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Design-time evaluation is essential to build the initial software architecture to be deployed. However, experts’
assumptions made at design-time are unlikely to remain true indefinitely in systems that are characterized
by scale, hyperconnectivity, dynamism and uncertainty in operations (e.g. IoT). Therefore, experts’ design-
time decisions can be challenged at run-time. A continuous architecture evaluation that systematically
assesses and intertwines design-time and run-time decisions is thus necessary. This paper proposes the first
proactive approach to continuous architecture evaluation of the system leveraging the support of simulation.
The approach evaluates software architectures by not only tracking their performance over time, but also
forecasting their likely future performance through machine learning of simulated instances of the architecture.
This enables architects to make cost-effective informed decisions on potential changes to the architecture.
We perform an IoT case study to show how machine learning on simulated instances of architecture can
fundamentally guide the continuous evaluation process and influence the outcome of architecture decisions.
A series of experiments is conducted to demonstrate the applicability and effectiveness of the approach. We
also provide the architect with recommendations on how to best benefit from the approach through choice of
learners and input parameters, grounded on experimentation and evidence.

CCS Concepts: • Continuous Evaluation → Software Architecture Evaluation; Design-time, Reactive,
Proactive;

Additional Key Words and Phrases: Continuous evaluation, software architecture evaluation, time series
forecasting, IoT

NOMENCLATURE
𝑑𝑘𝑎 : Architecture decision for capability 𝑘 implemented using component 𝑎
𝑑𝑎𝑜𝑖 : 𝑖 diversified architecture option
𝐷𝐴𝑂 : A set of diversified architecture options
|𝐷𝐴𝑂 |: Number of diversified architecture options
𝑞𝑑𝑎𝑜𝑖 (𝑡): Quality of a 𝑑𝑎𝑜 varying over time
𝑞′
𝑑𝑎𝑜𝑖

(𝑡): Normalized Quality of a 𝑑𝑎𝑜 varying over time
𝑞𝑑𝑎𝑜𝑖 (𝑡): Forecast for Normalized Quality of a 𝑑𝑎𝑜 varying over time
𝑞′
𝑑𝑎𝑜𝑖

(𝑡 + ℎ): Normalized Quality of a 𝑑𝑎𝑜 varying over time for further ahead timesteps
𝑞𝑑𝑎𝑜𝑖 (𝑡 +ℎ): Forecast for Normalized Quality of a 𝑑𝑎𝑜 varying over time for further ahead timesteps
|𝑄 |: Number of quality attributes
𝑤𝑞 : Weight of quality 𝑞
𝐵𝑑𝑎𝑜𝑖 (𝑡): Benefit of a 𝑑𝑎𝑜 varying over time
𝜇𝑑𝑎𝑜𝑖 (𝑡): Exponentially Smoothed Benefit of a 𝑑𝑎𝑜 varying over time
𝑐𝑑𝑎𝑜𝑖 (𝑡): Cost of a 𝑑𝑎𝑜 varying over time
𝑐𝜈
𝑑𝑎𝑜𝑖

(𝑡): Costs of each variety 𝜈 per 𝑑𝑎𝑜 (e.g. deployment cost, leasing cost, etc)

Authors’ addresses: Dalia Sobhy, Computer Engineering Department, Arab Academy of Science and Technology and
Maritime Transport, Alexandria, Egypt, dalia.sobhi@aast.edu; Leandro Minku, University of Birmingham, Birmingham, UK,
l.l.minku@cs.bham.ac.uk; Rami Bahsoon, FRSA and University of Birmingham, Birmingham, UK, r.bahsoon@cs.bham.ac.uk;
Rick Kazman, SEI/CMU and University of Hawaii, Hawaii, USA, kazman@hawaii.edu.



39:2 D. Sobhy et al.

𝜎2
𝑑𝑎𝑜𝑖

(𝑡): Exponential Variance of a 𝑑𝑎𝑜 varying over time
𝜎𝑑𝑎𝑜𝑖 (𝑡): Exponential Standard Deviation of a 𝑑𝑎𝑜 varying over time
𝜃 : Relative Importance of the past
𝛼 : Confidence level
𝐿𝜆 (𝑑𝑎𝑜𝑖 , 𝑡): Loss Function shows how (un)desirable a 𝑑𝑎𝑜 is
𝐿′
𝜆
(𝑑𝑎𝑜𝑖 , 𝑡): Marginal loss of non-dominated 𝑑𝑎𝑜 varying over time

𝜆: A predefined parameter that controls the relative importance between 𝑐𝑑𝑎𝑜𝑖 (𝑡) and 𝜇𝑑𝑎𝑜𝑖 (𝑡)
𝑑𝑎𝑜𝑐𝑢𝑟𝑟 : Current 𝑑𝑎𝑜
𝜁 : Number of input attributes
ℎ: Number of further ahead timesteps
𝜂: Number of training examples
𝜂𝑚𝑖𝑛 : Minimum number of training examples for enabling forecasts
𝜏𝑞 : Error threshold per quality attribute
�̂�𝑑𝑎𝑜𝑖 : Forecast benefit of a 𝑑𝑎𝑜 varying over time
𝜇𝑑𝑎𝑜𝑖 (𝑡): Forecast exponentially smoothed benefit of a 𝑑𝑎𝑜 varying over time
�̂�𝑑𝑎𝑜𝑖 (𝑡): Standard deviation based on forecast exponentially smoothed benefit of a 𝑑𝑎𝑜 varying
over time
𝐿′

𝜆 (𝑑𝑎𝑜𝑖 , 𝑡): Forecast Marginal loss of non-dominated 𝑑𝑎𝑜 varying over time
𝑒𝑞 (𝑡): Forecast error per timestep
𝑀𝐴𝐸: Mean Absolute Error
𝑅𝑀𝑆𝐸: Root Mean Square Error
𝑅𝑇 : Response Time
𝑁𝑈 : Network Usage
𝐸𝐶: Energy Consumption

1 INTRODUCTION
Design-time evaluation [19, 71, 73] is a necessary step to make fundamental architecture decisions
when designing a software system. However, its effectiveness is highly influenced by the expertise
of the evaluators, their knowledge of the domain and the usage contexts for which the architecture is
conceived [20, 47, 89, 100]. Valuation and stakeholders’ perception on cost and value of the candidate
architecture solution can suffer from under- or over-estimations. They also rely on assumptions
that are unlikely to hold true indefinitely in dynamic, scalable and uncertain environments, such as
Internet of Things (IoT). Dynamicity, multi-tenancy, hyper connectivity, environmental changes
and uncertainty are fundamental properties of such architectures, which are difficult to conceive
and cater for purely via design-time evaluation.

In this context, design-time evaluation tends to be subjective and incomplete. Widely used archi-
tecture evaluation methods [71, 73, 100] fundamentally lack mechanisms for aligning operations
with development when the architecture evaluation is conducted. Therefore, a more continuous
approach to software architecture evaluation is necessary to complement design-time evaluation.
We define continuous software architecture evaluation as multiple evaluations of the software ar-
chitecture that begin at the early stages of the development and can be periodically and repeatedly
performed throughout the lifetime of the software system. Continuous evaluation is composed of two
phases: design-time and run-time evaluation. In particular, design-time evaluation supports the
necessary initial system design and deployment. Run-time evaluation assesses the extent to which
the architecture options conceived at design-time, as well as other potential architecture options,
can perform well at run-time. This enables architects to make informed decisions on the potential
changes to the architecture, so that its performance remains good over time.
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Continuous architecture evaluation has been introduced and discussed as an integral phase within
modern software development processes (e.g., agile [93], DevOps [14], and continuous delivery
[64]). This is an enabler for rapid response to operational, environmental, and requirements changes.
It has also been advocated as an essential appraisal and quality assurance practice that symbiotically
aligns development and operations as a measure for responding to dynamism, unpredictability, and
operational uncertainties. Despite the widespread acceptance of continuous architecture evaluation
as a concept, findings from our systematic literature review on the topic ([102]), show that the
literature requires further examples, frameworks and systematic methods on how continuous
evaluation can actually be realized and conducted. There are few research efforts (e.g. [20, 50, 93])
which explicitly mention continuous architecting and assessment, while some others implicitly
adopt it (e.g. [14]). Those approaches can benefit from further analysis in terms of dynamic tracking
and forecasting of architecture decisions’ performances, and automated management of cost-benefit
trade-offs.

Modern architecting practices have given rise to harvesting operational data (e.g. QoS data). The
availability of such data has provided new opportunities for continuous architecture evaluation,
whether the data are of real-time or simulated nature. Continuous evaluation leveraging data
could potentially: (i) aid the architect in continuously learning about architecture decisions; (ii)
complement design-time decisions; (iii) help in forecasting how well the architecture will behave
in the future; (iv) enable proactively dealing with variability scenarios, which can be difficult to
evaluate in the absence of data.
The state-of-art has provided well-established systematic methods for evaluating architecture

design decisions and choices at design-time to replace ad hoc practices when adopting and deploying
architectures (e.g.[71, 89, 96, 100]). However, as the environment is dynamic, value potentials of
architecture design decisions and choices can fluctuate at run-time. In our previous work, [101],
we have proposed a reactive approach for evaluating software architectures at run-time, using
techniques inspired by reinforcement learning [109]. This approach monitors architecture design
decisions with respect to some quality attributes of interest. If the adequacy of a given decision
starts to deteriorate, the approach then reacts by suggesting possible refinements or changes of the
decisions.

Though this approach [101] continuously helps the architect in understanding the past behaviour
of the architecture decisions in question, it cannot proactively reason about their future potentials.
Such proactive behaviour is important, because a decision that has worked well in the past may not
necessarily work well in the future, due to the potential changes and uncertainty underlying the
environment where the system is embedded. Conversely, a decision that may not seem attractive
based on the past could have better future potentials. Discarding that decision could lead to poor
future performance. Moreover, a current decision may seem poor, but it could become attractive in
the near future. Relying on a reactive approach in this situation could trigger unnecessary archi-
tecture adaptations that would cause the system to be unstable. In summary, reactive approaches
can lead to partially justified decisions, unnecessary adaptation, and increase development cost,
while slowing down the operations. Therefore, existing work has only exploited data to provide
benefit (i) mentioned previously, and partially provide benefit (ii). The full power of data has yet to
be harnessed to provide benefits (i)-(iv), which are essential to better inform software architecture
decisions at run-time.

This paper thus provides the first investigation of proactivity in continuous software architecture
evaluation, when supported by simulated instances of the system-to-be. It exploits machine learning
in the form of time series forecasting analytics to produce a more powerful continuous architecture
evaluation approach, able to provide benefits (i)-(iv). Overall, this paper answers the following
research questions:
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• RQ1: How proactivity in continuous evaluation, when supported by simulated instances of the
system-to-be, can be realized and conducted? For instance, can continuous time series forecasting
analytics, leveraging simulated instance of the system-to-be, enable us to predict the behaviour
of software architectures over time? If so, how well?

• RQ2: How can proactive approaches complement reactive ones to provide a well-rounded and
more effective continuous architecture evaluation, when supported by simulated instance of the
architecture? What benefits can they bring to continuous software architecture evaluation and
decision-making at run-time?

To answer these RQs, this paper proposes a novel approach to continuous software architecture
evaluation. It uses continuous time series forecasting [22, 46, 75] as a built-in mechanism to
complement reactive run-time evaluation with proactive run-time evaluation. In this way, the
proposed approach not only takes into account the past performance of architecture decisions, but
also their future potentials, better informing run-time architecture decisions.
To enable proactive run-time evaluation, as a fundamental step in continuous evaluation, we

envision several potential scenarios to evaluate the architecture of the system-to-be and capture its
dynamic behavior:

• Simulation and simulated instances of the system-to-be is a commonly used engineering
and scientific alternative to experiment, when the system-to-be is large scale and costly to
implement. For the case of IoT as an example, the system can be composed of large numbers of
heterogeneous and diverse things, including sensors and devices. As it would be prohibitively
expensive to implement the system for testing and evaluation purposes, simulation can serve
in prototype instance of the architecture and can assist in exhaustive and comprehensive in
what-if analysis of the system to be, stress-testing of the architecture with inputs that can go
beyond the ones encountered in normal operation and potential cost-effective scaling of the
analysis.

• Run-time evaluation can also work if run-time data of a given configuration is available. Run-
time data can be available through published benchmarks of functionally and behaviourally
equivalent systems, cross companies data using similar systems and configurations (i.e. twin
systems), the actual system itself if implementation is available, and/or data generated from
throwaway prototypes or simulated instances of the system-to-be. Additionally, advances in
simulation can symbiotically link a physical system to its simulated instances, under what so
called to digital twins to enable continuous run-time monitoring, logging, and profiling of
architecture design decisions and quality attributes of interest. This can be particularly useful
for cases where the system is already deployed and further refinements are envisioned.

• A third scenario can be also possible, where the approach can be integrated in continuous
development paradigms, such as DevOps, where run-time information from the operation
side can provide feedback for development.

Each of the above mentioned scenarios can lead to distinct realisation of continuous architecture
evaluation or stages for enabling such evaluation. The scope of this paper is concerned with the case
of using simulation to enable proactive run-time evaluation of the architecture of the system-to-be.
Nevertheless, the approach is fundamentally transferable and can be applicable to other cases,
would the implemented system is available.

In particular, our proactive run-time evaluation adopts a proprietary simulation tool, iFogSim
[60] for its fit to the case of IoT. iFogSim builds on Cloudsim [32]; it provides the architect with the
freedom for hierarchically composing fog devices, clouds, and data streams to simulate the technical
and value potentials of selected decisions, using normal usage and stress tests. The generated data
of simulated eventualities of system operations, mode of interactions of things, requirements
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and constraints related to the interaction, compile a "rich" set for enabling proactive evaluation.
Proactivity can be, for example, useful in not only profiling and analyzing the likely technical
and value potentials of the architecture decisions at run-time, but also in designing configuration
policies, refinements and diversified options that can better cope with the predicted situation,
should it be encountered.
A series of experiments were conducted to demonstrate the applicability and effectiveness of

this approach using the case of architecting for IoT. The suitability of various time series forecasting
algorithms [22, 46, 75] to realize proactivity is investigated under this case study (RQ1). The
impact of proactivity on run-time decision-making is then evaluated through a comparative study
against design-time and reactive continuous evaluation approaches (RQ2). Simulated run-time
and operations data [60] were used to test the potentials of the approach on wider spectrum of
scenarios and cases. These experiments also provide software architects with systematic guidance
on how the approach can be realized in practice given a wide set of scenarios and data capabilities
for forecasting (i.e. how to select forecasting algorithm, how to best benefit from forecasts, etc).

