically overlooked issue has recently been shown to affect the
validity of continuous performance evaluation procedures used to monitor the
predictive performance of JIT-SDP models during the software development
process. It is still unknown whether this issue could potentially also affect
evaluation procedures that rely on retrospective collection of software changes
such as those adopted in JIT-SDP research studies, affecting the validity of the
conclusions of a large body of existing work. We conduct the first investigation
of the extent with which the choice of waiting time and its corresponding label
noise would affect the validity of retrospective performance evaluation proce-
dures. Based on 13 GitHub projects, we found that the choice of waiting time
did not have a significant impact on the validity and that even small waiting
times resulted in high validity. Therefore, (1) the estimated predictive perfor-
mances in JIT-SDP studies are likely reliable in view of different waiting times,
and (2) future studies can make use of not only larger (5k+ software changes),
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but also smaller (1k software changes) projects for evaluating performance of
JIT-SDP models.

Keywords Just-in-time software defect prediction · performance evaluation
procedures · verification latency · online learning · concept drift · label noise

1 Introduction

Just-In-Time Software Defect Prediction (JIT-SDP) is concerned with predict-
ing whether software changes are defect-inducing or clean upon commit time
(i.e., just-in-time) based on machine learning approaches (Kamei et al. 2013).
In practice, JIT-SDP operates in an online learning scenario, where software
changes are produced and labeled over time for the purpose of training and
evaluating JIT-SDP models. In particular, each software change must be pre-
dicted as defect-inducing or clean at commit time. Then, only when the label
(defect-inducing or clean) becomes available, this software change can be used
as a data example to evaluate and update (train) JIT-SDP models.

It takes time for the true labels of software changes to be revealed in the
real-world process of JIT-SDP (Cabral et al. 2019; Ditzler et al. 2015; Song
and Minku 2023). As a result, examples need to be produced based on observed
labels rather than the true labels of software changes. Specifically, a software
change is labeled to produce a defect-inducing example when a defect is found
to be induced by it; in contrast, it is labeled as clean when no defect has
yet been found to be induced by it and enough time has passed for one to
be confident that this software change is really clean. Such length of time is
referred to as waiting time (Cabral et al. 2019; Song and Minku 2023) and can
be considered as a pre-defined parameter W of the data collection process.
The observed clean label resulting from such waiting time may or may not
be the same as the true label of this software change. Whenever it is not the
same, a noisy example is produced. Such label noise caused by the waiting
time may affect not only the training of JIT-SDP models, but also the validity
of procedures used to evaluate them.

Song and Minku (2023) discussed how to evaluate predictive performance
continuously over time during the software development process. The purpose
of the continuous performance evaluation procedure is to track the most re-
cent performance status of JIT-SDP models during the software development.
Therefore, in this evaluation procedure, each software change is used to update
the predictive performance as soon as it can be labeled, given a waiting time
W . This is necessary in practice because the predictive performance of JIT-
SDP models may fluctuate over time as a result of changes in the underlying
defect generating process (Cabral and Minku 2022 (in press); Cabral et al.
2019; McIntosh and Kamei 2018; Tabassum et al. 2020) and it is important
for practitioners to be alerted of any performance deterioration as early as
possible. The study found that waiting time had a significant impact on the
validity of such kind of evaluation procedure. In particular, if inappropriate
waiting times are used, the results of the evaluation procedure become invalid.



Title Suppressed Due to Excessive Length 3

Another kind of evaluation procedure is the retrospective performance eval-
uation procedure, where software changes are collected and labeled retrospec-
tively rather than continuously over time. The purpose of this evaluation pro-
cedure is to check how well JIT-SDP models would have performed in practice
if they had been predicting (and potentially learning) those labeled software
changes over time. Such procedure can be used to help practitioners to de-
cide which kind of JIT-SDP approach to adopt in their company, rather than
for the purpose of monitoring the performance of a currently adopted JIT-
SDP model during the software development process. For instance, research
papers typically collect and label software changes to retrospectively evaluate
how well different JIT-SDP approaches would have performed on those past
software changes, rather than monitoring the predictive performance of such
models on software changes that are currently being developed in a project.
The results of such evaluation procedure are used to determine which kind of
JIT-SDP approach is more promising to be adopted in practice. Once adopted
in practice, the corresponding JIT-SDP model should then have its predictive
performance monitored continuously over time based on continuous evalua-
tion procedures such as the one proposed in Song and Minku (2023), to alert
software engineers if/when its performance start deteriorating.

Retrospective performance evaluation procedures do not need to collect
the label of a software change as soon as possible after this software change
is committed. Instead, all labels can be collected at the same time moment
when one decides to trigger this evaluation procedure. Such labeling process
also relies on a waiting time parameter. However, this waiting time refers to
the minimum amount of time we wait to label a software change as being
clean, rather than the exact amount of time used in continuous evaluation
procedures. In other words, it corresponds to the age of the newest software
change that can be labeled as clean to produce an example. All other clean
labeled examples are produced with older software changes. The older the
software change, the more time we will have waited to observe its clean label,
potentially leading to a more reliable label. Due to these differences between
the waiting time used in continuous and retrospective performance evaluation
procedures, it is unknown whether the validity issues found to affect contin-
uous performance evaluation procedures (Song and Minku 2023) also affect
retrospective performance evaluation procedures.

If the impact of waiting time on the validity of retrospective performance
evaluation procedures is significant, it could seriously affect the validity of
a large number of existing research studies in JIT-SDP, especially consider-
ing that many of them implicitly assume that label noise is non-existent for
evaluation purposes. If such impact is not significant, it would mean that the
predictive performances obtained in existing research studies are likely reliable
in view of different choices of waiting time, and could potentially be used to
inform practitioners about which kind of JIT-SDP approach is more promising
to adopt in practice.

Therefore, the aim of this paper is to systematically investigate whether
and to what extent the conclusions of JIT-SDP retrospective performance
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evaluation procedures (and thus also the conclusions of a large body of JIT-
SDP research studies) are (in)valid in view of the fact that observed labels
rather than the true labels of software changes are being used for performance
evaluation. This would not only lead to an insight into the validity of the
conclusions drawn in existing work that overlooks the role of waiting time on
evaluation procedures in JIT-SDP, but also inform future JIT-SDP work on
how waiting time should be considered for evaluation purposes.

This study can be seen as a conceptual replication of Song and Minku
(2023) aiming to check whether the findings obtained for continuous evaluation
scenarios would also occur in retrospective evaluation scenarios. For this, some
adjustments need to be done in the methodology that was kept as similar as
possible to that of Song and Minku (2023). The datasets investigated in this
work are also the same as Song and Minku (2023), but their processing also had
to be adjusted for the retrospective evaluation scenario. We answer three of
the Research Questions (RQs) from Song and Minku (2023), but in the context
of retrospective performance evaluation procedures rather than in continuous
performance evaluation procedures1:

[RQ1] How large is the amount of label noise caused by different
waiting times in retrospective JIT-SDP data collection? The effect of
waiting time on label noise may be reduced when evaluating JIT-SDP through
retrospective evaluation procedures compared to the continuous evaluation
procedure required during the software development process. This is because
the waiting time is only used to determine what is the most recent software
change that can be used in the retrospective performance evaluation procedure.
All other changes will be older than this one, such that more time would have
passed to detect their true labels, potentially reducing the amount of label
noise. However, it is unknown how large the amount of label noise caused by
different waiting times in retrospective data collection is.

[RQ2] To what extent is the validity of retrospective performance
evaluation procedures impacted by label noise resulting from wait-
ing time? The label noise resulting from waiting time investigated in RQ1
may or may not be large enough to have a significant impact on the validity
of retrospective performance evaluation procedures. This investigation will en-
able us to check how reliable the estimated performance of current JIT-SDP
studies is in view of the label noise caused by waiting time. In other words,
it will determine whether conclusions in terms of how well different JIT-SDP
approaches perform (and thus which ones are recommended for adoption in
practice) are reliable in view of the label noise caused by waiting time.

[RQ3] To what extent is the validity of retrospective performance
evaluation procedures impacted by different waiting times? As in
Song and Minku (2023), part of RQ3 can be answered by combining the con-
clusions of RQ1 and RQ2. If waiting time has significant impact on label noise
(RQ1) and label noise has significant impact on the validity of retrospective

1 Previous work (Song and Minku 2023) investigated 4 research questions, but the fourth
one becomes irrelevant in the context of our work given the results obtained for the first
three research questions.
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performance evaluation procedures (RQ2), waiting time may have significant
impact on the validity through the label noise it generates. However, waiting
time could potentially have further impact on the validity of retrospective per-
formance evaluation procedures that cannot be captured by label noise on its
own, possibly intensifying or moderating the impact mediated by label noise.
RQ3 complements the study to check whether the choice of waiting time as a
while does have an impact on the validity.