Our results show that the proactive approach was more advantageous than the design-time and
reactive approaches in some important scenarios. In particular, we have set two scenarios with
different QoS constraints (i.e. the target QoS should not exceed a particular threshold) based on the
context and the stakeholders requirements. For normal constraint scenarios, the proactive approach
provided similar overall behavior to the reactive approaches, but with improved system stability
(i.e. smaller number of switches). It also contributed to a significant improvement in benefit: about
20-60% as compared to design-time approaches. For most of the scenarios where architects have
set strict constraints, it also produced the best results (i.e. 40-70% better than reactive and baseline
approaches).

Our novel contributions are:
• The first investigation of whether and how time series forecasting can be used to successfully
forecast the future benefit of architecture decisions.

• The first proactive approach to continuous software architecture evaluation, when supported
by simulated instances of the system-to-be. The approach uses the power of forecasting
analytics to complement design-time decisions by taking into account not only the past, but
also the future potentials of architecture decisions.

• A detailed analysis of when and why the proposed approach can help to better inform
architecture decisions.

• Experimental guidelines aiding architects on how to tune the proposed approach.
The remainder of this paper is structured as follows: Section 2 discusses the necessary background

to understand the proposed approach. Section 3 then presents the proposed approach. Section 4
introduces our motivating example in the context of IoT and its challenges. Section 5 provides a
constructive and comparative evaluation. Section 6 provides a further discussion on the method,
whereas Section 7 discusses threats to validity. Section 8 presents the related work. Section 9
concludes the work.

2 BACKGROUND
In this section, we will provide the background necessary to understand the proactive run-time
evaluation approach.

2.1 Reactive Run-time Architecture Evaluation
Software architectures comprises a set of design decisions [27, 68, 107] that can relate to the
architecture components, connectors defining the topology, and their relation to the environment.
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The architects define the possible set of candidate architectures to serve a particular concern and
then based on their experience and knowledge they choose the best candidate [35]. For example, in
an IoT application, the design decisions for processing the data on the cloud rather than the fog
devices to improve the energy consumption goes beyond networking as several qualities and their
trade-offs need to be studied. The design decision could have a negative impact on the performance,
calling for systematic software architecture evaluation.
In our previous work [101], we developed a systematic method for reactive evaluation. The

reactive approach is a run-time evaluation approach inspired by self-adaptive systems. The approach
is able to profile situations where options can be more effective and provide continuous updates
on their value potentials. The reactive approach makes use of a simple reinforcement learning
strategy that tracks the benefit of the architecture options over time using an exponential smoothing
function that emphasizes the more recent benefit values over older ones. A change detection method
is used to detect whether the time-decayed benefit is deteriorating significantly. If it is, reaction
can be triggered under the assumption that such low benefit values will persist. In other words, it
assumes that the best architecture option to switch to is the one which has recently been obtaining
the best cost-benefit. This is effective in some contexts, e.g., when the deployed architecture option
is not violating the QoS constraints that much, or when its performance level is not significantly
changing over time. However, in other contexts, the reactive learning may suggest wrong decisions
and recommend unnecessary switches due to the lack of knowledge about the future benefit of
candidate architecture decisions. Taking into account the future potential of architecture options is
important to provide a more informative evaluation. More advanced supervised learning approaches
such as the ones used in the present paper have not been adopted. This is the motivation to the
proposed approach, which harvests the power of predictive analytics to forecast the benefit of
architecture decisions over time. In particular, the reactive approach is only able to track the value
of the benefit over time, and is not able to predict future benefit values. Section 4.2 of [101] further
clarifies how the reactive approach can be understood in the framework of reinforcement learning.

2.2 Forecasting Algorithms
A time series is a sequence of observations (e.g. response time, energy consumption, etc) mea-
sured/received sequentially over time [87]. Time series forecasting consists in forecasting the value
of a future observation (output attribute), based on the values of a number of previous observations
(input attributes) in the sequence. In this work, we will consider that, once the true value of the
future observation becomes known, it can be used to create a training example (i.e., an example
where both the input and output attributes are already known) for updating the current forecasting
model. After that, this training example is discarded. The learning procedure where forecasting
models are updated over time whenever a new observation arrives is called online learning, and is
adequate when data arrive at high speed, as is the case of IoT. In this section, we will briefly explain
two types of online learning algorithms, for stationary and non-stationary environments. More
detailed explanation on how the forecasting model is built and trained is given in Section 3.2.
Learning models for stationary environments assume that the true function underlying the

relationship between input attributes and forecast values does not change over time. The online
learning models for stationary environments investigated in this work are: k-Nearest Neighbors
(kNN) [111], Perceptron [61], and Stochastic Gradient Descent (SGD) Multiclass [28, 78, 98].

Learning models for non-stationary environments assume that the true function underlying
the relationship between input attributes and forecast values may change over time, requiring
specific mechanisms for models to update to such changes. The algorithms for non-stationary
environments investigated in this work are: Fast Incremental Model Trees with Drift Detection
(FIMTDD) [22, 65], Fading Target Mean (FTM) [22, 55] and Additive Experts (AddExp) [75].
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3 PROACTIVE ARCHITECTURE EVALUATION APPROACH
The proposed continuous architecture evaluation approach is an approach that intertwines run-
time evaluation with design-time evaluation for more informed decision-making. The steps of the
approach are summarized in Figure 1. Here, the design-time evaluation is the one proposed in [100],
which uses options theory (i.e. an economics-driven approach) [63] to evaluate the diversified
architectural options and shortlist the initial diversified architecture options for run-time evaluation.
The approach proposed in this paper builds on the reactive run-time approach (Section 2.1) by
adopting forecasting analytics as depicted in the forecast and learn module from Figure 1. The use
of forecasts makes the approach proactive, because it does not only rely on reacting to potential
changes in the benefit of architecture decisions over time, but attempts to forecast them. In this
way, architecture decisions could be made before negative changes in benefit become detrimental.

The approach provides a generic model that can be instantiated to address various quality of
service concerns and their trade-offs. It is divided into two parts as shown in Figure 1: design-time
evaluation It tracks and evaluates the actual benefit and cost using exponential decay factors (Section
3.1 – Evaluate in Figure 1). The benefit is then modelled based on quality attribute forecasting
models (Section 3.2– Forecast & Learn in Figure 1). Then, instead of detecting significant deviations
based only on previous benefit values, the proactive approach considers their future potentials
(Section 3.3– Detect in Figure 1). The same applies to the selection of architecture options having the
optimal cost-benefit trade-off, which is also based on their forecast benefits (Section 3.4– Select in
Figure 1). This is done to avoid critical problems, such as reactively recommending an architecture
design option which does not introduce added value over time, triggering unnecessary adaptations
and hence leading to an unnecessary increase in costs. The future potentials are assessed based
on time-series forecasting approaches [22, 46] (Section 2.2), which forecast the future benefits of
diversified architecture options based on previous quality attribute values observed. Any time-
series forecasting approach could potentially be used. In this context, our forecasting model relies
on the availability of historic data (in numeric format) for the first few time steps to evaluate
an architecture with respect to qualities of interest. After that, it can learn over time. Figure 2
illustrates the operational procedures performed by the proactive run-time evaluation approach.
The steps of the proactive approach are explained below.

3.1 Evaluate
Design diversity [9, 10, 15, 62, 100] is used to design for dependability under uncertainty: the greater
the uncertainty, the more diversity the architects may need to apply to improve performance. Our
method investigates this phenomenon and formulates the problem of architecture diversity from
run-time and economics-driven perspectives. We denote a software architecture which embeds
diversity as diversified architecture option 𝑑𝑎𝑜 and the set of 𝑑𝑎𝑜 as 𝐷𝐴𝑂 . A 𝑑𝑎𝑜 implements a set
of diversified decisions to meet some quality goals and trade-offs. Consider a set of architecture
decisions 𝐷 , where a decision 𝑑𝑘𝑎 ∈ 𝐷 ; 𝑘 denotes a particular capability, including connectivity,
data collection, data management, etc; and 𝑎 indicates the software architecture component and
connection that implements this capability 𝑘 . For example, in an IoT system, architecture decisions
for the capability of data collection 𝑑1 could be performed either through fixed 𝑑11, mobile 𝑑12, or
fixed+mobile sensors 𝑑13. Another example is data processing could be performed either in cloud
𝑑21, or fog+cloud 𝑑22. Therefore, 𝑑𝑎𝑜𝑖 could collect data from fixed and mobile sensors (𝑑13) and
processes it in cloud-fog (𝑑23). Other examples of 𝐷𝐴𝑂 are depicted in Section 4 through Table 3.
In the IoT system case, the diversity in each 𝑑𝑎𝑜 can refer to using fixed and/or mobile fog devices
for data collection capability; using different cloud providers and heterogeneous fog devices for
data processing capability.
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Fig. 1. Steps of the continuous evaluation approach, where the design-time evaluation [100] forms the initial
design decisions and proactive run-time evaluation complements it by adopting time series forecasting.

Fig. 2. An overview of the operational procedures of proactive run-time evaluation approach.

In the Evaluate step (Figure 1), we monitor the benefits of the diversified architecture options.
The benefit 𝐵𝑑𝑎𝑜𝑖 (𝑡) of 𝑑𝑎𝑜𝑖 at timestamp 𝑡 is a measure of the contribution of each quality attribute
(R1 in Figure 1) to value creation, i.e., added value. Each 𝐵𝑑𝑎𝑜𝑖 (𝑡) (R2 in Figure 1) is a function of
𝑞𝑑𝑎𝑜𝑖 (𝑡), ∀𝑞 ∈ 𝑄 , whereas each 𝑞𝑑𝑎𝑜𝑖 (𝑡) is a composite of the quality 𝑞𝑘𝑎 (𝑡) of each of its component
architecture decisions 𝑑𝑘𝑎 ∈ 𝑑𝑎𝑜𝑖 . Each 𝑞𝑑𝑎𝑜𝑖 (𝑡) has one constraint, which follows one of the
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following possible formats: 𝑞𝑑𝑎𝑜𝑖 (𝑡) ⩽ 𝑞𝑚𝑎𝑥 , 𝑞𝑑𝑎𝑜𝑖 (𝑡) ⩾ 𝑞𝑚𝑖𝑛 , 𝑞𝑚𝑖𝑛 ⩽ 𝑞𝑑𝑎𝑜𝑖 (𝑡) ⩽ 𝑞𝑚𝑎𝑥 . If none of the
benefit’s quality attributes violates any constraint, then the benefit is computed using the following
equation:

𝐵𝑑𝑎𝑜𝑖 (𝑡) =
∑
𝑞∈𝑄

𝑤𝑞 ∗ 𝑞′𝑑𝑎𝑜𝑖 (𝑡) . (1)

If a 𝑑𝑎𝑜 at time 𝑡 , violates any constraint, its benefit is set to zero. To compute 𝑞𝑑𝑎𝑜𝑖 (𝑡), the
qualities of the architecture decisions need to be aggregated based on how they are connected to
each other. Table 1 depicts some aggregate functions for quality of service. To place all quality
attributes in the same scale, 𝑞′

𝑑𝑎𝑜𝑖
(𝑡) = 𝑞𝑑𝑎𝑜𝑖 (𝑡 )−𝑞

𝑚𝑖𝑛

𝑞𝑚𝑎𝑥−𝑞𝑚𝑖𝑛 could be used for scaling quality values that

need to maximized (the higher the better, e.g. throughput), whereas 𝑞′
𝑑𝑎𝑜𝑖

(𝑡) = 𝑞𝑚𝑎𝑥−𝑞𝑑𝑎𝑜𝑖 (𝑡 )
𝑞𝑚𝑎𝑥−𝑞𝑚𝑖𝑛 is for

scaling quality values that need to minimized (the lower the better, e.g. response time), where
𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛 ≠ 0. 𝑞′

𝑑𝑎𝑜𝑖
(𝑡) denotes the normalized value of a given 𝑞 of a particular 𝑑𝑎𝑜𝑖 at time 𝑡 .

Table 1. Aggregate Functions. The𝑀𝑎𝑥 ,𝑀𝑖𝑛 and
∑

operations are over all architecture decisions that are
connected to each other in the specified way (parallel or sequence).

QoS Attribute Parallel Sequence
Response Time 𝑀𝑎𝑥 (𝑞𝑘𝑎)

∑
𝑞𝑘𝑎

Energy Consumption
∑
𝑞𝑘𝑎

∑
𝑞𝑘𝑎

Cost
∑
𝑐𝑘𝑎

∑
𝑐𝑘𝑎

We then monitor the costs over time (R1 in Figure 1). The cost associated with an architec-
ture option at time 𝑡 is denoted by 𝑐𝑑𝑎𝑜𝑖 (𝑡), which is computed using 𝑐𝑑𝑎𝑜𝑖 (𝑡) =

∑
𝑐𝜈
𝑑𝑎𝑜𝑖

(𝑡). Our
consideration for the cost is situation dependent. As an example, the cost can relate to one or
more dimensions of interest (i.e. 𝜈 is variety of costs). This can include the cost of configuration,
deployment, leasing, switching etc. These costs can be estimated using parametric models, reliant
on experts (i.e. architects and other stakeholders), etc [26, 70], as well as run-time knowledge (i.e.
monitoring tools).
In non-dynamic environments, tracking the benefit based on a simple average of its value at

each time 𝑡 could be sufficient. However, in dynamic environments, simple average may take a long
time to reflect changes [109] in benefit. In this context, we employ a time-decayed average function
𝜇𝑑𝑎𝑜𝑖 (𝑡) of a 𝑑𝑎𝑜 (R2 in Figure 1) for evaluating the benefit inspired by reinforcement learning
[109]. In particular, a decay function is adopted that continually learns and updates the aggregated
benefit of monitored quality values forming the exponentially smoothed benefit 𝜇𝑑𝑎𝑜𝑖 (𝑡), which is
computed as follows:

𝜇𝑑𝑎𝑜𝑖 (𝑡) = 𝜃𝜇𝑑𝑎𝑜𝑖 (𝑡 − 1) + (1 − 𝜃 )𝐵𝑑𝑎𝑜𝑖 (𝑡) . (2)
How much emphasis is given to the present/past is controlled by a predefined parameter 𝜃 ,

which affects the system’s stability. In particular, the relative importance of the present is denoted
by 1 − 𝜃 , whereas of the past by 𝜃 , where 0 ≤ 𝜃 < 1.