To answer these RQs, we conduct experimental studies based on the same
13 GitHub software projects and statistical methodologies in Song and Minku
(2023). We find that different waiting times used in retrospective performance
evaluation procedures can cause significantly different amounts of label noise
(RQ1). Similar to Song and Minku (2023)’s results in the continuous evalua-
tion scenario, we find that such amounts of label noise also have a statistically
significant impact on the validity of retrospective performance evaluation pro-
cedures in JIT-SDP (RQ2). However, the differences between estimated and
true predictive performance are smaller than those found in Song and Minku
(2023), being always smaller than 3% and having a median of less than 1%
across datasets. Different from Song and Minku (2023)’s results on the contin-
uous evaluation scenario, when investigating the direct impact of waiting time
on the validity (RQ3), we found that such impact is moderated and becomes
insignificant for retrospective performance evaluation procedures. Therefore,
different waiting times are unlikely to change the conclusions on whether JIT-
SDP is accurate enough to be worthy of adoption in practice, especially when
conducing studies using multiple datasets.

Our results also show that even waiting times as small as 15 days led to
high validity of retrospective performance evaluation procedures. This is very
encouraging, as it means that research studies can evaluate JIT-SDP models
not only on large projects (with more than 5k software changes) but also with
smaller projects (with 1k software changes). Accordingly, it is not necessary
to remove a large portion of the most recent software changes to increase
the validity of retrospective performance evaluation procedures. This result
is particularly relevant given that many software companies develop projects
that are much shorter in length than many of the existing open source projects
that have been running for many years.

The remainder of this paper is organized as follows. Section 2 motivates and
briefly explains two evaluation scenarios of JIT-SDP – a continuous evaluation
scenario as in Song and Minku (2023) and a retrospective evaluation scenario,
which will be investigated in this paper. Section 3 discusses background and
related work. Section 4 explains our notation system and formulates the valid-
ity of the retrospective performance evaluation procedures. Section 5 describes
the design of our experiments, and our RQs are answered in Section 6 by an-
alyzing the results of experiments. Threats to validity is discussed Section 7
and Section 8 concludes the paper.
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Fig. 1 Illustration of labeled examples used for training and the continuous performance eval-
uation investigated in Song and Minku (2023). Examples (Xu, y

∗
u,Tu

) used in the continuous
performance evaluation scenario have their labels collected individually at Unix timestamp Tu,
each of which would be W days after the commit time or when a defect is found to be associated
to it. Training examples (Xu, y

∗
u,T ′

u
) have their labels individually collected at Unix timestamp

Tu′ . This timestamp corresponds to the time when Xu is labeled for training purposes. Especially,
evaluation waiting time W should be no larger than training waiting time W ′, guaranteeing the
online learning principle that each example should be first used for evaluation and then used for
training (Gama et al. 2013).

2 Continuous and Retrospective Performance Evaluation Scenarios

This section provides motivating scenarios for using continuous and retrospec-
tive performance evaluation procedures and discusses the general differences
between these two kinds of procedure. Figures 1 and 2 give illustrative exam-
ples of the continuous and the retrospective performance evaluation scenarios
to facilitate such distinctions. As will be explained in Sections 2.1 and 2.2,
the different purposes of these two evaluation procedures result in the labels
of their evaluation examples to be collected at different moments in time, po-
tentially resulting in different levels of label noise and validity issues. A more
detailed mathematical formulation of the continuous and retrospective pre-
dictive performance evaluation procedures can be found in Song and Minku
(2023) and in Section 4, respectively.

2.1 Continuous Performance Evaluation Scenario

As a software project is developed, new software changes are produced over
time. JIT-SDP models are used to predict these incoming software changes as
being clean or defect-inducting. However, it has been shown that variations
in the underlying data-generating process (i.e., concept drifts (Ditzler et al.
2015)) can cause the predictive performance of JIT-SDP models to fluctuate
over time (Cabral and Minku 2022 (in press); Cabral et al. 2019; McIntosh and
Kamei 2018; Tabassum et al. 2020). Therefore, it is important for practitioners
to continuously monitor such predictive performance over time during the
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software development process. Continuous monitoring enables practitioners to
identify any time periods when the JIT-SDP model becomes unreliable and
should not be trusted.

To continuously evaluate the predictive performance of a given JIT-SDP
model during the software development process, as soon as a past software
change becomes labeled, it should be immediately used to update the esti-
mate of the current predictive performance of the JIT-SDP model. Therefore,
the evaluation process is triggered at several different Unix timestamps Tu dur-
ing software development, each of which corresponding to the moment when
a software change is labeled as clean or defect-inducing. The middle timeline
of Figure 1 gives an illustrative example of such continuous labeling process.
Examples (Xu, y

∗
u,Tu

) are produced individually and continuously over time
throughout the evaluation process. In particular, each software change Xu is
labeled at Unix timestamp Tu (annotated by the inverted red triangles on the
timeline), leading to an observed label y∗u,Tu

. This timestamp is either W days
after the commit time of Xu (e.g., (X1, y

∗
1,T1

) and (X2, y
∗
2,T2

) in the figure), or
when a defect is found to be associated to it (e.g., (X3, y

∗
3,T3

) in the figure). As
such, commit and evaluation time steps may differ in the continuous perfor-
mance evaluation scenario. For instance, (X3, y

∗
3,T3

) comes prior to (X2, y
∗
2,T2

)
in this illustrative example because a defect was found to be induced by X3

at an earlier moment in time.
The value chosen for the waiting time parameterW affects both the amount

of label noise generated when producing labeled examples and the obsoles-
cence of the examples used to estimate the current predictive performance of
a model. In particular, a too long waiting time means that the example is
already old by the time it is used to update the estimation of the current pre-
dictive performance, as it may not reflect well the current defect generating
process anymore. Waiting too little means that not enough time is used to find
defects that are potentially associated to the software change, leading to more
label noise (examples labeled as clean when they are actually defect-inducing).
Song and Minku (2023) found that the choice of waiting time has a significant
impact on the validity of continuous performance evaluation procedures, and
that smaller waiting times should typically be preferred to obtain a better
validity of such evaluation procedure.

2.2 Retrospective Performance Evaluation Scenario

Many machine learning algorithms can potentially be used for creating JIT-
SDP models. Consider a practitioner who does not yet use JIT-SDP in their
software company, but is interested in starting to use. This practitioner needs
to decide which algorithm to adopt to build a JIT-SDP model for their com-
pany. For that, they can potentially use historical software changes that have
already been produced in their software projects to investigate which machine
learning algorithm would likely lead to the best predictive performance in
the context of their software development company. These historical software
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Fig. 2 Illustration of data streams D, D∗
W and T∗

W ′ in the retrospective performance eval-
uation scenario. Unix timestamp T corresponds to the time of the retrospective data collec-
tion, leading to the labels y∗u,T used for the retrospective evaluation data stream. Examples

(Xu, y∗u,T ) used for evaluation can only be collected up to Unix time stamp T −W , where

W is the waiting time used for the retrospective data collection. Examples (Xu, y∗u,Tu
) used

for training have their labels collected at Unix timestamp Tu. This timestamp corresponds
to the time when a software change Xu is labeled for training purposes (W ′ days after the
commit or when a defect is found, where W ′ is the training waiting time).

changes can be collected retrospectively and used to evaluate the predictive
performance that a JIT-SDP model would have achieved if it had been used
for predicting those changes when they were produced. Similarly, a researcher
who is interested in evaluating and comparing several machine learning algo-
rithms for JIT-SDP would also retrospectively collect software changes that
have already been produced in a software project. Therefore, at the moment
of the retrospective data collection, labels of software changes can be assigned
based on the most up-to-date knowledge about defects in the software. In
other words, the practitioner could simulate the exact online learning process
that would have been used to create and update predictive models in practice
based on historical data, but evaluate these predictive models using the most
current knowledge about defects on such data.

In particular, if the moment when we run the evaluation procedure is de-
picted by Unix timestamp T , all labels will have been collected with the most
up-to-date knowledge available at T . The middle timeline of Figure 2 gives
an illustrative example of the retrospective labeling process. All examples
(Xu, y

∗
u,T ) have their labels collected at Unix timestamp T (annotated by

an inverted red triangle). Each clean labeled example was committed at some
timestamp up to Unix timestamp T−W . Even though one clean labeled exam-
ple can possibly correspond to a software change committed exactly at Unix
timestamp T − W , all other clean labeled examples correspond to software
changes committed at Unix timestamps U < T − W . As more than W days
would have passed since the commit of the software changes that are being
labeled as clean, such labels used for retrospective evaluation procedures may
be less noisy than the labels used for continuous evaluation procedures.

It is also worth noting that commit and evaluation time steps are equivalent
in the retrospective performance evaluation scenario. The order with which
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examples are used for evaluation is the same as the order with which they were
committed. This is because the model that would have been available at Unix
timestamp Tu can be evaluated with the software change that was committed
exactly at Unix timestamp Tu. This is different from the continuous evaluation
procedure, where a model available at time Tu needs to be evaluated with older
software changes (produced earlier than Tu).

Due to such differences, the impact of waiting time on retrospective evalu-
ation procedures may be different from that on continuous performance eval-
uation procedures. Our work investigates what this impact is.

In continuous predictive performance evaluation procedures, we use the
most recently labeled past software change to immediately update the
estimation of the current predictive performance of a JIT-SDP model
during the software development process. At the time of the estima-
tion, a clean software change is exactly W days (waiting time) old. In
retrospective predictive performance evaluation procedures, we use his-
torical software changes to estimate the predictive performance that a
JIT-SDP model would have achieved in past moments in time. At the
time of the estimation, a clean software change may be more than W
days old, meaning that more time is used to collect its label.