After that we determine the variance 𝜎2
𝑑𝑎𝑜𝑖

(𝑡) and standard deviation 𝜎𝑑𝑎𝑜𝑖 (𝑡) of the benefit of a
𝑑𝑎𝑜 over time; 𝜎2

𝑑𝑎𝑜𝑖
(𝑡) = 𝜃𝜎2

𝑑𝑎𝑜𝑖
(𝑡 − 1) + (1 − 𝜃 ) ∗ (𝐵𝑑𝑎𝑜𝑖 (𝑡) − 𝜇𝑑𝑎𝑜𝑖 (𝑡))2, 𝜎𝑑𝑎𝑜𝑖 (𝑡) =

√
𝜎2
𝑑𝑎𝑜𝑖

(𝑡).

3.2 Forecast and Learn
The forecasting model learns a function that receives as input previous quality attribute values
monitored by the Evaluate step, and outputs a forecast of the future value of the quality attribute.
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Since there are different types of quality attributes monitored over time 𝑞𝑑𝑎𝑜𝑖 (𝑡): positive (e.g.
Response Time) and negative (e.g. Throughput). The current step uses the normalised ones 𝑞′

𝑑𝑎𝑜𝑖
(𝑡)

as generated by the Evaluate step (Section 3.1).
One forecasting model is produced for each normalised quality attribute. We refer to a point in

time when a new quality attribute value has been observed as a timestep. At each timestep 𝑡 , the
following two main operations are run, for each quality attribute:

1. Learn: a new training example is produced if enough quality attribute values have been
observed to compose it. This training example is used to train (update) the forecasting model
corresponding to this quality attribute. A training example is composed of 𝜁 input attributes,
where 𝜁 is a predefined parameter, and one output attribute. The input attributes are past
quality values (𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′−ℎ−𝜁 −1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′−ℎ−𝜁 ), · · · , 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′−ℎ−1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′−ℎ)), where

ℎ represents the number of timesteps in the future for which we wish a prediction to be made.
The output attribute is the quality value that we want to learn how to predict (𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′)).

Therefore, a training example can be seen as a tuple <𝑞′
𝑑𝑎𝑜𝑖

(𝑡 ′ − ℎ − 𝜁 − 1), 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 ′ − ℎ −
𝜁 ), · · · , 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′ − ℎ − 1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′ − ℎ), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′)>

2. Forecast: a forecast 𝑞𝑑𝑎𝑜𝑖 (𝑡 + ℎ) is provided based on the forecasting model corresponding
to the quality attribute. The forecast is made by feeding the past 𝜁 observed quality attributes
(𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 𝜁 − 1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 𝜁 ), · · · , , 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡)) as inputs to the forecasting model.

Table 2 illustrates the training examples and forecasts produced at each timestep for a given
quality attribute. In this illustrative example, the quality value observed in a given timestep 𝑡 has
the same numeric value as the timestep itself, so that the example is easier to follow. However, in
real scenarios, the quality value received at a given timestep 𝑡 does not necessary have the value 𝑡 .
Suppose that the number of input attributes 𝜁 used for forecasting is 4 and that we wish to

forecast ℎ = 3 timesteps in the future. Therefore, the algorithm will require 4 past quality values
(𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 3), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 2), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡)) as input attributes to provide a forecast 𝑞𝑑𝑎𝑜𝑖 (𝑡 + 3).

A given training example < 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − ℎ − 𝜁 − 1), 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − ℎ − 𝜁 ), · · · , 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − ℎ − 1), 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 −
ℎ), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡) > can only be produced at a given timestep 𝑡 if all its input and output attribute values

have already been observed. Therefore, the first training example used to train the forecasting model
can only be produced at timestep 𝑡 = 7. This also means that the first forecast by the model can only
be provided at timestep 𝑡 = 7. Before that, even though new quality values were being observed and
stored to compose training examples, no complete training example had been produced yet. So, the
forecasting model could not be built. From timestep 𝑡 = 7 onwards, the number of training examples
produced by the approach increases by 1 at each timestep. Each new training example produced by
the approach can be used to train (update) the forecasting model, so that it will produce improved
forecasts over time. Even though it is possible to provide forecasts from timestep 𝑡 = 7 onwards, it
may be desirable to wait to start providing forecasts only after a predefined number of training
examples 𝜂𝑚𝑖𝑛 has been produced. This is because a forecasting model trained on too few examples
may not perform well, and we would not have enough training examples to estimate its forecasting
ability either.

Each forecasting model is built and updated based on a given machine learning algorithm. This
algorithm may or may not be the same for different forecasting models. The choice of which
machine learning algorithm to use for each quality attribute depends on which algorithm is able to
provide better forecasts for that quality attribute. Our work investigates the use of two types of
machine learning algorithms: (i) online learning models for stationary environments; and (ii) online
learning models for non-stationary environments [46]). Online learning means that the models are
updated over time based on new training examples produced over time. Learning algorithms for
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stationary environments assume that the true function underlying the relationship between input
attributes and forecast values does not change over time. Learning algorithms for non-stationary
environments assume that this function may change, therefore adopting specific mechanisms to
swiftly update forecasting models to such changes. More details on how that is achieved can be
found in Section 2.2. We investigate the suitability of different learning algorithms to forecast
quality attributes in Section 5.

A more detailed explanation of the steps followed by the proposed approach is provided below
with respect to Algorithm 1. This algorithm is run for each quality attribute 𝑞.

Table 2. An Illustration of the Process of Creating Training Examples to Train the Forecasting Models. The
table illustrates what training example is produced at each timestep, and what forecast can be provided at
each timestep, when 𝜂𝑚𝑖𝑛 = 1. The value of "-" in a cell represents the absence of a certain input attribute or
forecast at a given timestep. A training example can only be created when the true value of all of of its input
and output attributes has already been observed.

Current # Training Training Example Generated Timestep
Timestep Examples Input attributes Output Attribute Being Forecast

(𝑡 ) 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − 6) 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − 5) 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − 4) 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − 3) 𝑞′
𝑑𝑎𝑜𝑖

(𝑡) 𝑡 + 3
1 0 - - - - 1 -
2 0 - - - - 2 -
3 0 - - - - 3 -
4 0 - - - 1 4 -
5 0 - - 1 2 5 -
6 0 - 1 2 3 6 -
7 1 1 2 3 4 7 10
8 2 2 3 4 5 8 11
9 3 3 4 5 6 9 12
10 4 4 5 6 7 10 13

1. Provide the input parameters: The architect will enter the following parameters to ini-
tialise the forecasting procedures: 𝑞 (quality value 𝑞 for which the forecasting model is being
used), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡) (normalized quality values for each 𝑑𝑎𝑜 over time), 𝜁 (number of input at-

tributes required for forecasting), ℎ (number of further ahead timesteps), 𝜂𝑚𝑖𝑛 (minimum
number of training examples to start using the forecasting models), and 𝜏𝑞 (error threshold
for using the model). The two latter parameters are used to prevent using poor forecasting
models. In particular, if the number of training examples used to build the forecasting models
is too small, these models are likely to perform poor forecasts, and the estimation of their
error will not be reliable either. Therefore, none of the forecasting models is used before being
trained on 𝜂𝑚𝑖𝑛 examples. In this case, the approach will behave reactively, as in Section
2.1. Once 𝜂𝑚𝑖𝑛 training examples have become available, if the estimated error of a given
forecasting model for quality attribute 𝑞 is above 𝜏𝑞 , this model is not used at the current
timestep and the approach behaves reactivily for this quality attribute. The architect has the
flexibility to adjust the prior parameters. The impact of such parameters will be investigated
in Section 5.

2. Create training example: If enough past quality attributes have been stored in the queue
(line 6), a new training example will be created (line 7).

3. Evaluate the forecasting model: The current training example is used to update the es-
timate of the predictive performance of the forecasting model. Therefore, the forecasting
model is first requested to provide a forecast for the current value of the quality attribute
(line 10). As the current value of the quality attribute is known, we can check how large the
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error of the forecast is by computing 𝑒 = 𝑞𝑑𝑎𝑜𝑖 (𝑡) − 𝑞′
𝑑𝑎𝑜𝑖

(𝑡) (line 11). Therefore, we can use
this error to update the error average incurred by the forecasting model, based on some error
metric (line 12). This is going to be used later on to decide whether to adopt the forecasts
provided by this model.
The error metric used in this work is the Root Mean Squared Error, shown in equation 3.

𝑒𝑞 (𝑡) =

√∑𝑡
𝑡 ′=1 (𝑞𝑑𝑎𝑜𝑖 (𝑡 ′) − 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 ′))2

𝜂
(3)

where 𝜂 is the number of training examples received so far. The error on the current training
example (line 11) can be used to update 𝑒𝑞 (𝑡) incrementally if desired. In this way, there is
no need for storing all previous errors.

4. Train the forecasting model: The new training example {𝑞′
𝑑𝑎𝑜𝑖

(𝑡 −ℎ − 𝜁 − 1), 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 −ℎ −
𝜁 ), · · · , 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − ℎ − 1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − ℎ), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡)} is used to train its corresponding forecasting

model (line 13).
5. Provide a forecast: If the error average incurred by the forecasting model is below the

threshold 𝜏𝑞 and the number of training examples used to train the forecasting model is
larger than 𝜂𝑚𝑖𝑛 (line 14), the forecasting model is used to produce a forecast 𝑞𝑑𝑎𝑜𝑖 (𝑡 + ℎ)
(line 15-16). Otherwise, the algorithm returns 𝑛𝑢𝑙𝑙 (line 17).
When a forecast is produced, it is used to update the estimated benefit (�̂�𝑑𝑎𝑜𝑖 (𝑡)) – (R3 in
Figure 1), which is computed as in equation 4. In this context, 𝑞∗

𝑑𝑎𝑜𝑖
(𝑡) is equal to 𝑞𝑑𝑎𝑜𝑖 (𝑡 +ℎ).

Otherwise, if a forecast is not produced, the approach behaves reactively and uses the actual
normalized quality value instead (i.e. 𝑞∗

𝑑𝑎𝑜𝑖
(𝑡) = 𝑞

′

𝑑𝑎𝑜𝑖
(𝑡)).

�̂�𝑑𝑎𝑜𝑖 (𝑡) =
∑
𝑞∈𝑄

𝑤𝑞 ∗ 𝑞∗𝑑𝑎𝑜𝑖 (𝑡) (4)

𝑤𝑞 : is a ranking score set by stakeholders for each quality attribute 𝑞.

The approach also allows the architect to use the average forecasts of 𝑡 + ℎ instead of using a
single value of ℎ. For instance, if ℎ ∈ {1, 5, 8, 15}, then 𝑞∗

𝑑𝑎𝑜𝑖
(𝑡) will be equal to the mean of

𝑞𝑑𝑎𝑜𝑖 (𝑡 + ℎ) for varying ℎ values. The use of average forecasts may provide more realistic
results than single ℎ, as it considers a window of time in the future, rather than a specific
point in the future. This potential advantage of using the average of the forecasts will be
investigated in Section 5.2.
Further, the approach provides the ability to check quality constraints violation. If 𝑞∗

𝑑𝑎𝑜𝑖
(𝑡)

violates the constraint, �̂�𝑑𝑎𝑜𝑖 (𝑡) is set to zero, otherwise equation 4 will be used to compute
estimated benefit �̂�𝑑𝑎𝑜𝑖 (𝑡). In other words, if one or more of the constraints are violated, then
the benefit is set to zero. The constraint violation is based on the type of quality attribute, for
example if it is response time, then it may not exceed a particular value. If it exceeds, the dao
is considered invalid and thus has a benefit of zero.

3.3 Detect Based on Forecast and Learn
At every timestep 𝑡 , the detect module (Figure 1) triggers an alert if there is a significant change for
the worse on the forecast benefit �̂�𝑑𝑎𝑜𝑖 (𝑡). Here, the change is detected with respect to the forecast
exponentially smoothed benefits (R4 in Figure 1) rather than the actual ones [101]. We use the
confidence interval of the maximum forecast exponentially smoothed benefit seen so far and its
corresponding forecast exponential standard deviation; [𝜇𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
− 𝛼𝜎𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
, 𝜇𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
+ 𝛼�̂�𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
]. 𝜇𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
is the

maximum forecast exponentially smoothed benefit seen so far, �̂�𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

is its corresponding standard
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ALGORITHM 1: ForecastAndLearn()
Input: quality attribute 𝑞 for which to forecasting model is being trained, normalized quality value

𝑞′
𝑑𝑎𝑜𝑖

(𝑡) observed at time 𝑡 , number of input attributes 𝜁 , number of further ahead timesteps ℎ,
minimum number of training examples for enabling forecasts 𝜂𝑚𝑖𝑛 , error threshold per quality
attribute 𝜏𝑞

Output: forecast quality 𝑞𝑑𝑎𝑜𝑖 (𝑡)

1 if this is the first call to ForecastAndLearn then
{𝑞𝑢𝑒𝑢𝑒 stores past observations of quality values and 𝜂 keeps track of the number of examples
produced by the algorithm. Their values persist over future calls of ForecastAndLearn. }

2 Initialize𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑞𝑢𝑒𝑢𝑒 to empty.
3 Initialize𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝜂 = 0.
4 Initialize𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑒𝑟𝑟𝑜𝑟 = 0
end

5 Add 𝑞′
𝑑𝑎𝑜𝑖

(𝑡) to𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑞𝑢𝑒𝑢𝑒 .
6 if 𝑆𝑖𝑧𝑒 (𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑞𝑢𝑒𝑢𝑒) == 𝜁 then
7 Create new training example

< 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − ℎ − 𝜁 − 1), 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − ℎ − 𝜁 ), · · · , 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − ℎ − 1), 𝑞′
𝑑𝑎𝑜𝑖

(𝑡 − ℎ), 𝑞′
𝑑𝑎𝑜𝑖

(𝑡) >.
8 𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝜂 = 𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝜂 + 1
9 Delete first element of𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑞𝑢𝑒𝑢𝑒 .