By knowing the predictive performance that JIT-SDP approaches
would have obtained through a retrospective performance evaluation
procedure, a practitioner could make a decision on which kind of JIT-
SDP models to start adopting in their company. Once they start adopt-
ing a model, they should monitor its predictive performance based on
a continuous performance evaluation procedure to detect any potential
performance deterioration over time.

Summary of Differences Between Continuous and Retro-
spective Evaluation Procedures

3 Related Work

3.1 Software Defect Prediction

Software defect prediction (SDP) can be used to identify code modules that
are likely to be defective (i.e., defect-prone modules). Based on that, quality
assurance teams can effectively focus their limited resources on testing, re-
viewing or debugging such defect-prone modules, reducing the time required
to find defects. Most existing work has investigated SDP models that are cre-
ated using a fixed and pre-existing dataset (Hassan 2009; Nam and Kim 2015;
Wang and Yao 2013), but some studies have also investigated the effect of
learning additional data received over time (Ekanayake et al. 2012; Harman
et al. 2014; Kabir et al. 2019).
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However, conventional SDP usually predicts bugs at the module level. Such
coarse granularity can cause disadvantages as it may be difficult for practition-
ers to find where exactly the defect is. Such disadvantage can be alleviated by
defect prediction in a finer granularity, such as software defect prediction at
the software change level (Hassan 2009).

3.2 Just-In-Time Software Defect Prediction (JIT-SDP)

Software defect prediction at the change level, a.k.a., Just-in-Time SDP (JIT-
SDP), aims to predict whether software changes are likely to induce defects
(Mockus and Weiss 2000; Shihab et al. 2012). JIT-SDP can be considered
as a binary classification task, where a JIT-SDP model is constructed based
on training examples of software changes that are labeled as defect-inducing
or clean. Several studies have investigated different input features that can
be used to describe software changes (Eyolfson et al. 2011; Kim et al. 2008;
Misirli et al. 2016; Shihab et al. 2012; Śliwerski et al. 2005). Kamei et al. (2013)
conducted a large-scale empirical study to investigate 14 features extracted
from commits and bug reports for JIT-SDP models, which can be grouped into
five dimensions of diffusion, size, purpose, history and experience. They showed
these features to be good indicators for achieving high predictive performance.
Many subsequent studies have been conducted based on these features (Cabral
et al. 2019; Kamei et al. 2016; McIntosh and Kamei 2018; Misirli et al. 2016).

Different machine learning algorithms have been used to build JIT-SDP
models, e.g., logistic regression (Kamei et al. 2013; McIntosh and Kamei 2018),
random forests (Kamei et al. 2016), support vector machines (Kim et al. 2008),
and deep learning (Hoang et al. 2019, 2020). Tree-based and logistic regression-
based methods are among the most popular and have shown potential in yield-
ing good performance for JIT-SDP. Some studies (Kamei et al. 2013, 2016; Tan
et al. 2015) have adopted techniques such as random under-sampling, random
over-sampling (Nguyen et al. 2011) and SMOTE (Chawla et al. 2002) to help
JIT-SDP in identifying defect-inducing software changes despite the relatively
small number of defect-inducing training examples compared to the number
of clean ones.

Most studies overlooked the chronology of software changes, where software
changes arrive sequentially in order over time. Overlooking the chronology was
shown to lead to defect prediction models with deceptively better predictive
performance than they could achieve in practice when chronology must be
respected (Tan et al. 2015). Other studies have also reported that predic-
tive performance of JIT-SDP models can deteriorate over time (McIntosh and
Kamei 2018), possibly as a result of concept drift. Therefore, online learning
algorithms able to update JIT-SDP models with new examples over time have
been recommended (Cabral et al. 2019; Tabassum et al. 2020; Tan et al. 2015).
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3.3 Verification Latency in SDP

When respecting the chronology of JIT-SDP, one needs to take into account
the fact that labels of software changes only become available long after the
software changes are committed, an issue referred to as verification latency in
machine learning (Ditzler et al. 2015). As the bug-fix software change or bug
issue report required to identify a bug-introducing software change (Śliwerski
et al. 2005) comes after this software change, it by nature takes time for the
true label of a software change to be revealed. Therefore, the labels of software
changes are typically revealed months or even years after their commit time
(Cabral et al. 2019). Consequently, people would have to wait enough time to
confidently label a given software change as clean.

A similar study in module-based SDP is discussed by (Chen et al. 2014).
They use the term dormant bugs to refer to defects introduced in a version
of the software system that are found only in later versions. Based on 20
open-source software projects from Apache Software Foundation, they found
that typically 33% of the defects introduced in a version were reported in
future versions as dormant bugs and performance evaluation that ignored dor-
mant bugs could be misleading. Even though this study was in the context of
module-based SDP, it has ramifications on JIT-SDP, as it indicates that de-
fects induced by software changes may take time to be revealed. Later, based
on 10 open-source software projects, Cabral et al. (2019) found in the context
of JIT-SDP that the time it took to find defects induced by software changes
varied from 1 to 4,210 days after their commit time, with a median of 90 days.
Pornprasit and Tantithamthavorn (2021) corroborated this by also mentioning
that the true labels of defect-inducing software changes can only be collected
with a delay.

However, most existing JIT-SDP studies overlook the fact that such label
delay happens not only in the training process of JIT-SDP but also in the
evaluation process. Many studies implicitly assume that true labels of software
changes are available in their retrospective performance evaluation procedures.
So far, there have been very few related studies that proposed to delete a
good portion of the end of a data stream of software changes (e.g., those
committed in the last three months of the developing process) (Cabral et al.
2019; McIntosh and Kamei 2018; Tabassum et al. 2020; Tan et al. 2015) in an
attempt to reduce label noise. However, no one really knows how large this
portion should be in order to avoid problems in the validity of retrospective
performance evaluation procedures. Therefore, it is desirable to know to what
extent different waiting times and their resulting label noise would impact the
validity of retrospective performance evaluation procedures.

A previous study (Song and Minku 2023) has investigated whether and
to what extent waiting time can affect the validity of continuous performance
procedures of JIT-SDP models. Our study can be considered as a conceptual
replication of Song and Minku (2023) to check whether the findings obtained
for continuous performance evaluation scenarios would also occur in retrospec-
tive performance evaluation scenarios.



12 Liyan Song et al.

The smaller the waiting time, the more label noise is likely to be produced,
as there would be less time to find defects associated to software changes before
producing corresponding examples. So far, no existing study has investigated
how to choose an adequate waiting time value automatically, while making
remaining software changes not to be too obsolescent for the purposes of model
training and evaluation. The amount of label noise produced as a result of
different waiting times is also unknown, as well as the impact that waiting time
may have on the validity of retrospective performance evaluation procedures
in JIT-SDP. This work is the first to provide such analyses.

3.4 Label Noise in SDP

As explained in Section 1, this paper is related to the label noise that results
from waiting time (Song and Minku 2023). Some studies have investigated
label noise resulting from other aspects of the data collection process that are
unrelated to the waiting time (Antoniol et al. 2008; Aranda and Venolia 2009;
Bird et al. 2009; Kim et al. 2011). They found that issue reports can often
be mislabeled. For instance, reports describing defects can be mislabeled as
“enhancements” and such mislabeling can influence the issue tracking system
and version control system records based on which source code modules are
labeled as defective or clean. Some studies reported that such mislabeling can
lead to a negative impact on predictive performance (Herzig et al. 2013; Yatish
et al. 2019), while others concluded that this rarely causes a severe problem
to SDP (Tantithamthavorn et al. 2015).

Yatish et al. (2019) investigated the label noise arising from post-release
window periods through a case study with 32 releases and found that such post-
release label noise had large impact on the model-based SDP performance,
leading to misleading predictive accuracy of many studies that were based on
such labeling of post-release window periods.

Related literature in JIT-SDP usually focused on the mislabeling result-
ing from the original SZZ algorithm (Śliwerski et al. 2005) and its variants
(Da Costa et al. 2017; Kim et al. 2006; Neto et al. 2018), which were designed
for the identification of defect-inducing software changes. Śliwerski et al. (2005)
proposed B-SZZ (Basic SZZ) based on the built-in annotation command from
the version control system. Kim et al. (2006) replaced the annotate command
used in B-SZZ with the annotation graph – a tool for tracing change history,
forming the variant AG-SZZ (Annotation Graph SZZ). To mitigate the noise
caused by branch / merge changes and property changes of AG-SZZ, Da Costa
et al. (2017) proposed the variant MA-SZZ (Meta-change Aware SZZ). Built
upon MA-SZZ, Neto et al. (2018) proposed RA-SZZ (Refactoring Aware SZZ)
to further deal with the refactoring modifications in software changes.

These algorithms are typically used in the literature for the collection of
datasets for training and evaluating JIT-SDP models. Herbold et al. (2022)
found that among studies that adopted SZZ algorithms, B-SZZ is the most
popular variant with 38% identified literature; only 14% of the literature spec-
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ified their adoption of other SZZ variants; the remaining 40% literature did
not specify which SZZ algorithms they have adopted.

Fan et al. (2019) investigated the impact of label noise arising from the SZZ
labeling process on predictive performance of JIT-SDP models based on four
popular SZZ variants. RA-SZZ was the most recent SZZ algorithm and thus
JIT-SDP models that were trained on examples labeled by RA-SZZ was used
as the baseline. They found that the SZZ-related label noise caused by AG-SZZ
can cause a significant performance reduction; in contrast, label noise caused
by B-SZZ and MA-SZZ were unlikely to cause a severe problem to JIT-SDP.
A more recent study was conducted by Herbold et al. (2022) to investigate
the severe problem of the data labeling process using SZZ based on a dataset
that was constructed under manual inspection. They concluded that a large
amount of noise was produced by SZZ when labeling software changes, and
manual work was recommended to inspect the quality of the data.

However, these studies focused on the impact of label noise on predictive
performance of module-based SDP or JIT-SDP models, rather than on the
validity of performance evaluation procedures as will be done in this work.
Moreover, label noise caused by waiting time was not investigated in these
studies, which is the main focus of this work. The only previous work inves-
tigating the impact of label noise resulting from waiting time on the validity
of performance evaluation procedures was Song and Minku (2023), but it did
not consider retrospective evaluation procedures. Hereafter, whenever we re-
fer to label noise, we mean the label noise associated to waiting time, unless
otherwise specified.

4 Problem Formulation

This section mathematically formulates the retrospective performance evalu-
ation procedures for JIT-SDP. Notations used in the formulation are summa-
rized in Table 1, and we invite readers to refer to this table for the explanations.

4.1 True and Observed Evaluation Data Streams

Given a Unix timestamp T , it would be ideal to evaluate the predictive per-
formance of JIT-SDP based on the predicted and true (not observed) labels of
the evaluation examples up to this Unix timestamp. The true evaluation data
stream consists of all software changes with their true labels until T , where
T is the Unix timestamp when the retrospective data collection is conducted.
These software changes are ordered based on their commit Unix timestamp.
We refer to the natural number representing the order of commit as an eval-
uation or commit time step 2.

2 Song and Minku (2023) made a distinction between commit and evaluation time steps.
However, commit and evaluation time steps are equivalent in this paper.
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Table 1 Summary of notations used in the problem formulation of the validity of retro-
spective performance evaluation procedures in JIT-SDP.

Notation Description
T , U uppercase letters used to represent Unix timestamps
t, u lowercase letters used to represent time steps corresponding to the

Unix timestamps above, respectively∗

Xu the input features describing the software change produced at commit
(also evaluation) time step u

yu the true label of software change Xu, being 1 for a defect-inducing
software change and 0 for a clean software change

y∗u,t / y∗u,T the observed label for Xu decided at time step t / Unix timestamp T

ŷu a predicted label of Xu at evaluation time step t
D the true evaluation data stream that is produced based on true labels
D∗
W the observed evaluation data stream that is collected based on ob-

served labels retrospectively given waiting time W
E the true predictive performance based on the true evaluation data

stream
E∗

W the estimated predictive performance based on the observed evaluation
data stream E∗

W
∆ the validity of retrospective performance evaluation procedures
ηW the amount of label noise of the observed evaluation data stream given

a waiting time W in the retrospective performance evaluation scenario
∗ Note that in the formulations used in this paper, we will frequently need to convert between
time steps and actual Unix timestamps. Uppercase letters such as T are used to indicate
Unix timestamps, and corresponding lowercase letters such as t are used to indicate the
corresponding time steps in a data stream. Lowercase and uppercase letters will be used
interchangeably whenever we need to emphasize time steps or Unix timestamps.

The true evaluation data stream can be formulated as

D = {(Xu, yu)}tu=1,

where the mathematical bold D denotes a data stream used for evaluation, Xu

denotes the features describing the software change produced at commit time
step u, yu denotes the true label of Xu (1 for defect-inducing and 0 for clean),
and t denotes the time step corresponding to the Unix timestamp T 3.

However, the true labels yu are unknown when collecting the data stream.
In reality, given a waiting time W , the data stream is collected based on
observed labels, which can be formulated as

D∗
W = {(Xu, y

∗
u,T )}

tW
u=1 ∪ {(Xu, 1)}tu=tW+1,

where the superscript ∗ is used to indicate that this is a data stream produced
with observed (rather than the true) labels of software changes, y∗u,T denotes
an observed label for Xu decided at Unix timestamp T , and tW is the time
step corresponding to the Unix timestamp TW = T − W . The time step tW
corresponds to the number of evaluation time steps of this data stream up to
the last moment when a clean software change can be labeled given waiting

3 Lowercase and uppercase letters will be used interchangeably in our notation system to
represent a time step and its corresponding Unix timestamp, respectively, as explained in
the note of Table 1.
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time W . No clean software change can be labeled after TW because we would
not have waited enough time to be confident that this software change is really
clean. Examples {(Xu, 1)}tu=tW+1 correspond to software changes found to be
defect-inducing between Unix timestamps TW and T .

The two bottom timelines of Figure 2 give an illustrative example of ob-
served and true evaluation data streams for a software project. The observed
evaluation data stream D∗

W has software changes Xu whose labels have been
collected as y∗u,T , whereas the true evaluation data stream D has software
changes Xu with their true labels yu. D∗

W has only three examples in this
illustration, whereas D has four. This is because labels for D∗

W can only be
collected until TW = T −W (except for software changes found to be defect-
inducing within the waiting time), whereas X4 is a clean change that was
committed after TW . D includes the additional X4 committed after TW and
its true label y4. This is because D is an ideal (though impractical) data stream
that does not require to wait for labeling the examples. It is worth noting that
the observed evaluation data stream D∗

W used for retrospective evaluation is
different from the one used in continuous performance evaluation procedures
(Song and Minku 2023). In continuous performance evaluation, the observed
label for a given software change Xu would be y∗u,U+W rather than y∗u,T .

When all defect-inducing software changes are found before Unix times-
tamp TW ({(Xu, 1)}tu=tW+1 = ∅), time step tW is actually the last evaluation
time step in the observed data stream. When there are defect-inducing soft-
ware changes found between TW and T ({(Xu, 1)}tu=tW+1 ̸= ∅), the last time
step where a defect-inducing software change is found is the last evaluation
time step in D∗

W . Without loss of generality and for the sake of simplicity, we
will assume that tW is the last evaluation time step of the observed evaluation
data stream when writing formulas in the remaining of this section. For this
reason, we can also use tW to denote the number of evaluation time steps used
by the retrospective performance evaluation procedure.

4.2 Computing Label Noise

For RQ1, we need to determine the impact of waiting time on the level of label
noise. We formulate the amount of label noise of the evaluation data stream
D∗

W given a waiting time W as

ηW =

∑tW
u=1 |y∗u,T − yu|∑tW

u=1 yu
, (1)

where T is the Unix timestamp when the observed evaluation data stream was
retrospectively collected and time step tW corresponds to the Unix timestamp
TW = T − W , denoting the number of evaluation time steps (see the last
paragraph of Section 4.1). Please refer to Table 1 for other notations.

As the investigated label noise in JIT-SDP can only happen to defect-
inducing software changes, the numerator of Eq. (1) is not influenced by the
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status of examples that are truly clean. As a clean software change is labeled
“0”, the denominator actually counts the total number of defect-inducing soft-
ware changes in the data stream. Therefore, the label noise η(W ) measures
the proportion of noisy examples over the total number of defect-inducing soft-
ware changes. A large η(W ) shows a more severe level of label noise induced
by waiting time in the retrospective data collection process. We can also see
that examples at the tail (end) of the evaluation data stream are more likely
to suffer from label noise because they are closer to the last Unix timestamp
T , so that there is less time for defects induced by them to be found.

4.3 True and Estimated Performance

In retrospective evaluation, one is typically interested in determining how well
JIT-SDP performs on each and every software change that has been labeled
up to a given Unix timestamp T , where T represents the moment of data
collection. The true predictive performance can be computed based on all
examples in the true evaluation data stream D. We define it as the average
predictive performance across all examples produced up to time step t based
on the true labels of the evaluation examples as

E =
1

t

t∑
u=1

||ŷu − yu||G, (2)

where t is the corresponding time step of T that also represents the number
of evaluation time steps and || · ||G represents some performance metric.

However, as explained previously, the true performance is not accessible in
reality as D is actually absent due to verification latency. One has to wait a
certain amount of time to produce observed labels of software changes and es-
timate the predictive performance accordingly. In a retrospective performance
evaluation procedure, the estimated performance that can be computed in re-
ality is formulated based on the observed labels of software changes in the
evaluation data stream D∗

W as

E∗
W =

1

tW

tW∑
u=1

||ŷu − y∗u,T ||G, (3)

where the superscript ∗ is used to indicate that this is the estimated per-
formance based on observed (not the true) labels and tW is the time step
corresponding to the Unix timestamp TW = T − W that also denotes the
number of evaluation time steps of this data stream.