{Evaluate the forecasting model by forecasting the output of the training example }
10 𝑞𝑑𝑎𝑜𝑖 (𝑡) = 𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (ℎ, {𝑞′

𝑑𝑎𝑜𝑖
(𝑡−ℎ−𝜁−1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡−ℎ−𝜁 ), · · · , 𝑞′

𝑑𝑎𝑜𝑖
(𝑡−ℎ−1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡−ℎ)})

11 𝑒 = 𝑞𝑑𝑎𝑜𝑖 (𝑡) − 𝑞′
𝑑𝑎𝑜𝑖

(𝑡)
12 Use 𝑒 to update the root mean squared error𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑒𝑟𝑟𝑜𝑟 (Equation 3).

{Train the forecasting model }
13 𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑇𝑟𝑎𝑖𝑛(< 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 −ℎ−𝜁 −1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 −ℎ−𝜁 ), · · · , 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 −ℎ−1), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 −ℎ), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡) >)

end
{Provide a forecast }

14 if (𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝑒𝑟𝑟𝑜𝑟 ≤ 𝜏𝑞 &𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝜂 ⩾ 𝜂𝑚𝑖𝑛 ) then
15 𝑞𝑑𝑎𝑜𝑖 (𝑡 + ℎ) = 𝑀𝑜𝑑𝑒𝑙 [𝑞] .𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (ℎ, {𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 𝜁 ), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 𝜁 + 1), · · · , 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 2), 𝑞′

𝑑𝑎𝑜𝑖
(𝑡 − 1)})

16 Return 𝑞𝑑𝑎𝑜𝑖 (𝑡 + ℎ)
else

17 Return 𝑛𝑢𝑙𝑙 .
end

deviation. Whenever a new reading arrives at time 𝑡 , those values are updated if 𝜇𝑑𝑎𝑜𝑖 (𝑡) > 𝜇𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

. 𝛼
is a parameter that affects the confidence level [54]. In particular, confidence levels 95% and 99%
correspond to 𝛼 = 1.96 and 2.58, respectively.
Therefore, they are computed as follows:

𝜇𝑑𝑎𝑜𝑖 (𝑡) = 𝜃𝜇𝑑𝑎𝑜𝑖 (𝑡 − 1) + (1 − 𝜃 )�̂�𝑑𝑎𝑜𝑖 (𝑡) (5)

�̂�2
𝑑𝑎𝑜𝑖

(𝑡) = 𝜃�̂�2
𝑑𝑎𝑜𝑖

(𝑡 − 1) + (1 − 𝜃 ) ∗ (�̂�𝑑𝑎𝑜𝑖 (𝑡) − 𝜇𝑑𝑎𝑜𝑖 (𝑡))2 (6)

�̂�𝑑𝑎𝑜𝑖 (𝑡) =
√
�̂�2
𝑑𝑎𝑜𝑖

(𝑡) (7)

The architect also has the flexibility to adjust 𝜃 , 𝛼1 and 𝛼2 (Figure 2) with respect to required
accuracy and stability. Algorithm 2 depicts the steps of change detection with respect to forecast
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values. At each timestep, the approach updates the maximum forecast exponentially smoothed
benefit 𝜇𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
(line 2-3) and its corresponding exponential standard deviation �̂�𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
(line 4). After

that, the approach checks if a change/warning is detected. If the approach detects a significant
change (line 5-6), the maximum forecast exponentially smoothed benefit and its corresponding
standard deviation are reset (line 7). In this context, the select function will then search for an
optimal 𝑑𝑎𝑜 based on the forecast exponentially smoothed benefit (Section 3.4). The approach
also has the ability to just trigger warning to the architect based on the 𝛼 value chosen (line 8-9).
Otherwise, the approach indicates that neither a change nor a warning were detected (line 10).

ALGORITHM 2: DetectBasedOnForecastAndLearn()
Input: confidence intervals (𝛼1, 𝛼2), forecast exponentially smoothed benefit 𝜇𝑑𝑎𝑜𝑖 (𝑡), standard deviation

�̂�𝑑𝑎𝑜𝑖 (𝑡) based on forecast benefit
Output: change/warning/no change is detected
The red parameters denote the differences with respect to the reactive approach

{Initialize the maximum forecast exponentially smoothed benefit and its corresponding standard deviation}
1 𝜇𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
= 𝜇𝑑𝑎𝑜𝑖 (0), �̂�𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
= �̂�𝑑𝑎𝑜𝑖 (0)

{Update the maximum forecast exponentially smoothed benefit and its corresponding forecast exponential
standard deviation}

2 if 𝜇𝑑𝑎𝑜𝑖 (𝑡) > 𝜇𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

then
3 𝜇𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
= 𝜇𝑑𝑎𝑜𝑖 (𝑡)

4 �̂�𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

= �̂�𝑑𝑎𝑜𝑖 (𝑡)
end
{Check if a change is detected}

5 if 𝜇𝑑𝑎𝑜𝑖 (𝑡) − �̂�𝑑𝑎𝑜𝑖 (𝑡) ≤ 𝜇𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

− 𝛼2 ∗ �̂�𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

then
6 a change is confirmed
7 reset 𝜇𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
and �̂�𝑚𝑎𝑥

𝑑𝑎𝑜𝑖
{Check if a warning is triggered}

8 else if 𝜇𝑑𝑎𝑜𝑖 (𝑡) − �̂�𝑑𝑎𝑜𝑖 (𝑡) ≤ 𝜇𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

− 𝛼1 ∗ �̂�𝑚𝑎𝑥
𝑑𝑎𝑜𝑖

then
9 a warning is triggered
else

10 no change/warning is detected

3.4 Select based on Forecast and Learn
If a significant change is detected (based on its forecast exponentially smoothed benefit), then
an optimal 𝑑𝑎𝑜 is selected based on its forecast quality values (R5 in Figure 1). In this context, it
follows the same procedures of [101], but using the forecast quality values (Figure 2) rather than
the observed ones. Algorithm 3 summarizes the steps and their differences with respect to reactive
approach [101].

Step 1: Determining which 𝐷𝐴𝑂 are non-dominated by any other 𝑑𝑎𝑜 [29, 44] (line 2-9). A given
𝑑𝑎𝑜𝑖 dominates 𝑑𝑎𝑜 𝑗 iff:(𝑐𝑑𝑎𝑜𝑖 (𝑡) ≤ 𝑐𝑑𝑎𝑜 𝑗

(𝑡) and 𝜇𝑑𝑎𝑜𝑖 (𝑡) ≥ 𝜇𝑑𝑎𝑜 𝑗
(𝑡)) and (𝑐𝑑𝑎𝑜𝑖 (𝑡) < 𝑐𝑑𝑎𝑜 𝑗

(𝑡) or
𝜇𝑑𝑎𝑜𝑖 (𝑡) > 𝜇𝑑𝑎𝑜 𝑗

(𝑡)). Step 2: Calculating the marginal loss of the Non-Dominated 𝐷𝐴𝑂 over time,
which is used for the purpose of computing the expected marginal loss (Step 3). In particular, we
use a loss function �̂�𝜆 (𝑑𝑎𝑜𝑖 , 𝑡) that aggregates cost and forecast exponentially smoothed benefit
into a single value (line 11), where 𝜆 ∈ [0, 1] is a predefined parameter that controls the relative
importance between cost and exponentially smoothed benefit. The loss describes how (un)desirable
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ALGORITHM 3: SelectBasedOnForecastAndLearn()
Input: change detected in 𝑑𝑎𝑜𝑐𝑢𝑟𝑟 , a predefined parameter 𝜆, number of 𝜆 (|𝜆 |), number of 𝐷𝐴𝑂 (|𝐷𝐴𝑂 |),

forecast exponentially smoothed benefit 𝜇𝑑𝑎𝑜𝑖 (𝑡), cost 𝑐𝑑𝑎𝑜𝑖 (𝑡)
Output: optimal 𝑑𝑎𝑜𝑖
The red parameters denote the differences with respect to the reactive approach

{A change is detected in 𝑑𝑎𝑜𝑐𝑢𝑟𝑟 , then do:}
{Initialization:}

1 𝜆 : {0.1, 0.2, · · · , 0.9}, |𝜆 | = 9
{Determine the Non-Dominated 𝐷𝐴𝑂 :}

2 for i = 1 to |𝐷𝐴𝑂 | do
3 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 = 0
4 for j = 1 to |𝐷𝐴𝑂 | do
5 if (𝑐𝑑𝑎𝑜𝑖 (𝑡) ≤ 𝑐𝑑𝑎𝑜 𝑗

(𝑡)&𝜇𝑑𝑎𝑜𝑖 (𝑡) ≥ 𝜇𝑑𝑎𝑜 𝑗
(𝑡))&(𝑐𝑑𝑎𝑜𝑖 (𝑡) < 𝑐𝑑𝑎𝑜 𝑗

(𝑡) |𝜇𝑑𝑎𝑜𝑖 (𝑡) > 𝜇𝑑𝑎𝑜 𝑗
(𝑡)) then

6 𝑑𝑎𝑜𝑖 dominates 𝑑𝑎𝑜 𝑗
7 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 = 1

end
end

8 if 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 = 0 then
9 Add 𝑑𝑎𝑜𝑖 to list of non-dominant 𝐷𝐴𝑂

end
end
{Calculate marginal loss for the non-dominant 𝐷𝐴𝑂 :}

10 for i = 1 to Length (list of non-dominant |𝐷𝐴𝑂 |) do
11 foreach 𝜆 ∈ {0.1, 0.2, · · · , 0.9} do

�̂�𝜆 (𝑑𝑎𝑜𝑖 , 𝑡) = 𝜆𝑐𝑑𝑎𝑜𝑖 (𝑡) − (1 − 𝜆)𝜇𝑑𝑎𝑜𝑖 (𝑡)
12 if 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 �̂�𝜆 (𝑑𝑎𝑜𝑖′, 𝑡) then
13 𝐿′𝜆 (𝑑𝑎𝑜𝑖 , 𝑡) =𝑚𝑖𝑛 (𝑖≠𝑖𝑖) �̂�𝜆 (𝑑𝑎𝑜𝑖𝑖 , 𝑡) − �̂�𝜆 (𝑑𝑎𝑜𝑖 , 𝑡)

else
14 𝐿′𝜆 (𝑑𝑎𝑜𝑖 , 𝑡) = 0

end
end

end
{Determine the expected marginal loss for the non-dominant 𝐷𝐴𝑂 :}

15 for i=1 to Length (list of non-dominant |𝐷𝐴𝑂 |) do

16 𝑎𝑝𝑝𝑟𝑜𝑥𝑀 [𝐿′𝜆 (𝑑𝑎𝑜𝑖 , 𝑡)] =

∑
𝜆∈{0.1,0.2,··· ,0.9}

𝐿′𝜆 (𝑑𝑎𝑜𝑖 ,𝑡 )

|𝜆 |
end

17 Return optimal 𝑑𝑎𝑜𝑖 = 𝑑𝑎𝑜𝑖 with max(𝑎𝑝𝑝𝑟𝑜𝑥𝑀 [𝐿′𝜆 (𝑑𝑎𝑜𝑖 , 𝑡)])

a certain 𝑑𝑎𝑜 is. After that, we use the loss function to compute the marginal loss 𝐿′
𝜆 (𝑑𝑎𝑜𝑖 , 𝑡),

which represents how much worse the loss would be if 𝑑𝑎𝑜𝑖 was not available and we had to use
the one with the second optimal trade-off, given a certain 𝜆 [29] (line 12-14). Step 3: Determining
the expected marginal loss of 𝐷𝐴𝑂 over time. The 𝑑𝑎𝑜 with the optimal trade-off between cost and
benefit at time 𝑡 is the 𝑑𝑎𝑜 with the maximum expected marginal loss at time 𝑡 . This option can be
suggested to the software architect as the optimal 𝑑𝑎𝑜 to be adopted at time 𝑡 . This 𝑑𝑎𝑜 may or may
not be the same as current option 𝑑𝑎𝑜𝑐𝑢𝑟𝑟 . As in [29], we use an approximation of the expected
marginal loss rather than the true marginal loss, to facilitate the choice of which solution from the
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Pareto front to adopt in practice. In contrast, a single-objective problem would use a single fixed
value for 𝜆. However, we need to compute the marginal loss with a sample of different 𝜆 values. In
our work, we used equally spaced values 𝜆: {0.1, 0.2, · · · , 0.9}, where |𝜆 | = 9 is the number of 𝜆
values used. The expected marginal loss (𝑎𝑝𝑝𝑟𝑜𝑥𝑀 [𝐿′

𝜆 (𝑑𝑎𝑜𝑖 , 𝑡)]) can be approximated by taking
the average of the marginal losses computed using different sampled values for 𝜆 [29] (line 15-16).
The optimal 𝑑𝑎𝑜𝑖 is the one with maximum expected marginal loss (line 17).

Concerning the possibility to use several 𝑑𝑎𝑜 in parallel. In particular, our approach can work in
several contexts:

1. When the architecture options are all simulated 1. Since the real implementation is an
expensive exercise and evaluation is pre-requisite to the implementation.

2. When the current architecture option is implemented and the other architecture options are
simulated in parallel, to reduce deployment costs.

3. When the architecture option is implemented/supported but not always instantiated/active
at run-time, continuous monitoring becomes expensive and instead we opt for monitoring
every T’ timesteps rather than every timestep, inline with our work [101] (also mentioned in
Section 7). Alternatively, the architect may choose a "slice" of the architecture for further
monitoring. This, for example, can take the form of execution traces, including components
and connectors that may require further runtime evaluation.

When using simulation, the inputs of the simulator typically include information about the current
state of the run-time environment, which enables our framework to take into account the environ-
ment where the system is deployed in order to provide an appropriate run-time evaluation. In our
evaluation (Sections 4 and 5), we have simulated all the diversified architecture options and how
they will behave in different environmental conditions. We then forecast their future values. This
is used as an example, to show how our approach can apply Cases 1 and 2. Section 4.5 of [101] also
explains the ways in which the exponentially smoothed benefit and standard deviation of the 𝐷𝐴𝑂
can be obtained, including those not currently in use by the system.

4 IOT CASE STUDY DESIGN
In this section, we discuss the IoT case and its challenges, and how diversity can be embedded in
the architecture.

4.1 IoT Case
We consider the case of architecting for IoT to demonstrate (i) how continuous evaluation, leveraging
proactive approaches (e.g. forecasting analytics), can be realized and conducted for handling IoT
challenges; (ii) what benefits proactive approaches can render to IoT architecture evaluation as
opposed to reactive approaches.

Architecture evaluation for IoT is a particularly complex and interesting candidate for applying
continuous evaluation. Let us focus the discussion on the following challenges ([42, 58, 66, 85]):

• Heterogeneity: These architectures are heterogeneous in nature; they consist of different types
of things, such as static sensors, mobile crowdsensing (e.g. cellular-based, or vehicle-based
sensors), virtual services (e.g. web services), and social sensing (e.g. share data across social
networks like Facebook);

1We also recognise that there is a threat to validity in that the real environment may differ from the simulated data due
to uncertainties at run-time. This threat was considered when we investigated the robustness of our approach to noise
[101], to mimic variations and fluctuations in real settings and to check how well the approach can handle this issue. Our
proposed proactive approach was superior to the existing reactive approach in most cases, demonstrating a good behaviour
on this issue.
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• High dynamism: Due to the presence of mobile things and uncertainty of their resource de-
mand and QoS provision over time (i.e. service level objectives), varying energy consumption
per thing and their varied availability;

• Scale: is a another challenge, where their ubiquitous, light, and mobile nature has led to the
presence of many millions of things.

Our IoT application extends Gupta et al. [60]’s application – an urban traffic monitoring system,
named iTransport. Gupta et al. [60] used a video surveillance application of non-trivial scale to
demonstrate the usefulness of their proposed cloud/fog simulator tool iFogSim. However, in their
case study, the context of run-time architecture evaluation and adaptability under time-varying
environment have not been considered, even though iFogSim is capable of simulating the dynamics
and uncertainty of cloud/fog environments. This has motivated us to extend their case study. In
a nutshell, iFogSim is a cloud/fog simulation environment; it can aid developers to simulate the
impact of their application on qualities of interest. It forms the basis in our work to mimic the
dynamics and uncertainty of cloud/fog environments, and their impact on qualities of interest
in our case study. Further explanation related to our use of iFogSim, which differs from that of
Gupta et al., can be found in Section 4.4. In addition, Gupta et al. [60] assume the presence of one
application architecture (i.e. configuration). We have designed the multiple configurations with
respect to the common architecture decisions of a video surveillance application

iTransport uses smart cameras, which are either fixed or mobile (attached to vehicles and bikes)
to capture the traffic for accident avoidance and traffic management. The application has 6 modules
as seen in Figure 3: camera, motion detector, object detector, object tracker, accident storage, and
emergency control. Smart cameras transmit raw video streams to the motion detector module,
which then forwards the video in which motion was detected to the object detector module. The
object detector module analyzes the objects and detects any abnormal actions (i.e. car accidents). If
it observes an accident, the emergency control searches for a nearby ambulance for notification.
The data is then sent to the accident storage cloud to profile the accidents with respect to areas.

Fig. 3. Data flow diagram of the iTransport application [24].

4.2 Diversified Architecture Options In The Context Of IoT Case
When architecting the iTransport application, the architects must address uncertainties due to
heterogeneity of the things; the dynamicity of the things’ behaviors and the dynamism of their
composition. The architects have employed design diversification strategies [9, 10, 15, 100] to
respond to the challenges and to handle uncertainties: the greater the uncertainty, the more
diversity the architects have applied to attempt to improve performance. Since there are many
ways to diversify, each diversified architecture can be treated as a candidate option, which we
denote by 𝑑𝑎𝑜 [100]. A 𝑑𝑎𝑜 implements a set of diversified decisions to meet some quality goals and
trade-offs. Given a set of architecture decisions 𝐷 , where a decision 𝑑𝑘𝑎 ∈ 𝐷 ; 𝑑𝑘 denotes a particular
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capability, including connectivity, data collection, data management, etc; and 𝑑𝑘𝑎 indicates the
software architecture components and connections that implement this capability. For example,
the architects decided to diversify the data collection capability (𝑑1), where video could be captured
using fixed cameras (𝑑11), mobile cameras (𝑑12), or both (𝑑13). Another diversification decision is
concerned with the connectivity and processing capability (𝑑2), where the things can connect, track,
and process the captured video on the cloud (𝑑21) or both cloud and fog (𝑑22). So 𝑑𝑎𝑜1 comprises
𝑑11 and 𝑑21, whereas 𝑑𝑎𝑜2 consists of 𝑑12 and 𝑑22 and so forth. Table 3 depicts the selected options,
with decisions designed for cloud, fog, mobile, or fixed.

Table 3. Possible Diversified Architecture Options for iTransport application. The diversity in each 𝑑𝑎𝑜 can
refer to using fixed and/or mobile fog devices for data collection capability; using different cloud providers
and heterogeneous fog devices for data processing capability.

Option 𝑑𝑎𝑜𝑖
Decision 𝑑𝑘 Data Collection Capability (𝑑1) Data Processing Capability (𝑑2)

1 Fixed (𝑑11) Cloud (𝑑21)
2 Mobile (𝑑12) Cloud (𝑑21)
3 Fixed and Mobile (𝑑13) Cloud (𝑑21)
4 Fixed (𝑑11) Fog and Cloud (𝑑22)
5 Mobile (𝑑12) Fog and Cloud (𝑑22)
6 Fixed and Mobile (𝑑13) Fog and Cloud (𝑑22)

4.3 Challenges
In iTransport, there are several design trade-offs concerning the critical QoS attributes (e.g., response
time, energy consumption, network usage, etc) and cost, subject to constraints such as the predefined
coverage and availability of the things. In the context of iTransport, we consider deployment cost
(the expenses related to the infrastructure deployment in cloud/fog environment), execution cost
(the computational costs of running the processing tasks on cloud/fog devices), and networking
costs (related to the bandwidth requirements and associated expenses). For instance, data uploading
cost from end devices/sensors and inter-nodal data sharing cost) [80]. Further, the switching costs
in iTransport embrace the migration costs to/from the cloud/fog, thing’s connectivity and other
costs (if any). Nevertheless, the approach is flexible enough to include other costs. The design
trade-offs can inform the diversification design decisions and the deployment of 𝑑𝑎𝑜 . Addressing
the following scenarios require us to consider trade-offs when deciding on 𝑑𝑎𝑜 :

• 𝑑𝑎𝑜1 uses fixed camera sensors to provide more stable and better response time to fulfill
the predefined coverage. However, achieving coverage at the scale of highways using just
fixed cameras may incur higher costs and static coverage. In contrast, the use of mobile
crowdsensing (using smart vehicles) [66], as in 𝑑𝑎𝑜2, could be an alternative solution due to
its low cost. But the mobile crowdsensing in 𝑑𝑎𝑜2 may be unstable in terms of response time
and it can consume much more power at this scale due to the simultaneous transmission,
processing, and remote execution of the images on the cloud. Further, availability in 𝑑𝑎𝑜2 is
more restricted than that of 𝑑𝑎𝑜1.

• When comparing with the case where the cloud is used as the sole computation paradigm
(in 𝑑𝑎𝑜1 to 𝑑𝑎𝑜3), the partial use of fog (in 𝑑𝑎𝑜4 to 𝑑𝑎𝑜6) could provide faster response time
(e.g., for emergency notification and online analytics) and lower network usage, due to the
offloading of computation to nearby fog devices. But it may incur more energy consumption,
given the large number of required fog things and the additional overhead that may be
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required to synchronize and store the processed information on the cloud. In addition, the
fog option needs to fulfill the constraints on the proximity of the thing to the fog and the
availability of the fog.

The design-time evaluation and reactive learning are not enough to handle complexity of 𝐷𝐴𝑂
trade-offs (mentioned in prior scenarios). Because there are some situations, where the design-time
knowledge and reactive learning may not be able to choose the "suitable" options. This is due to the
run-time uncertainties and dynamics caused by various environmental factors, which emergently
affects the benefit of the options. Even though the use of reactive learning is better in some scenarios
as compared with design-time evaluation [101], yet there are other scenarios which require future
knowledge (discussed in Section 5).
So the question here is do proactive approaches using forecasting analytics provide useful infor-

mation for evaluation which reactive approaches may miss? By focusing on economic gains/losses,
without forecasting which architecture decisions have the potential to materialize into future eco-
nomic gains, IoT systems cannot keep up with the rate at which these potentials appear/disappear in
dynamic IoT environments. In particular, by the time the reactive approach suggests an architecture
decision in response to a detected problem (i.e. the current architecture is getting worse), the
problem itself may cease to exist (i.e. the current architecture is improving). Therefore, a reactive
approach can lead to missing opportunities for future economic gains. Similarly, without forecasting
whether architecture decisions will continue to deliver value for a long time or not, unnecessary
costs can materialize into economic losses for the IoT system when a decision is implemented.
The opportunity for future economic gains which should have been enabled by this decision (i.e.
recommended by the reactive approach) can disappear. In that situation, implementing such a
decision is useless and incurs nothing but an economic loss. We aim to illustrate how proactive
approaches using forecasting analytics can handle the prior scenarios, in contrast to design-time
and reactive approaches (Section 5).

4.4 Data Synthesis and Experimental Environment
The data synthesis process is performed using iFogSim, whereas the Massive Online Analysis
framework (MOA) [22] and Matlab are exploited for data analysis.

4.4.1 iFogSim. At design-time, the architect has followed the procedure of Section 4.2 to prelimi-
nary decide on the 𝐷𝐴𝑂 (and their composing 𝐷) for implementing this functionality. To simulate
the qualities of interest of each architecture decision over time, we adopt the iFogSim [60] tool. This
tool is a high-performance open source toolkit for fog computing, edge computing and IoT, which
builds on Cloudsim [32]; it provides the architect with the freedom of hierarchically composing the
fog devices, clouds, and data streams. The iFogSim and CloudSim simulators provide the flexibility
to simulate the dynamics of architectures in an uncertain environment, without implementing any
machine learning algorithms which would aid the architect in determining how the architecture
options will behave in the future. In this context, our approach used iFogSim to gather the QoS
related to architecture options. Nevertheless, our framework can use other simulators, as seen fit
by the evaluator and suitable for the architecture under investigation.

In iFogSim, we have hierarchically composed the application as shown in Figure 3. The candidate
𝐷𝐴𝑂 used in this study are shown in Table 3. In particular, each 𝑑𝑎𝑜 is composed of different
types of data collection (type of sensors) and connectivity (computing locations) as architecture
decisions, meaning that the processing performed by each 𝑑𝑎𝑜 is executed differently. Connectivity
was simulated by either executing the object detector and tracker modules (shown in Figure 3) in the
cloud and/or fog. For data collection, two gateways were used, where each gateway is connected to
an average of 50 smart cameras (Figure 5): fixed and/or mobile, having a total of 100 fog devices.
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Fig. 4. Sample of changing environmental conditions facing 𝑖𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 (i.e. input for one of the 𝐷𝐴𝑂). The
red circles denote some examples of accidental spikes.

The fog devices and cloud are configured based on [59, 60]. Note that iFogSim internally computes
the QoS of each component in a 𝑑𝑎𝑜 and it then outputs the overall QoS of this 𝑑𝑎𝑜 . Therefore, we
do not need to compute the aggregate functions from Table 1 separately – the simulator already
provides the aggregated results for us.

The goal is to continuously optimize the following two conflicting requirements:

• Benefit: It needs to be maximized and is based on three quality attributes of interest:
1. Response Time: 𝑖𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is time-critical application, so it should respond as early as

possible. In 𝑖𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 , the response time (RT) of an application is the application’s end to
end delay (in milliseconds𝑚𝑠) and measured using iFogSim.

2. Network Usage: High network usage would cause network congestion, so it should be as
low as possible. The network usage (NU in mega bytes𝑀𝐵) is also measured using iFogSim.

3. Energy Consumption: IoT applications could, in theory, consume arbitrary amounts of
energy and therefore the energy needs to be carefully controlled. In this context, when
designing IoT architectures, architects have to consider energy consumption as a major
concern [72]. In 𝑖𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 , the energy consumption (EC in mega joules𝑀𝐽 ) is the total
energy consumption by all the devices in the application, which is also determined through
iFogSim.

• Cost: It needs to be minimized. It is a composite of operating cost, and switching cost
that is added once we switch. In the context of iTransport, the average cost encompasses a
thing’s connectivity (includes switching), execution in the cloud and/or fog, and other costs
mentioned in Section 4. The mean overall costs have been collected from iFogSim.

The iFogSim tool takes as input: the network latency, power load, smart camera’s latency (i.e.
fog devices), number of cameras, number of gateways, tuple configurations, cloud and fog devices
configurations. The sources of uncertainty in 𝑖𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 come from the varying network delays
due to network congestion. There are other factors, which as well impact the environmental
conditions, such as uncertainty in QoS of cloud service providers (e.g. Amazon, Google Cloud, etc)
and software-defined capabilities of fog service providers in terms of their processing power, as well
as the hyperconnectivity of the nodes. In this context, we have generated data corresponding to each
diversified architecture option including typical as well as worst case scenarios. For instance, we
varied the power load as 80-110 watt with a fluctuation of 5-10%, following the typical power load
values from [59]. The latency was varied in the range of low to high, i.e. 1-6ms with a fluctuation
of 20-30% on the smart camera. We also varied the network latency with an average of 100𝑚𝑠 and
fluctuation of 20-25%, as exemplified in Figure 4. The choice of this fluctuation was based on [37],
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as it normally provides acceptable throughput across various networking protocols, but also causes
accidental spikes that represent worst case scenarios.