4.4 Validity of Retrospective Performance Evaluation Procedures

For RQ2 and RQ3, we need to determine the impact of label noise and wait-
ing time on the validity of retrospective performance evaluation procedures,



Title Suppressed Due to Excessive Length 17

respectively. The validity at Unix timestamp T given a waiting time W (and
an amount of label noise) can be measured based on the difference between
the true and estimated predictive performance, which can be formulated as

∆ = 1− |E − E∗
W |, (4)

where E and E∗
W denote the true performance and the performance estimated

retrospectively as defined in Eqs. (2) and (3), respectively. A larger value for ∆
indicates a better validity of retrospective performance evaluation procedures.

4.5 Training Process

The retrospective evaluation procedure described in Sections 4.1 and 4.3 can be
used to evaluate any JIT-SDP model. To avoid analyzing this procedure with
JIT-SDP models that would not have been possible to produce in practice, we
adopt online JIT-SDP (Cabral et al. 2019) to fully respect the chronology of
the training data in this study.

The training data stream used to build our online JIT-SDP models con-
sists of all software changes labeled until T . The software changes are labeled
following the procedure proposed by Cabral et al. (2019). A software change
Xu committed at Unix timestamp U is labeled as clean at Unix timestamp
U + W ′ if no defect was found to be associated to it until this timestamp,
where W ′ is the waiting time used for the collection of training examples 4. It
is labeled as defect-inducing at the Unix timestamp corresponding to the first
defect found to be associated to it. Whenever a software change is labeled,
it becomes a training example in the training data stream. The training ex-
amples in the training data stream are ordered based on the Unix timestamp
when they were labeled. We refer to the natural number representing the order
with which training examples are produced as training time step.

In particular, a training data stream T∗
W ′ can be formulated as

T∗
W ′ = {(Xu, y

∗
u,Tu

)}tW ′
u=1 ∪ {(Xu, 1)}tu=tW ′+1,

where the mathematical bold T is used to denote a data stream used for
training committed, W ′ is a waiting time used to produce training examples,
and tW ′ is the time step corresponding to the Unix timestamp TW ′ = T −W ′

denoting the number of training time steps up to the last moment when a
clean software change can be labeled based on waiting time W ′. Examples
{(Xu, 1)}tu=tW ′+1 correspond to software changes found to be defect-inducing
between Unix timestamps TW ′ and T .

The top timeline in Figure 2 shows an illustrative example of a training data
stream T∗

W′ . Software change X1 is labeled at Unix timestamp T1 = U1 +W ′,
where U1 is the Unix timestamp of its commit. Similarly, software change X2

is labeled at Unix timestamp T2 = U2 + W ′. However, software change X3

4 The training waiting time W ′ may or may not have the same value as the evaluation
waiting time W discussed in Section 4.1.



18 Liyan Song et al.

Table 2 Summary of the datasets investigated in this work. Source: Song and Minku (2023).
“%Defect-inducing” represents the percentage of defect-inducing software changes over the
total number of extracted ones, and “Retained at 99%-quantile” denotes the number of
retained software changes that have at least 99% confidence on the observed labels.

Datasets Total %Defect- Retained at
Time Period Main Language

(Projects) Changes inducing 99%-quantile
Brackets 11,601 34.02 5,997 12/2011 - 12/2017 JavaScript
Broadleaf 12,336 20.28 5,190 11/2008 - 12/2017 Java
Camel 30,229 20.67 9,850 03/2007 - 12/2017 Java
Fabric 12,495 20.65 9,310 12/2011 - 12/2017 Java
jGroup 18,003 17.48 13,028 09/2003 - 12/2017 Java
Nova 26,313 44.34 14,900 08/2010 - 01/2018 Python

Django 26,360 42.64 14,236 07/2005 - 09/2019 Python
Rails 57,949 25.64 28,421 11/2004 - 09/2019 JavaScript
Corefx 26,627 6.91 7,611 11/2014 - 10/2019 Python
Rust 73,876 2.02 35,766 06/2010 - 10/2019 Python

Tensorflow 65,034 24.85 21,466 11/2015 - 11/2019 Python
VScode 51,846 2.28 19,413 11/2015 - 10/2019 JavaScript

wp-Calypso 31,206 22.75 8,708 11/2015 - 10/2019 JavaScript

is labeled at Unix timestamp T3 < U3 + W ′, as a defect was found to be
induced by it before the end of the training waiting time W ′. As a result, the
training example corresponding to software change X3 appears before the one
corresponding to X2 in the training data stream. Therefore, the training time
step corresponding to each software change are not the same as its commit /
evaluation time step.

To build JIT-SDP models, we simulate a scenario where, whenever a train-
ing example is produced, it is immediately used for updating the JIT-SDP
model. This scenario is consistent with the online learning scenario that one
would be able to adopt in practice. In particular, as training examples are pro-
duced W ′ days after the commit and the retrospective evaluation procedure
uses software changes to evaluate predictive models at their commit time, no
software change is ever used for training before it is used for evaluation. No
data from the future is used to train / update JIT-SDP models at present
either. Specifically, whenever a software change is produced at commit times-
tamp U , it is predicted by the most up-to-date available JIT-SDP model that
has been trained on all (and only) training examples that could be labeled
before U . This software change becomes a training example and is used for
training only some time after its commit.

One can refer to Song and Minku (2023) for a more thorough mathematical
formulation of the online learning process for JIT-SDP.

5 Experimental Setup

Being a conceptual replication of Song and Minku (2023), we adopt the same
13 GitHub open source projects as that work to investigate the three research
questions of this paper. These projects were chosen for having more than 4
years of duration (most with more than 8 years duration), rich history (>10k
commits) and a wide range of defect-inducing changes ratios (from 2% to
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45%). The datasets were collected using Commit Guru (Rosen et al. 2015),
which implements the original and most popular B-SZZ algorithm (Śliwerski
et al. 2005) when an issue tracking system is available and its approximation
otherwise. The statistic summary of the projects is shown in Table 2. We will
investigate each research question by the corresponding statistical analysis
performed across these 13 datasets in Table 2.

The large duration enables us to calculate a measure of predictive perfor-
mance which reflects the true performance with high confidence, so that we can
compute Eqs. (2) and (4). Following Song and Minku (2023), the 99%-quantile
of the time it takes to find the labels of defect-inducing software changes is cal-
culated, and software changes committed more recently than this 99%-quantile
would be eliminated. For instance, if this quantile is two years, all software
changes committed within the past two years were eliminated. As a result,
the remaining software changes were committed for at least more than two
years, having at least 99% confidence that they are really clean if no defect
has been found to be induced by them so far. Defect-inducing labels are always
noise-free in this study, as they cannot involve label noise due to inadequate
waiting time. As discussed in Section 3.4, the main aim of this paper is to
systematically investigate whether and to what extent waiting time and the
label noise resulting it can have on the validity of retrospective performance
evaluation procedures. Label noise that is not induced by waiting time is out
of the scope of this study, which may have different effects on the validity of
performance evaluation procedures and could be investigated as a future work.

All projects have at least 5,000 software changes for which we are confident
of their labeling. As in Song and Minku (2023), we retain the first 5,000 time
steps of each project to answer our research questions, so that all projects
investigated in this paper would have the same data stream length. This is
because the impact of the data stream length will also be investigated in
our analyses. Since most projects actually contain considerably more than
5,000 software changes in reality, the confidence in their true labels is higher
than 99%. When computing the predictive performance using the retrospective
evaluation procedure, we consider the moment of the data collection T to be
the Unix timestamp of the 5,000th example. We then contrast the performance
estimated based on the labels obtained through this procedure against the
true performance by calculating the validity of the retrospective performance
evaluation procedure using Eq. (4).

As in Song and Minku (2023), G-mean is adopted to implement perfor-
mance metric || · ||G. However, the equations to evaluate the predictive per-
formance based on the G-mean (Eqs. (2) and (3)) are different from those in
Song and Minku (2023), as our paper analyzes the validity of retrospective
rather than continuous evaluation procedures. G-mean is the geometric mean
between sensitivity (a.k.a. recall) and specificity (one minus the false posi-
tive rate) (Kubat et al. 1997). Unlike performance metrics such as F-measure
(Yao and Shepperd 2021), G-mean was adopted for being robust against class
imbalance, being particularly important for JIT-SDP where class imbalance
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Table 3 Summary of the statistical methodology adopted for answering each RQ. Within-
subject factors and the response are in line with ANOVA; Independent and dependent
variables are in line with the linear regression statistics.

RQ
Statistical Within-subject factors Response

Methodology (Independent variables) (Dependent variable)

RQ1 ANOVA
1) Waiting time W The amount of label noise
2) Length of data stream t ηW in Eq. (1)

RQ2
Linear regression 1) Evaluation label noise The validity of performance

analysis 2) Training label noise evaluation in Eq. (4)

RQ3
Linear regression 1) Evaluation waiting time The validity of performance

analysis 2) Training waiting time Evaluation in Eq. (4)

often takes place (Cabral et al. 2019; He and Garcia 2009; Wang et al. 2018).
Larger G-mean values represent better predictive performance.

Being a conceptual replication of Song and Minku (2023), we adopt the
same machine learning algorithm. Oversampling Online Bagging (OOB) with
Hoeffding trees (Wang et al. 2015) to update / train the JIT-SDP model
whenever a training example is produced, without requiring retraining on past
examples. This machine learning algorithm has been shown to work well for
JIT-SDP due to its ability to tackle class imbalance evolution (Cabral et al.
2019; Tabassum et al. 2020). We conducted a grid search based on the first
500 (out of the total 5,000) software changes in the data stream of a software
project for parameter tuning based on G-mean. As in Song and Minku (2023),
the parameters consisted of the decay factor ∈ {0.9, 0.99} and the ensemble
size ∈ {5, 10, 20}. Given a software project, the parameter setting achieving
the best G-mean (calculated in Eq. (2)) at the first 500 time steps across
30 runs was chosen. The predictive performance of the JIT-SDP model was
then calculated based on the whole data stream using the best parameter
setting. Hoeffding trees adopted the default parameter settings provided by the
Python package scikit-multiflow (Yao and Shepperd 2021), following previous
studies in JIT-SDP (Cabral et al. 2019; Song and Minku 2023; Tabassum et al.
2020). All analyses and statistical tests were conducted based on the mean
performance across 30 runs with the chosen parameter setting. The code and
data used for our experiments is released as open source source at https:

//github.com/sunnysong14/jit-sdp-retrospective-pf-validity.

5.1 Statistical Methodology for RQ1

RQ1 investigates impacts of waiting time on the amounts of label noise. Wait-
ing time W varied among four levels (15, 30, 60 and 90 days), following the
previous work (Song and Minku 2023).

The investigation for RQ1 will also take into account different lengths of the
data stream (1000, 2000, 3000, 4000 and 5000 evaluation time steps), where the
moment of the data collection T used by the retrospective performance eval-
uation procedure corresponds to the Unix timestamp of the 1000th, 2000th,
3000th, 4000th and 5000th example, respectively. The data stream length is

https://github.com/sunnysong14/jit-sdp-retrospective-pf-validity
https://github.com/sunnysong14/jit-sdp-retrospective-pf-validity
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investigated as the proportion of noisy examples could be relative to the size of
the data stream. In particular, the “tail” of the data stream could potentially
contain more noise than the rest of the data stream because it is composed
of more recent software changes (closer to the moment of data collection T ),
for which less time has passed to find defects. Therefore, for instance, if we
have a larger stream length such as 5000 commits, the proportion of noisy
examples is likely to be smaller, as the “tail” of the data stream is relatively
small compared to the size of the data stream as a whole. Conversely, if we
have a smaller stream length such as 1000 commits, the proportion of noisy
examples is likely to be larger. Therefore, the impact of the length of the data
stream is investigated as part of the analysis in RQ1.

We will perform Analysis of Variance (ANOVA) (Montgomery 2017) with
the significance level 0.05 to analyze the impact of waiting time and data
stream length on the amount of label noise in the evaluation data stream
D∗

W , following the prior work (Song and Minku 2023). The null hypothesis
states that there is no difference among group means and is rejected when
the p-value is smaller than the significance level 0.05. ANOVA is used instead
of non-parametric statistical tests such as Friedman because it enables us
to investigate multiple factors. Sphericity is an important assumption made
by the repeated measures ANOVA design. Mauchly’s test (Mauchly 1940) is
adopted to assess the statistical assumption of sphericity when using ANOVA.
When the test yields a p-value less than the significance level 0.05, we consider
that the assumption has been violated. The Greenhouse-Geisser correction is
then used to correct for this violation.

As shown in Table 3, the within-subject factors under investigation include
the waiting time W and the data stream length t. The response variable is the
amount of label noise ηW in Eq. (1).

5.2 Statistical Methodology for RQ2

RQ2 investigates impacts of label noise on the validity of retrospective per-
formance evaluation procedures. Following the prior work (Song and Minku
2023), we will perform linear regression analyses with the significance level
0.05 for this purpose. The linear regression approach adopted Ordinary Least
Squares to learn the model. As shown in Table 3, in addition to the label noise
of evaluation examples (evaluation label noise), we will also consider the label
noise of training examples (training label noise) as independent variables, for
a more thorough analysis. Different from the waiting time used for evaluation
purposes (the main concern of this paper), the training waiting time is used
to produce the data stream for training JIT-SDP models. Different training
waiting times can lead to different levels of noise in the training data and
consequently produce different JIT-SDP models. Both the training and eval-
uation waiting times used to compute the amount of noise varied among 15,
30, 60 and 90 days. As the waiting time used for evaluation purposes is the
main topic of this work, whenever using the term “waiting time” on its own,
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we mean the “evaluation waiting time”; whereas the training waiting time will
always be explicitly referred to as “training waiting time”.

Including training label noise would enable the analysis to consider to
what extent different JIT-SDP models could impact the conclusions of this
study. The dependent variable is the validity of retrospective performance
evaluation procedures formulated in Eq. (4). The p-value of each independent
variable tests the null hypothesis that the corresponding coefficient equals to
zero (no effect on the dependent variable). The linear regression statistical test
is considered significant if its p-value is smaller than the significance level 0.05.
ANOVA, which was used to answer RQ1, is not viable for answering RQ2. This
is because the independent variables are continuous but not ordinal, so one
cannot set up the levels of within-subject factors (Montgomery 2017).

5.3 Statistical Methodology for RQ3

RQ3 investigates impacts of waiting time on the validity of retrospective per-
formance evaluation procedures. Following the prior work (Song and Minku
2023), we will perform linear regression analyses with the significance level
0.05 for that. The linear regression approach adopted Ordinary Least Squares
to learn the model. As shown in Table 3, we will consider the evaluation wait-
ing time and the training waiting time as the two independent variables in the
linear regression analyses for enabling a more thorough analysis of the valid-
ity. Both have values varying among 15, 30, 60 and 90 days. The dependent
variable is the validity of retrospective performance evaluation procedures in
Eq. (4). ANOVA adopted for answering RQ1 is not viable for RQ3, because
there is a constraint between the two independent variables: the evaluation
waiting time should be no larger than the training one to follow the principles
of the online learning procedure, as explained in Song and Minku (2023).

6 Experimental Results

6.1 RQ1: Impact of Waiting Time on the Amount of Label Noise

In this section, ANOVA is used to analyze the influence of each of the two
factors (the waiting time and the data stream length) on the response variable
(the amount of label noise). Mauchly’s tests show that the sphericity assump-
tions on the waiting time W and the length of data stream t are violated with
p-values 4.42E-11 and 7.40E-5, respectively. Greenhouse-Geisser corrections
are thus adopted to account for such violations.

ANOVA with Greenhouse-Geisser corrections reports that W has signifi-
cant impact on the amount of label noise η(W ) with p-value 0.016, but t and
the interaction W ∗ t are not found to have significant impact on it with p-
values 0.868 and 0.184, respectively. Effect size in terms of partial eta-square
is 0.447 for W , which is large compared to 0.009 for t, and 0.163 for the inter-
action W ∗ t. Pairwise comparisons with post-hoc Bonferroni between different
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waiting times find significant differences between 15 vs 30 days with p-value
0.024 and between 15 vs 60 days with p-value 0.033. No significant difference
was found between the other values.

We originally conjectured that the data stream length might have an im-
pact on label noise, because a larger proportion of the shorter data streams
would likely be affected by label noise. However, the statistical analysis shows
that the data stream length does not have significant impact on the amount
of label noise. This suggests that, for different data stream lengths over and
including 1000, one does not need to be concerned with the impact of the data
stream length on label noise in the retrospective performance evaluation sce-
nario. A potential reason is that length of 1000 has been already large enough
to avoid such impact.

Figure 3 shows impact of waiting time on the amount of label noise. Cor-
responding numeric values can be found in the supplementary material. Each
value in Figure 3 represents the average label noise across different lengths of
data stream. Averaging across the data stream length is reasonable because it
has no significant impact on the label noise. The plot for the impact of the data
stream length on label noise is not shown as this impact is not significant. As
shown in Figures 3(a)∼3(m), even though individual plots per dataset were dif-
ferent from each other, larger waiting times usually lead to smaller label noise
(except for jGroup). This is reasonable since a larger waiting time would allow
for more opportunities to find defects induced by software changes, potentially
contributing to smaller amounts of label noise. Figure 3(n) shows the plot of
median label noise across all datasets. We can see that a larger waiting time of
90 days causes a median drop of 14.93% in the proportion of defect-inducing
examples labeled as clean across datasets. Therefore, different waiting times
can typically cause considerable difference in the amount of label noise, even
though such differences can be smaller for some datasets (minimum of around
4% in Broadleaf), and larger for others (maximum of 45.86% in wp-Calypso).

Altogether, larger waiting time led to significant reduction on the amount
of label noise; the data stream length did not have significant impact on label
noise. Section 6.2 will investigate whether such amounts of label noise would
be large enough to have a significant impact on the validity of retrospective
performance evaluation procedures.

Smaller waiting times were found to be associated with significantly
larger amount of label noise. The proportion of defect-inducing examples
labeled as clean increased by up to 45.86% as a result of smaller waiting
time. The data stream length did not have significant impact on the
amount of label noise.