We also simulated changes by using diverse smart cameras’ configuration [59, 60], as depicted in
Table 4. Based on that, iFogSim outputs the energy consumption of devices, application’s response
time, and network usage. This setting was intentionally designed as a worst case that goes beyond a
stable setting. Further, the iFogSim takes the pricing configurations for IoT devices (i.e. fog devices)
and cloud to generate the mean costs of each 𝑑𝑎𝑜 (i.e. application architecture). All the pricing
configurations are used with respect to AWS IoT services [11]. We have run the simulations for
each 𝑑𝑎𝑜 for 120 timesteps.

Table 4. Simulation Parameters for iTransport. Note that StrictEC case: low energy consumption is favoured
over response time and network usage; StrictRTNU case: low response time and low network usage are favoured
over energy consumption; StrictALL case: the user constrained the application to favor the three QoS in a strictly
manner.

Parameter Value
Device Configurations – (iFogSim Input) CPU (GHz), RAM (GB), Cost ($/day)
Cloud Datacenter 3, 40, 0.1-0.3
Wifi and ISP Gateways 3, 4,0.0053-0.0056
Smart Camera [1.6, 1.867, and 2.113], 4, 0.0053-0.0056
Number of Smart Cameras 80-120 cameras
Network Configurations (From-To) – (iFogSim Input) Avg Latency
ISP Gateway-Cloud Datacenter 80-120 ms
Wifi Gateway-ISP Gateway 1-6 ms
Smart Camera-Wifi Gateway 1-6 ms
Tuple Configurations (Msg. size) – (iFogSim Input): CPU (MIPS), Network (Bytes)
Raw Video Stream: 1000, 20000
Motion Video Stream: 2000, 2000
Object Location: 500, 2000
Warning: 1000, 100
Tracking parameters 28,100
Average QoS – (iFogSim Output):
Applications Response Time (RT) 300-4000 ms
Energy Consumption of devices (EC) 80-120MJ
Network Usage (NU) 500 KBytes- 2 MBytes
Evaluation Settings:
𝜃 0.9
𝛼1, 𝛼2 {95, 99%}
Detection timestep 5
Normal(Constraint[RT, EC, NU]; Weights[𝑤𝑅𝑇 ,𝑤𝐸𝐶 ,𝑤𝑁𝑈 ]) [400ms, 130MJ, 1Mbps]; [0.4,0.3,0.3]
StrictEC(Constraint[RT, EC, NU]; Weights[𝑤𝑅𝑇 ,𝑤𝐸𝐶 ,𝑤𝑁𝑈 ]) [4000ms, 110MJ, 2Mbps]; [0.2,0.6,0.2]
StrictRTNU(Constraint[RT, EC, NU]; Weights[𝑤𝑅𝑇 ,𝑤𝐸𝐶 ,𝑤𝑁𝑈 ]) [350ms, 130MJ, 500Kbps]; [0.4,0.2,0.4]
StrictALL(Constraint[RT, EC, NU]; Weights[𝑤𝑅𝑇 ,𝑤𝐸𝐶 ,𝑤𝑁𝑈 ]) [380ms,120MJ, 800Kbps]; [0.4,0.3,0.3]
Normalized Operating Cost {0.3 − 0.5}
Normalized Switching Cost {0.2 − 0.4}
Error Threshold 𝜏𝑞 [0.15(RT),0.25 (EC),0.20 (NU)]
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4.4.2 Implementation and Experimental Environment. To test and evaluate the forecast models,
we have used MOA [22]; an open source framework for data stream mining that comprises a
group of online methods. This framework receives the input attributes (i.e. list of data quality
observations), and then it outputs the forecasts with respect to the selected forecasting models. We
also used Matlab to implement the proposed approach. All experiments were executed on Intel
Core i7 processor machine with 16GB of RAM. Further details on the experimental design used for
each part of the experiments are provided in Sections 5.1 and 5.2.

Fig. 5. The Initial Experiment Configuration for iFogsim.

5 EXPERIMENTAL EVALUATION
We performed experiments with the aim of evaluating the proposed proactive approach and
its worthiness through architecting the urban traffic monitoring system iTransport described in
Section 4. The experiments are divided into two parts. The first part (Section 5.1) focuses on
evaluating the forecasting ability of the forecast models used by the proposed proactive approach
and understanding the conditions under which they do or do not perform well. Together with the
proposed approach as described in Section 3.2, it provides the answer to RQ1: How proactivity in
continuous evaluation, when supported by simulated instances of the system-to-be, can be realized
and conducted? For instance, can continuous time series forecasting analytics, leveraging simulated
instance of the system-to-be, enable us to predict the behaviour of software architectures over time? If
so, how well? (outlined in Section 1). The second part (Section 5.2) investigates whether and when
it is worth adopting the proposed proactive approach for architecture evaluation. Together with
the proposed approach as described in Sections 3.3 and 3.4, it provides the answer to RQ2: How can
proactive approaches complement reactive ones to provide a well-rounded and more effective continuous
architecture evaluation, when supported by simulated instance of the architecture? What benefits can
they bring to continuous software architecture evaluation and decision-making at run-time? (outlined
in Section 1). Section 4.4 explained the experimental setup.

5.1 Forecasting Ability of the Proposed Proactive Approach
In this section, we aim to provide answers to RQ1. This question is further divided into the sub-
questions below. First, we show how to choose the suitable experimental parameters for enhancing
the evaluation of architecture decisions in our experiment followed by some recommendations for
the architect on how to apply this in practice.

RQ1.1: How to determine the number of input attributes needed to provide acceptable forecast?
Motivation:We need to understand what are good values for the number of input attributes 𝜁 ,
i.e., what 𝜁 values yield the smallest forecasting errors.
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Experimental Design: We use the kNN learner against different numbers of input attributes: 2, 6,
and 14. These choices aimed to show how low, mid, and high values could affect the forecasting
error. Forecasting error is measured based on the mean absolute error (𝑀𝐴𝐸 =

∑ |𝑞𝑑𝑎𝑜𝑖 (𝑡 )−𝑞
′
𝑑𝑎𝑜𝑖

(𝑡 ) |
𝜂

)

and root mean square error (𝑅𝑀𝑆𝐸 =

√∑ (𝑞𝑑𝑎𝑜𝑖 (𝑡 )−𝑞
′
𝑑𝑎𝑜𝑖

(𝑡 ))2

𝜂
), where 𝜂 is the number of training

examples, 𝑞′
𝑑𝑎𝑜𝑖

(𝑡) is the actual normalized quality for a 𝑑𝑎𝑜 as seen in Section 3.1, and 𝑞𝑑𝑎𝑜𝑖 (𝑡) is
the quality attribute forecast as seen in Section 3.2.

The simulations are performed for 120 timesteps. Therefore, if 𝜁 = 2, then 𝜂 = 118, if 𝜁 = 6, then
𝜂 = 114 and if 𝜁 = 14, then 𝜂 = 106. The comparison of the different numbers of input attributes
will be supported by non-parametric Friedman tests [45]. This test is a rank-based test widely
used for comparisons across multiple groups. In our case, each group is a given number of input
attributes for a given quality attribute, and each observation within a group corresponds to the
forecasting error obtained for each of the six 𝐷𝐴𝑂 . The null hypothesis is that all groups have
similar forecasting error. The alternative hypothesis is that at least one of the groups has different
forecasting error. The same procedure was repeated for Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) as forecasting error metrics, and for each quality attribute. The level of
significance of the test was set to 0.05.
Table 6 reports the forecasting errors for the group of input attributes, whereas Table 5 shows

their average ranking and 𝑝-value. If the null hypothesis is rejected, we will perform the post-hoc
tests, Bonferroni-Dunn [45], between each group and the top ranked one to determine which
groups are significantly different from the best ranked one.

Table 5. Average ranking and 𝑝-value for determining the statistical difference between the use of 2, 6, and
14 input attributes. Note that MAE denotes Mean Absolute Error and RMSE denotes Root Mean Square Error.

# of
Input Average Ranking of input attributes

Attributes Response Time Energy Consumption Network Usage
MAE RMSE MAE RMSE MAE RMSE

2 1.17 1.50 1.17 1.50 1.50 1.67
6 1.17 1.50 1.00 1.17 1.50 1.67
14 1.17 1.00 1.67 1.67 1.17 1.33

p-value 1 0.3679 0.2466 0.2466 0.3679 0.8187

The input attribute with minimum (not necessarily significantly better) MAE and the minimum RMSE
(not necessarily significantly better) are highlighted in light gray.

Analysis: Based on Table 6, the 𝑝-value of MAE is 1 (response time), 0.2466 (energy consumption),
and 0.3679 (network usage). So the null hypothesis of MAE is not rejected, for all quality attributes.
This implies that, for all the quality attributes, there is no significant statistical difference between
the number of input attributes. Same applies for RMSE with 𝑝-value of: 0.3679 (response time),
0.2466 (energy consumption), and 0.8187 (network usage).
To decide the number of input attributes to be used in the remaining of the experiments, we

have exploited their Friedman rankings. Based on Table 5, the rankings of varying input attributes
are very similar. However, 𝜁 = 6 provided lower error for energy consumption quality than the
rest. Whereas, 𝜁 = 14 produced more favorable outcome for response time than the others, but it
requires 14 timesteps before the initial forecasts can start being made. Therefore, we decided to
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adopt 𝜁 = 6 in the remaining of the experiments. We recommend a similar procedure to be followed
to decide what 𝜁 to adopt in practice.
Overall Observations: The forecasting models seem to be quite robust to different values of 𝜁 , given
that the rankings were all very similar. So, architects may not need to fine tune it so much.

RQ1.2:How to determine the number of training examples required for the forecasting error to become
acceptable?
Motivation: In this experiment, we aim to determine the minimum number of training examples
𝜂𝑚𝑖𝑛 (i.e. forecast quality values) after which the method could use the forecasts 𝑞𝑑𝑎𝑜𝑖 (𝑡) made for
each quality attribute to compute the forecasting benefit for selection of a 𝑑𝑎𝑜 . This reveals how
many timesteps are typically required for the forecasts to be considered reliable and their error
estimates to stabilize. Before that, the small number of examples could lead to poor forecasts and
unreliable error estimates. In this context, this experiment will show to the architect how to choose
the suitable number of training examples after which forecasts can start being used.
Experimental Design: In this experiment, the Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) metric will be used to measure the error between the actual quality attribute values
and their forecasts for various ℎ values, where ℎ ∈ {1, 5, 8, 15}. We will plot the average MAE
(Figure 6a) and average RMSE (Figure 6b) over time for kNN learner for t+1. Whereas other plots
related to 𝑡 + ℎ are shown in Appendix A for reference. The results for 𝑑𝑎𝑜3 and 𝑑𝑎𝑜6 are reported
here, whereas the other 𝐷𝐴𝑂 showed similar results.
Analysis: As depicted in Figure 6a and 6b, the forecasting error sharply reduces over the beginning
of the learning period, reaching a more stable value after 13-15 training examples, for all 𝐷𝐴𝑂 for
𝑡 + 1. Same applies for other 𝑡 + ℎ, where ℎ ∈ {5, 8, 15}. Therefore, 𝜂𝑚𝑖𝑛 does not need to be a large
value. In our remaining experiments, we will adopt 𝜂𝑚𝑖𝑛 = 15.

Despite the sharp decrease in the error during the initial stage of the learning, how low the
error can get depends on the 𝑑𝑎𝑜 and quality attribute being forecast. In practice, once the error
estimates are deemed more reliable (i.e., once 𝜂𝑚𝑖𝑛 is reached), the parameter 𝜏𝑞 can be used to
prevent the adoption of forecasting models whose forecasting error is deemed high.
Overall Observations: The error sharply reduces over the initial learning period. Therefore, 𝜂𝑚𝑖𝑛

does not need to be a large value. In these experiments, 𝜂𝑚𝑖𝑛 = 15 was a reasonable value.

(a) Mean Absolute Error (MAE) (b) Root Mean Square Error (RMSE)

Fig. 6.
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RQ1.3: Is it necessary to adopt learning algorithms for non-stationary environments?
Motivation: This experiment aims to show which type of learning algorithms (from the ones
introduced in Section 2.2) could be adopted for non-stationary environments, such as IoT. The
architect can benefit from this experiment to select the most suitable learner for each quality
attribute.
Experimental Design: In this experiment, we will evaluate the performance of the sole use of
single learners for stationary (kNN, Perceptron, and SGD Multiclass) and non-stationary environ-
ments (FIMTDD, and FTM). We will also analyze the ensemble learner (AddExp) for non-stationary
environments by adopting each of the prior single learners as experts to AddExp. Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) are utilized as error metrics to evaluate the
learners’ performance. Six attributes (i.e. 𝜁 ) are used as input for the forecasting method based
on Experiment RQ1.1. We have also investigated the case of parameter tuning for each learner.
However, these set of trials did not lead to any significant improvement for the forecast error.
Therefore, we adopted the default values for AddExp and single learners except for FIMTDD. The
final parameters used in this experiment are depicted in Table 12.
Analysis: Based on the experiment, the kNN, FIMTDD, and FTM (used with/without AddExp)
provided the minimum errors for all the 𝐷𝐴𝑂 . The Friedman test was conducted to check whether
there is a significant statistical difference between groups. A MAE 𝑝-value of 5.95 × 10−7 (response
time), 9.00 × 10−8, (energy consumption) and 2.37 × 10−8 (network usage); a RMSE 𝑝-value of
1.60 × 10−7 (response time), 2.81 × 10−7, (energy consumption) and 1.43 × 10−7 (network usage)
indicated: the null hypothesis is rejected (i.e., the learners are significantly different in terms of MAE
and RMSE).
The kNN learner was the one that obtained the top Friedman rankings. By employing the

Bonferroni-Dunn test [45] between each learner and kNN, we found that in most of the quality
attributes for both RMSE and MAE, there is a significant difference between kNN (top ranked)
and two learners (SGD Multiclass and AddExp with SGD Multiclass). For RMSE, there was also a
significant difference between kNN and two learners (Perceptron and AddExp with Perceptron).
To this regard, kNN provided better forecasting error than the following learners: SGD Multiclass,
AddExp with SGD Multiclass, Perceptron and AddExp with Perceptron.