Answer to RQ1
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(a) Brackets (b) Broadleaf (c) Camel

(d) Fabric (e) jGroup (f) Corefx

(g) Rust (h) Tensorflow (i) VScode

(j) wp-Calypso (k) Nova (l) Django

(m) Rails (n) Medians across datasets

Fig. 3 RQ1: Impact of waiting time (x-axis) on the amount of label noise (y-axis) in the
retrospective performance evaluation scenario. The impact of the length of data stream on
label noise is not shown as this impact is not significant. Values in the y-axis of Figure 3(n)
are the medians of the amount of label noise across all datasets. We show the range of y-axis
between 0.1 and 0.45 to facilitate visualization for all datasets except for wp-Calypso.



Title Suppressed Due to Excessive Length 25

6.2 RQ2: Impact of Label Noise on the Validity of Retrospective
Performance Evaluation Procedures

The linear regression analysis conducted for RQ2 shows that the linear rela-
tionship between the two independent variables and the dependent one is sig-
nificant with p-value 6.1834E-11. So, we can continue to investigate the model
coefficients. Both the evaluation and the training label noise were found to
have significant impact on the validity of retrospective performance evalua-
tion procedures with p-values 0.023215 and 7.2162E-10, respectively.

The standardized coefficient for the amount of evaluation label noise was
−0.172135, showing a significant negative impact of the evaluation label noise
on the performance validity. This means that larger evaluation label noise
typically associates to significantly worse validity of the retrospective perfor-
mance evaluation procedure. The standardized coefficient for the amount of
training label noise was −0.499430, showing a significant negative impact of
the training label noise on the validity of retrospective performance evaluation
procedures. This means that larger training label noise typically means signif-
icantly worse validity of retrospective performance evaluation procedures.

Figure 4 shows the relationship between the evaluation (training) label
noise and the validity of retrospective performance evaluation procedures in
orange dotted (blue solid) lines for all datasets. Corresponding numerical val-
ues can also be found in the supplementary material. Each reported orange
(blue) value represents the average performance validity across all training
(evaluation) label noises arising from different waiting times investigated (15,
30, 60 and 90 days).

As shown by the orange dot lines in Figures 4(a)∼4(m), even though the
effects of evaluation label noise on the validity in individual datasets were dif-
ferent, they typically showed decreasing trends (except for Fabric, jGroup, and
wp-Calypso). In this sense, larger evaluation label noise typically associates to
worse performance validity. Nevertheless, in most datasets, the drops in the
magnitude of the validity related to larger evaluation label noise were small,
with the validity differing by less than 1%, though some datasets might also
suffer from drops of around 2% (Nova). As shown by the orange dot line in
Figure 4(n), in general, a larger evaluation label noise caused a median drop of
only 0.3987% in the validity across datasets. Therefore, larger evaluation label
noise typically meant worse validity of retrospective performance evaluation
procedures, but the magnitude of the drop in the validity was small.

As shown by the blue solid lines of Figures 4(a)∼4(m), even though the
effects of training label noise on the validity in individual datasets were dif-
ferent, they typically presented decreasing trends (except for Bracket, Fabric,
Corefx, and Rails). In this sense, larger training label noise typically means sig-
nificantly worse validity of retrospective performance evaluation procedures.
Nevertheless, in most datasets, the drops in the magnitude of the validity
caused by larger training label noise were small, with the validity differing by
less than 1%, though some datasets might also suffer from drops in validity
of up to around 3% (Rust). As shown by the blue solid line of Figure 4(n),
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(a) Brackets (b) Broadleaf (c) Camel

(d) Fabric (e) jGroup (f) Corefx

(g) Rust (h) Tensorflow (i) VScode

(j) wp-Calypso (k) Nova (l) Django

(m) Rails (n) Medians across datasets

Fig. 4 RQ2: Impact of the training label noise (blue solid lines in the lower x-axis) and
the evaluation label noise (orange dotted lines in the upper x-axis), arising from different
waiting times, on the validity of retrospective performance evaluation procedures (in y-axis).
Reported values in Figure 4(n) are the medians across all datasets to demonstrate overall
impacts on the performance validity. Note that the ranges of the x-axis may differ with
respect to the training and the evaluation label noise in order to facilitate visualization.

in general, a larger training label noise caused a median drop of only 0.4935%
in the validity across datasets. Therefore, larger training label noise would
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typically associate to worse validity of retrospective performance evaluation
procedures, but the magnitude of the drop in the validity would be small.

Both evaluation and training label noise had significant negative im-
pact on the validity of retrospective performance evaluation procedures.
However, the magnitude of the changes in the validity caused by dif-
ferent amounts of label noise was small (varying up to around 2% for
evaluation label noise and 3% for training label noise, but most of the
time being less than 1%).

Answer to RQ2

6.3 RQ3: Impact of Waiting Time on the Validity of Retrospective
Performance Evaluation Procedures

RQ1 and RQ2 have investigated the impact of waiting time on the validity of
retrospective performance evaluation procedures via label noise as a mediator.
However, different choices of waiting time might also affect the validity that
cannot be captured by label noise. Such impact could either increase or reduce
the effect of label noise on the validity. RQ3 is designed to investigate this.

The linear regression analysis conducted for RQ3 shows that there is a
significant linear relationship between the two independent variables and the
dependent variable in the retrospective performance evaluation scenario with
p-value 0.015. So, we move to the analysis of the impact of each independent
variable on the dependent one.

No significant impact of the evaluation waiting time on the validity of
retrospective performance evaluation procedure was found with p-value 0.564.
Therefore, even though the label noise caused by different evaluation waiting
times has a significant (but small) impact on the validity of retrospective
performance evaluation procedures, other factors associated to different choices
of waiting time are likely to moderate this effect, resulting in evaluation waiting
time not having a significant impact on the validity. A discussion on such
factors is provided in Section 6.4.2.

Training waiting time was found to have a significant impact on the validity
of retrospective performance evaluation procedures with p-value 0.028. The
standardized coefficient was 0.22, showing that the training waiting time had
positive impact on the performance validity, i.e., larger training waiting times
are associated to better validity.

Figure 5 shows the relationship between training waiting time and the
validity of retrospective performance evaluation procedures in the blue solid
lines for all datasets. Corresponding numerical values can also be found in the
supplementary material. Each reported value represents the average validity
of retrospective performance evaluation procedures across all evaluation wait-
ing times investigated (15, 30, 60 and 90 days). Averaging across evaluation
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(a) Brackets (b) Broadleaf (c) Camel

(d) Fabric (e) jGroup (f) Corefx

(g) Rust (h) Tensorflow (i) VScode

(j) wp-Calypso (k) Nova (l) Django

(m) Rails (n) Medians across datasets

Fig. 5 RQ3: Impact of the training waiting time (blue solid lines in x-axis) and the evalua-
tion waiting time (orange dotted lines in x-axis) on the validity of retrospective performance
evaluation procedures (in y-axis). Reported values in Figure 5(n) are the medians across all
datasets to demonstrate overall impacts on the performance validity.

waiting times is reasonable because the evaluation waiting time has no signif-
icant impact on the validity. Despite that, we also show the validity plots for
different evaluation waiting times in orange dotted lines to demonstrate that
the validity of the retrospective performance evaluation procedure was high in
all datasets.
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As shown in Figures 5(a)∼5(m), even though smaller training waiting times
were sometimes associated to better validity of performance evaluation pro-
cedures (jGroup and wp-Calypso), large training waiting times typically posi-
tively impact the validity of retrospective performance evaluation procedures.
This means that, depending on the actual JIT-SDP model maintained for a
given project and being evaluated, the validity of retrospective performance
evaluation procedures may be better or worse. However, despite the significant
impact of training waiting time on the validity, the increases in the magnitude
of the validity resulting from larger training waiting times were not large, with
the validity differing by less than 1 percentage point in most datasets; the dif-
ferences were of at most around 2% (Django and Rust). Figure 5(n) shows the
plot of median validity of performance evaluation procedures across datasets,
for different waiting times. We can see that a larger evaluation waiting time of
90 days causes a median increase of even less than 0.5% in the validity com-
pared to that of 15 days, being of small magnitude. Therefore, such impact is
unlikely to be practically relevant when evaluating JIT-SDP models.

No significant impact of evaluation waiting time was found on the valid-
ity of retrospective performance evaluation procedures. Training waiting
time had a significant impact on the validity of retrospective perfor-
mance evaluation procedures, meaning that the validity may be better
or worse depending on the actual JIT-SDP model being evaluated. How-
ever, the changes in validity were small (typically less than 1%, and up
to around 2%), and so this impact is unlikely to be practically relevant.

Answer to RQ3

6.4 Discussion and Implications

6.4.1 High Validity of Retrospective Performance Evaluation Procedures

From the analyses presented in Sections 6.1 to 6.2, we know that, despite
different evaluation waiting times leading to significantly different amounts of
label noise and such amounts of label noise having a significant impact on the
validity of retrospective performance evaluation procedures, the magnitude of
differences in the validity was rather small. When investigating the impact of
evaluation waiting time on the validity in Section 6.3, such impact was not
significant. This indicates that other factors related to evaluation waiting time
are likely to moderate the effect of label noise, canceling it out. Therefore, the
choice of evaluation waiting time among 15, 30, 60 and 90 days investigated in
this study is unlikely to matter when evaluating JIT-SDP in the retrospective
performance evaluation scenario.

Such conclusion would be irrelevant if all of these waiting times had led to
equally poor (low) performance validity. In particular, that would have meant
that larger waiting time values might need to be investigated, to see if they
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would lead to significantly better validity. However, Figure 5 shows that the
validity was indeed very high, being close to 1 (100%) in all datasets. This
result is very encouraging as such high validity values mean that not only
the results of existing JIT-SDP studies that have not cut a large portion of
data streams to prevent the validity issues are likely to remain valid, but also
that researchers can make use of relatively small or recent projects with just
1000 software changes in their studies when adopting retrospective evaluation
procedures. Such studies can be conducted by adopting an evaluation waiting
time as small as 15 days, leading to a relatively small portion of the software
changes of the project having to be eliminated. Future work could investigate
whether even smaller projects are also possible. It is worth noting that, if the
waiting times investigated in this study had not been large enough to achieve
high validity, this would have meant that studies to evaluate JIT-SDP could
only be performed with much larger projects, so that a very large portion of
the tail of their corresponding data streams could be removed, as done in this
work for computing the “true” predictive performance with high confidence.

Such high validity values also mean that the predictive performances being
reported in research studies are close to the predictive performances that would
have been obtained if verification latency was not an issue in JIT-SDP. This
is also very encouraging. It means that practitioners can more confidently use
knowledge of such estimated performances to decide whether or not they would
like to adopt or investigate a given JIT-SDP model in their companies.

It is worth noting that our study investigated the impact of waiting time
on the validity of retrospective performance evaluation procedures. This is
different from investigating the impact of waiting time on the predictive per-
formance of JIT-SDP models. The latter is about measuring the impact of
waiting time on the capability of JIT-SDP models to correctly predict labels
of software changes. The former is about measuring the impact of waiting
time on the procedure used to evaluate what the predictive performance of
such models is. We propose the former to be investigated as future work.

6.4.2 Contrasting Validity Results of Retrospective vs Continuous Evaluation
Scenarios

Being a conceptual replication of Song and Minku (2023), it is important to
compare the results obtained by our paper in the context of retrospective
performance evaluation procedures with those obtained by Song and Minku
(2023) in the context of continuous performance evaluation procedures. The
results of this study are different from those obtained in Song and Minku
(2023), despite having some similarities. The main difference is that we found
that evaluation waiting time did not have a significant impact on the validity in
the context of retrospective performance evaluation procedures, whereas Song
and Minku (2023) concluded that it had a significant impact on the validity in
the context of continuous performance evaluation procedures. The potential
reasons for such differences are as follows.
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Even though both our study and Song and Minku (2023) found that waiting
time had a significant impact on label noise, the magnitude of this impact
was smaller in the retrospective scenario than in the continuous scenario. In
particular, even though the amount of label noise generated by waiting time
was somewhat large in the retrospective scenario (around 0.3 for the waiting
time of 15 days), it was even larger in the continuous evaluation scenario
(around 0.5 for the waiting time of 15 days (Song and Minku 2023)). This
may have contributed to a larger magnitude of the impact of label noise on
the validity of continuous performance evaluation scenario (by up to around 3%
in Song and Minku (2023)), compared to that of the retrospective evaluation
scenario (by usually less than 1%).

Moreover, Song and Minku (2023) found that the obsolescence of past ex-
amples (which are used to estimate the current performance in the continuous
evaluation scenario) played a significant role in affecting the validity of con-
tinuous performance evaluation procedures, resulting in smaller waiting times
leading to higher validity (despite it leading to larger amounts of label noise).
The role of the obsolescence of the past examples was strong, because it af-
fected every example in the continuous evaluation data stream.

In the context of retrospective performance evaluation, the obsolescence
of examples is also a factor that can influence the impact of waiting time on
the validity. This is because the true predictive performance is computed with
examples obtained until Unix timestamp T , whereas the observed retrospective
performance evaluation procedure uses only examples obtained until T −W .
Therefore, the larger the waiting time W , the more obsolete the observed
evaluation data stream D∗

W is compared to the true D. However, the number
of newer examples in D that are not present in D∗

W is small compared to the
whole data stream size. Therefore, the role of the obsolescence becomes less
impactful than in the continuous performance evaluation scenario. It becomes
a moderator of the already small impact of label noise on the validity, such that
the impact of waiting time on validity became insignificant. This role was thus
that of a moderator that reduces the impact of waiting time on the validity,
rather than changing the impact from negative (lower waiting time leading to
lower validity) to positive (lower waiting time leading to better validity) as in
Song and Minku (2023).

7 Threats to Validity

This section discusses the threats to validity of our study, which are similar to
the threats to validity of Song and Minku (2023).

Construct Validity. We carefully chose G-mean as the evaluation metric
whenever the performance of JIT-SDP was required to compute in the analyses
of this study. Adopting G-mean is adequate due to its insensitivity to the class
imbalance issue (Wang et al. 2018), which is particularly important for JIT-
SDP that typically suffers from the class imbalance issue (Cabral et al. 2019).
G-mean is the most widely used metric in online class imbalance learning
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studies (Wang et al. 2018). We used grid search based on an initial portion of
the data stream to tune parameters of the machine learning algorithms used
in this study. Random search might find better parameter values than grid
search (Bergstra and Bengio 2012). However, whether or not this is the case in
data stream learning is still an open question, as the best values for the initial
portion of the data stream are not necessarily the best for the remaining of
the data stream due to concept drift, which is frequently occurred in JIT-SDP
(Cabral and Minku 2022 (in press); Cabral et al. 2019; McIntosh and Kamei
2018). Moreover, this paper is concerned with investigating the validity of
the performance evaluation procedures rather than with improving predictive
performance of JIT-SDP. The specific choice of parameter tuning method is
less relevant in this context than in studies targeted at improving predictive
performance of JIT-SDP models.

Internal Validity. A potential threat of the internal validity is that the true
labels of some defect-inducing software changes may never be accessible when
the defects induced by them are not induced until the end of the data stream
due to very large verification latency. To mitigate this threat, we used open
source projects covering a period of at least four years and eliminated software
changes from the latter periods of data streams.

External Validity. We have investigated 13 open source projects, with 4
levels of waiting time, and 5 lengths for data streams, covering a range of
different characteristics in previous JIT-SDP studies. However, as with any
study involving machine learning, results may not generalize to other contexts.
Moreover, our study focuses on OOB with Hoeffding trees, which have been
previously adopted for online JIT-SDP (Cabral et al. 2019; Song and Minku
2023; Tabassum et al. 2020). Being a conceptual replication of Song and Minku
(2023), we adopt the same machine learning approach as in that paper. Other
types of machine learning approaches could be investigated as future work
following the same investigation procedures and statistical methodologies for
answering the same RQs in future work. The conclusions of our study are
in the context of noise resulting from waiting time when using SZZ for data
collection. Label noise not caused by waiting time may have different effects
on the validity and could be investigated as a future work. Similarly, different
conclusions may be obtained regarding the impact of waiting time if a different
algorithm from SZZ is adopted for data collection.

8 Conclusion

We conducted the first analysis of the extent with which the conclusions of
JIT-SDP research studies are (in)valid in view of the fact that observed labels
rather than the true labels of software changes are being used for conducting
retrospective performance evaluation procedures. We conduct our investiga-
tion by answering three research questions as below.

RQ1. How large is the amount of label noise caused by different
waiting times in retrospective JIT-SDP data collection? We found



Title Suppressed Due to Excessive Length 33

that smaller waiting times were associated to significantly larger amount of
label noise. The proportion of noisy defect-inducing examples labeled as clean
increased by up to 45.86% as a result of smaller waiting time.

RQ2. To what extent is the validity of retrospective performance
evaluation procedures impacted by label noise resulting from wait-
ing time? We found that both the evaluation and the training label noise
had significant negative impact on the validity of retrospective performance
evaluation procedures. However, the magnitude of the changes in the validity
was typically small, varying up to around 2% for evaluation label noise and
3% for training label noise, but most of the time being less than 1%.

RQ3. To what extent is the validity of retrospective performance
evaluation procedures impacted by different waiting times? No sig-
nificant impact of the evaluation waiting time was found on the validity of
retrospective performance evaluation procedures. Training waiting time had
a significant impact on the validity, meaning that the validity of performance
evaluation procedures may be better or worse depending on the actual JIT-
SDP model being evaluated. However, the changes in validity were small (up
to around 2%), and so this impact is unlikely to be relevant.

Besides the investigation of the three research questions, our results also
report that the validity of retrospective performance evaluation procedures
was high in magnitude even when using small evaluation waiting times. This
is an encouraging result, as it means that future studies can make use of not
only larger (with 5k+ software changes) but also smaller (with 1k software
changes) software projects for evaluating predictive performance of JIT-SDP
models. This is particularly important in terms of having a validated perfor-
mance evaluation, as many software companies have projects of short duration
compared to some of the existing open source projects that have run for several
years. With this in mind, people would feel safe to trust the estimated per-
formance even for smaller software projects in the retrospective performance
evaluation scenario.

As future work, other performance metrics, machine learning algorithms,
and sources of label noise can be investigated. The impact of waiting time on
the predictive performance of JIT-SDP models could also be investigated.
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