Interestingly, kNN is an algorithm for stationary environments, whereas the algorithms for
non-stationary environments did not perform best. This suggests that, in this domain, even though
the input attributes themselves suffer changes over time, such changes do not affect the relationship
between input attributes and the output value being forecast. Therefore, machine learning algo-
rithms able to cope with changes in the relationship between input attributes and the output value
were not necessary. When such algorithms are not necessary, they can be detrimental, because they
can confuse noise with changes in the relationship between input attributes and output. It is worth
noting that 𝑑𝑎𝑜1, 𝑑𝑎𝑜2, and 𝑑𝑎𝑜3 had less error than other 𝐷𝐴𝑂 . This is due to the use of cloud
rather than fog-cloud, which resulted in lower fluctuation in QoS than fog-based ones. This aided
the experts to forecast quality values close to the actual ones. However, the energy consumption
for 𝑑𝑎𝑜5 and 𝑑𝑎𝑜6 was highly fluctuating, which affected the performance of forecast models.
Overall Observations: Even though IoT is a non-stationary environment that will cause the quality
attributes to significantly vary over time, our experiments indicate that the relationship between
input attributes and output does not vary, not requiring forecasting algorithms for non-stationary
environments.

RQ1.4: How far ahead can we predict the future benefit based on the quality attribute forecasts?
Motivation: This experiment could help the architect in improving the forecasts by tuning ℎ

parameter and showing to what extent the forecasts could be beneficial.
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Experimental Design: In this experiment, the forecasting method is evaluated with respect to
anticipations made for timesteps further ahead, such as t + 1, t + 5, t + 8, and t + 15. The Mean
Square Error (MAE) and Root Mean Square Error (RMSE) metric are also exploited to measure
the difference between the forecast and actual value, and how the latter metric varies over time.
In this context, a bar plot is used to compare between four categories of forecast (Figure 7a and
7b). Further, the Friedman test is also conducted to investigate the statistical significance of the
differences between different choices of ℎ values.
Analysis: As depicted in Figure 7a and 7b, the MAE and RMSE are slightly increasing when ℎ

increases. For instance, for the response time quality, MAE is almost 0.035 (t+1), 0.035 (t+5), 0.036
(t+8), and 0.038 (t+15). The Friedman test confirms that there is no statistical difference between
different ℎ values (𝑝-value = 0.0602). This indicates that the forecasting model is actually able to
provide competitive forecasts for timesteps further ahead in the future.
Overall Observations: The errors obtained by the forecasting models varied depending on the quality
attribute being forecast and the 𝑑𝑎𝑜 being monitored. The MAE was smaller than 0.1 in several cases.
Since most of the quality attributes when normalised, ranged from approximately 0.2 to 0.9. Therefore,
a MAE of 0.1 is considerably low, indicating that forecasts are possible and thus could potentially be
used to enable proactivity.

(a) Mean Absolute Error (MAE) (b) Root Mean Square Error (RMSE)

Fig. 7.

5.2 Usability and Efficiency of the Proactive Approach
In this section, we aim to show how the forecasting method could be applied in iTransport and
evaluate its performance against other approaches. This series of experiments aims to provide
answers to RQ2, which is further elaborated through several sub-questions explained next.

RQ2.1:What is the performance of the proactive approach in comparison to the reactive approach
when using short-term forecasts (i.e., ℎ = 1)?
Motivation: This experiment examines the proactive approach in comparison to the reactive
approach in the scenario where the proactive approach is the closest to the reactive one, i.e., when
the forecast is a very short-term forecast (ℎ = 1). It reveals to what extent forecasts, even if short-
term, can be beneficial to run-time architecture evaluation. In particular, it shows whether the 𝑑𝑎𝑜
suggestions by the proactive approach (even if short-term forecasts) in comparison to the reactive
approach could lead to improvement in mean exponentially smoothed benefit, mean cost, and
application’s stability.
Experimental Design: For the Proactive Informed-selection approach (Section 3), the change
detection and the selection of optimal 𝑑𝑎𝑜 to switch to is according to the forecast values. The
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Reactive Informed-Selection approach (Section 2.1) evaluates, detects the change, and selects the
optimal 𝑑𝑎𝑜 based on the actual quality values.
We examine two scenarios for evaluation: (Best Case) The design-time evaluation approach

suggests the systems to start operation using the 𝑑𝑎𝑜 that are believed to provide the optimal
cost-benefit trade-offs at run-time (i.e. 𝑑𝑎𝑜6); (Worst Case) The design-time evaluation approach
suggests the systems to start operation using the 𝑑𝑎𝑜 that turns out to provide the worst balanced
cost-benefit trade-offs at run-time (i.e. 𝑑𝑎𝑜2). This was for all the cases, except for StrictEC case (low
energy consumption is favoured over response time and network usage), where the design-time
knowledge has recommended 𝑑𝑎𝑜3 which turned out to be the best, whereas 𝑑𝑎𝑜2 turned out to
be the worst. We have developed these scenarios to demonstrate how the reactive and proactive
approaches can deal with extreme scenarios. In particular, we assume that the stakeholders have a
very good knowledge about the 𝑑𝑎𝑜 and its dynamicity for best case and vice versa. In addition,
we have generated the design-time evaluation based on the gathered run-time information. For
instance, we found that 𝑑𝑎𝑜6 almost provides the best QoS over time in most of the cases and so
forth.
For this experiment, we have used the following parameters based on experiments in Section

5.1. More specifically, the number of input parameters 𝜁 is 6 (Experiment RQ1.1), the minimum
number of training examples 𝜂𝑚𝑖𝑛 is 15 (Experiment RQ1.2), and the adopted learning algorithm is
kNN (Experiment RQ1.3). The choice of the prior parameters is based on the minimum acceptable
forecasting error. We have also set the error threshold 𝜏𝑞 to [0.15 (RT),0.25 (EC),0.20 (NU)] based
on the average forecasting error for t+1 (Experiment RQ1.4). For this experiment, we only tested
the two approaches for number of further ahead timesteps ℎ = 1, whereas other values for ℎ will
be evaluated in the next experiment.

Regarding the IoT context, the use of fog computing and cloud computing inmobile crowd sensing
applications is highly affected by the QoS requirements. Consider a scenario where the stakeholders
require the iTransport application to quickly track the accident in city center, especially in rush
hours. In this context, low response time and network usage is higher concern rather than energy
consumption. Therefore, the ranking score (i.e. weights) for response time and network usage
qualities are higher than energy consumption. Also the use of fog-cloud computing is advisable
over cloud computing. So object detector and tracker modules will be executed in the fog. We are
uncertain about the network latency (due to dynamic traffic and variable load) and mobility of
devices (nodes join/leave the network). This will cause instability, which may require a switch to
another architecture option.
We constructed four different scenarios for evaluation: normal and strict (3 cases) constraints,

which are introduced in Table 4. For instance, we consider that the architect has constrained the
application to handle the request in less than 400 ms and network usage does not exceed 1Mbps;
whereas, the energy consumption should not exceed 130 MJ (normal case) and so forth. These cases
are also used in the next experiment. Historical performance and experts’ judgment can inform the
adjustment of the prior constraints [1, 60]. The architect can adjust the quality weights to reflect
priorities from stakeholders. For example, for the normal case, we assume a𝑤𝑅𝑇 of 0.4 for response
time, 𝑤𝐸𝐶 of 0.3 for energy consumption, and 𝑤𝑁𝑈 for network usage of 0.3. We have used the
typical experiment settings for the method presented in Table 4.
In order to check how good the proactive approach is compared to the reactive approach, we

compare their exponentially smoothed benefit, cost, and number of 𝐷𝐴𝑂 switches. An approach
with higher exponentially smoothed benefit and lower cost is a better approach. An approach with
less 𝐷𝐴𝑂 switches is more stable. Stability is desirable, so long as it does not hurt the exponentially
smoothed benefit and cost.
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Table 7. The number of switches, mean exponentially smoothed benefit and mean cost for Reactive and
Procative informed-selection approach for short-term forecasts (i.e. 𝑡 + 1). The best cases are highlighted
in gray. Note that StrictEC case: low energy consumption is favoured over response time and network usage;
StrictRTNU case: low response time and low network usage are favoured over energy consumption; StrictALL case:
the user constrained the application to favor the three QoS in a strictly manner.

Reactive Approach Proactive Approach
Cases # of Mean Exponential Mean # of Mean Exponential Mean

Switches Smoothed benefit Cost Switches Smoothed benefit Cost

Normal Best 4 0.7871 0.5184 2 0.7876 0.5140
Worst 5 0.7475 0.5218 3 0.7481 0.5174

StrictEC Best 2 0.4367 0.5084 2 0.4367 0.5084
Worst 0 0.3801 0.5585 1 0.3511 0.5265

StrictRTNU Best 2 0.4862 0.5084 2 0.4862 0.5082
Worst 3 0.4502 0.5133 3 0.4502 0.5133

StrictALL Best 3 0.6274 0.5036 4 0.7173 0.5212
Worst 4 0.5879 0.5070 5 0.6778 0.5246

Analysis: Table 7 summarizes the mean exponentially smoothed benefit, mean cost and number of
switches for all the scenarios. In this experiment, the forecast is performed for the next timestep (i.e.
𝑡 + 1). Our proactive approach showed promising results for some of the cases, as follows (Table 7):

• For the Normal scenario, the average exponentially smoothed benefit and cost by the proactive
approach is similar/slightly better than the reactive approach, but with less switches (e.g. for
best case two switches instead of four switches), which enhances the iTransport application’s
stability.

• In the StrictEC and StrictRTNU cases, the reactive and proactive approaches provided the
same outcome. This may be due to the following: (i) The energy consumption constraint is
too strict in StrictEC case, which was violated most of the times and hence the forecasts did
not provide extra benefits; (ii) For StrictRTNU case, knowledge for further ahead timesteps is
necessary to provide better results.

• For the StrictALL case, it provides high benefit and high cost, with a slight increase in number
of switches, as compared with reactive approach (e.g. for best case provided four switches
instead of three). This may be due to the fact that the approach has slightly favored the
benefit over the cost.

To this regard, using the proactive approach is recommended over the reactive approach, as it
provides better/similar outcome (i.e. based on the context).
Overall Observations: The proactive approach provided similar or better results than the reactive
one. When it was better, it either improved the system stability while maintaining similar exponentially
smoothed benefit and cost, or considerably improved the exponentially smoothed benefit through a
higher number of switches.

RQ2.2: What is the performance of the proactive approach against state-of-the-art architecture
evaluation approaches?
Motivation: The previous section only compared the proactive approach against the reactive one,
and when using ℎ = 1. RQ1.4 also showed that the error of forecasts using 𝑡 + 15 was similar to
that obtained using 𝑡 + 1. However, this does not mean that the proactive approach itself would
benefit more from using 𝑡 + 15. RQ2.2 is an extension to these experiments, where we evaluate



39:30 D. Sobhy et al.

how the proactive approach works under varying forecast timesteps (𝑡 + 1, 𝑡 + 5, 𝑡 + 8, and 𝑡 + 15),
as compared with state-of-the-art architecture evaluation techniques. We also aim to evaluate
how averaging the forecast values for 𝑡 + ℎ, where ℎ ∈ 1, 5, 8, 15 will affect the selection of 𝑑𝑎𝑜 .
This experiment can also illustrate how to choose a suitable ℎ for use with the proposed approach.
Architects willing to use the approach could investigate it with different values of ℎ during an
initial period of time, and then decide which ℎ value to carry on using, based on experiments and
analyses similar to those performed in this section.
Experimental Design: In this experiment, we compare the proactive system against the reactive
approach and the following baseline architecture evaluation systems:
(1) Static-Selection System: It is a typical type of system used in practice [100, 104], where the
expert implements a single 𝑑𝑎𝑜 based on its assessed value at design-time. Further illustration of
how this system works is available in Appendix B.
(2) Predefined-Selection System: This is inspired by [57, 81], where the architect will choose
the 𝑑𝑎𝑜 that is likely to perform the best for different possible contexts. This selection is typically
based on experience, backed up by back-of-the-envelope calculations for the cost, benefits, and
technical potential. However, the selection may fail to predict potential fluctuations in value, quality
potentials, and costs. Our case used 𝑑𝑎𝑜6 during week days (because of peak hours) and 𝑑𝑎𝑜3 during
weekends (because of less demand).
(3) Random-Selection System: Our design for the baseline system follows the argument of
[85, 108] but for the context of services. When a significant change is detected, it selects a 𝑑𝑎𝑜
randomly independent of its QoS over time. This is because the 𝐷𝐴𝑂 are deemed to be functionally
equivalent but deployed in different environments and geographical location (i.e., distributed
Fogs/clouds). All the results related to the Random-selection approach are based on the average of
30 runs (the choice of 30 runs is recommended by [8]).
(4) Reactive Informed-Selection system: It evaluates, detects the change, and selects the optimal
𝑑𝑎𝑜 based on actual rather than the forecast quality values. This approach is introduced in Section
2.1.

In this experiment, we aim to demonstrate when the proactive approach will/not work well and
how does the number of further ahead ℎ forecasts affect the selection. Same applies to the average
forecasts, where we will compute the mean of forecasts along with their mean error. We will then
evaluate the impact of average forecasts on the decision-making.
We have constructed two cases: best and worst cases, similar to RQ2.1. For all cases, we have

experimented using the error threshold shown in Table 4. We have summarized the results of four
cases in Table 9 and 10. We have also conducted Friedman test [45] to check whether there is a
significant statistical difference between all the approaches. We have implemented Friedman tests
by including the exponentially smoothed benefit for all the cases (i.e. Normal, StrictEC, etc, as well
as best and worst cases). If there is a significant statistical difference between groups (i.e. p-value
< 0.05), we will run Bonferroni-Dunn test [45] between each approach and the top-ranked approach.
In addition, to provide a detailed understanding of the behaviour of the proposed approach, we
use representative examples for the evaluation as follows: Figure 8 to illustrate the differences
between the five approaches for StrictRTNU case for best scenario. Figures showing other cases
were omitted. The behaviour of the proposed approach in those cases can be explained in a similar
way to the cases illustrated in Figure 9.
Analysis – Overall Results Across Cases:

We first report the results of the Friedman test (Table 8). We have found that there is a significant
statistical difference between the approaches in terms of exponentially smoothed benefit (i.e. p-
value = 1.49 × 10−8 < 0.05). The proactive for 𝑡 + 5 was the one that obtained the top Friedman
rankings. By employing the Bonferroni-Dunn test [45] between each approach and proactive for
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Table 8. The average rank of approaches and statistical difference between them measured using 𝑝-value
with respect to the exponentially smoothed benefit. The top ranked approach is highlighted in light gray.

Approach Average Rank
with respect to exponentially smoothed benefit

Static-Selection 2.250
Predefined-Selection 1.750
Random-Selection 2.000
Reactive Informed-Selection 3.875
Proactive Informed-Selection for 𝑡 + 1 4.375
Proactive Informed-Selection for 𝑡 + 5 5.875
Proactive Informed-Selection for 𝑡 + 8 5.000
Proactive Informed-Selection for 𝑡 + 15 5.250
Proactive Informed-Selection for average forecasts 5.125
p-value 1.49 × 10−81.49 × 10−81.49 × 10−8

Table 9. The number of switches, mean exponentially smoothed benefit and mean cost for Static-, Predefined-,
and Random-Selection approaches. Note that StrictEC case: low energy consumption is favoured over response
time and network usage; StrictRTNU case: low response time and low network usage are favoured over energy
consumption; StrictALL case: the user constrained the application to favor the three QoS in a strictly manner.
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Static-Selection Predefined-Selection Random-Selection

Normal Best 0 0.7057 0.5131 8 0.5268 0.5439 7 0.5966 0.5222
Worst 0 0 0.5585 8 0.5268 0.5439 7 0.5491 0.5231

StrictEC Best 0 0.4055 0.5131 8 0.3098 0.5439 4 0.3434 0.5111
Worst 0 0 0.5841 8 0.3094 0.5458 4 0.2914 0.5120

StrictRTNU Best 0 0.4907 0.5841 8 0.4161 0.5439 1 0.4291 0.5510
Worst 0 0.3801 0.5585 8 0.4161 0.5439 0 0.3801 0.5585

StrictALL Best 0 0.6924 0.5148 8 0.5168 0.5439 7 0.5447 0.5240
Worst 0 0 0.5585 8 0.5168 0.5439 7 0.4924 0.5296

𝑡 + 5, we found that there is a significant difference between proactive for 𝑡 + 5 (top ranked) and
three approaches (static-selection, predefined-selection, and random-selection). However, there is
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Table 10. The number of switches, mean exponentially smoothed benefit and mean cost for Reactive and
Proactive informed-selection approach for 𝑡 +ℎ. The best cases are highlighted ingray. Note that StrictEC case:
low energy consumption is favoured over response time and network usage; StrictRTNU case: low response time
and low network usage are favoured over energy consumption; StrictALL case: the user constrained the application
to favor the three QoS in a strictly manner.
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Reactive Proactive
t+1 t+5 t+8 t+15 Average Forecasts

Normal Best 4 0.7871 0.5184 2 0.7876 0.5140 3 0.7885 0.5170 3 0.7885 0.5170 3 0.7885 0.5170 3 0.7885 0.5178
Worst 5 0.7475 0.5218 3 0.7481 0.5174 4 0.7490 0.5212 4 0.7490 0.5212 4 0.7490 0.5212 4 0.7490 0.5212

StrictEC Best 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087
Worst 0 0.3801 0.5585 1 0.3511 0.5265 2 0.4015 0.5652 1 0.3531 0.5251 3 0.3925 0.5679 0 0.3801 0.5585

StrictRTNU Best 2 0.4862 0.5084 2 0.4862 0.5082 1 0.6762 0.5279 1 0.6762 0.5279 1 0.6762 0.5279 1 0.6762 0.5279
Worst 3 0.4495 0.5119 3 0.4495 0.5119 2 0.6395 0.5316 2 0.6395 0.5316 2 0.6395 0.5316 2 0.6395 0.5316

StrictALL Best 3 0.6274 0.5036 4 0.7173 0.5212 3 0.7192 0.5166 4 0.7163 0.5218 4 0.7163 0.5218 2 0.7086 0.5195
Worst 4 0.5879 0.5070 5 0.6778 0.5246 4 0.6796 0.5200 5 0.6767 0.5252 5 0.6767 0.5252 3 0.6691 0.5229

no significant difference between the proactive for 𝑡 + 5 (top ranked) and reactive, proactive for
𝑡 + 1, 𝑡 + 8, 𝑡 + 15 and average forecasts.

When conducting statistical tests across cases, a lack of significant difference between two
approaches can happen due to three possible reasons:

1. The two approaches achieved similar results for all cases.
2. One approach performed better for some of the cases, and the other approach performed

better for the remaining cases, leading to no significant difference across cases.
3. The two approaches performed similar in several cases, and one approach performed better

for the remaining cases. As a result, the test is unable to conclude that the latter approach
performed in general better than the former approach across cases.

When analyzing Table 10, we can see that the reason for the lack of significant difference between
proactive for 𝑡 +5 and reactive is reason #3. For instance, the reactive and proactive for 𝑡 +5 produced
similar exponentially smoothed benefit for normal and StrictEC cases. On the contrary, the proactive
for 𝑡 + 5 obtained considerable improvements in mean exponentially smoothed benefit than the
reactive approach in Cases 2 and 3.
It is thus clear that the proactive approach with 𝑡 + 5 obtains in general better exponentially

smoothed benefit than the static-selection, predefined-selection, and random-selection approaches,
and similar or better exponentially smoothed benefit than the reactive approach. Therefore, the
proactive approach with 𝑡 + 5 is recommended over other approaches.
As for the case of also having no statistical difference between top-ranked proactive approach

and other proactive approaches across cases, this may have occurred because these approaches
provided similar exponentially smoothed benefit across the cases (reason #1 above). Specifically,
we can see from Table 10 that the average exponentially smoothed benefit for all the proactive
approaches was very similar. However, there is a difference between the proactive approaches in
terms of the number of switches. In particular, average forecasts provided 1–2 switches less than
other proactive approaches in StrictALL (best and worst), and 1-3 switches less for StrictEC (worst).
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Therefore, the proactive approach with average forecasts is recommended over the other proactive
approaches.
Over the rest of this section, the behaviour of the proposed approach compared to other ap-

proaches is discussed in more detail. A discussion on the specific behaviour of the static, predefined
and random approaches can be found in Appendix D, and further illustrates why these approaches
do not perform well.
Analysis – Summary of Results With Respect to Each Case Separately:

• Normal Case (Best/Worst Scenario): The results for reactive and all proactive approaches were
similar in terms of exponentially smoothed benefit and cost. In particular, Table 10 shows
that the reactive and proactive approaches provided mean exponentially smoothed benefit
of around 0.79 and cost of around 0.51 or 0.52 for the best case, and mean exponentially
smoothed benefit of around 0.75 and cost of around 0.52 for the worst case. However, the
proactive approaches led to less switches than the reactive approach. Further, the proactive
approach produced 30-50% improvement in mean exponentially smoothed benefit, 5% smaller
mean cost, with improved stability (i.e. 3-4 switches less) compared to predefined and random
approaches on the best case (Tables 9 and 10). It also provided a 10% increase in mean benefit
and similar cost, but with an increase in the number of switches (i.e. 2-3 switches) compared
to the static-selection, which adopts a fixed diversified architecture option over time. Similar
results were obtained for the worst case scenario, except when comparing against the static-
selection approach. This approach obtained a very poor exponentially smoothed benefit
of zero (due to its violations to the constraints), and a 7% higher cost than the proactive
approaches.

• StrictEC Case (Best/Worst Scenario): The reactive and proactive approaches obtained the same
results in the best scenario (same number of switches, mean exponentially smoothed benefit
and cost, as shown in Table 10). The proactive approach showed better mean exponentially
smoothed benefit (i.e. 10-30%) and cost (i.e. 3-7%) than baseline and state-of-the-art approaches
with better stability, except that the static-selection did not perform any switches (Table 9 and
10). In the worst scenario, the reactive and proactive for average forecasts obtained similar
results, whereas the other proactive approaches led to varied results (either slightly worse
exponentially smoothed benefit and better cost or slightly better exponentially smoothed
benefit and worst cost) with larger number of switches. This may be due to the very strict
quality constraint, which has been violated in most of the times. This caused a high fluctuation
in the exponentially smoothed benefit, which ended up triggering additional switches and
producing varying behavior between different 𝑡 + ℎ values. Therefore, among the proactive
approaches, we recommend the one with average forecasts as it considers the forecasts for
varying ℎ values. We have seen similar behavior in the worst case scenario, except that
static-selection showed the worst benefit and cost (Table 9 and 10). In particular, the proactive
approach for average forecasts provided better benefit and cost with same number of switches
as static-selection.

• StrictRTNU Case (Best/Worst Scenario): The proactive approaches for long-term forecasts (i.e.
ℎ ∈ {5, 8, 15}) and average forecasts produced the best results in the best case, in comparison
to the reactive and state-of-the-art approaches. In particular, they obtained an increase of
about 40% in the average exponentially smoothed benefit, a reduction of about 5% in cost,
and less number of switches (i.e. one instead of two), compared to the reactive approach
(Table 10). They also obtained a rise of 40-60% in the mean exponentially smoothed benefit
with 5-10% reduction in cost and less number of switches, in comparison to state-of-the-art
and baseline approaches (Table 9 and 10). Similar behavior occurred for the worst case.
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• StrictALL Case (Best/Worst Scenario): The proactive approaches achieved considerably better
exponentially smoothed benefit at a slightly higher cost than the reactive approach and
state-of-the-art approaches (approximately 5-40% increase in benefit) for the best scenario
(Table 9 and 10). The proactive approaches using specific ℎ values led to less switches than the
predefined and random approaches, but did not lead to an advantage in terms of number of
switches compared to the reactive approach. However, the proactive approach with average
forecasts led to the best behaviour in terms of number of switches, except in comparison
to the static approach, which uses a fixed 𝑑𝑎𝑜 throughout time. Therefore, the proactive
approach using average forecasts depicted the best overall results for the best case. A similar
behavior was obtained for the worst scenario.

Analysis – Key Representative Examples For All The Approaches Behaviour For Stric-
tRTNU Case: Next, we will demonstrate key representative examples for the diversified architec-
ture options’ evaluation by all approaches and its corresponding behavior for StrictRTNU case.
The underlying behaviour of the approaches for other cases is similar, and therefore were omitted.
Further discussion related to StrictRTNU case is found in Appendix D.2.

The different exponential smoothing benefits and costs obtained by different approaches result
from the different choices of 𝑑𝑎𝑜 performed by these approaches over time. For StrictRTNU case, the
proactive approach with 𝑡 + 1 always led to the same 𝑑𝑎𝑜 choices as the reactive approach, whereas
the proactive approach with 𝑡 + 5, 𝑡 + 8 and 𝑡 + 15 led to the same 𝑑𝑎𝑜 choices as the proactive
approach with average forecasts. Therefore, we only plotted the exponential benefit and cost for
average forecasts in Figure 8. Interpreting the results and their significance are context dependent
and should be discussed with caution. They are meant to serve as the basis for sensitivity analysis
of the exponential smoothing benefits over time. For this example, the exponential smoothing
benefits were tracked over 120 timestamps (i.e. short-term). The accumulated benefits of 0.05 (as an
example) over longer timestamps can be significant (or not) over longer period of time for some
context, if the trend would be maintained. Fluctuations are undesirable because they mean that the
qualities of interest are fluctuating over time, potentially oscillating between values that may (not)
be acceptable in practice and leading to instability. In other cases, fluctuations are not necessarily
bad if they respond to a change in the environment. However, in practice we should try to reduce as
much as possible any drop in qualities of interest caused by changes in the environment. A service
that provides very high quality in one moment and very poor quality in another moment would
be deemed unreliable. Therefore, we showed how the approach has successfully chosen the most
balanced architectural options (Table 10 and 11) throughout time in the face of uncertainty.

(a) Overall behavior (b) Exponentially Smoothed Benefit (c) Average Cost

Fig. 8. The evaluation of the five approaches’ decision-making process for StrictRTNU (Average Forecasts)
for best scenarios. Note that StrictRTNU: low response time and low network usage are favoured over energy
consumption.
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(a) Overall Behavior (b) Exponentially Smoothed Benefit (c) Average Cost

Fig. 9. The evaluation of the five approaches’ decision-making process for StrictRTNU (Average Forecasts)
for worst scenarios. Note that StrictRTNU: low response time and low network usage are favoured over energy
consumption.

The behaviour of the approaches for the worst case scenario was similar to that obtained for the
best case scenario, in terms of their 𝐷𝐴𝑂 evaluation and selection. For example, the predefined-
selection used the same predefined design-time decisions, whereas the random-selection detected
significant changes in benefit and selected adhoc 𝐷𝐴𝑂 (Figure 9b). The proactive approach and
reactive approach initially suffered from low benefit in the first 5 timesteps (Figure 9b), but then
they quickly handled that and switched to the same 𝐷𝐴𝑂 as in the best case scenario over time
(Figure 8b and 9b). The static-selection adopted a single 𝑑𝑎𝑜 over time regardless of run-time
changes. In particular, it has recommended an architecture option (𝑑𝑎𝑜2), which seemed to violate
the constraints all the time. This explains why it produces zero benefit over 120 timesteps (e.g.
Figure 9a).
Overall Observations: The proactive approach for average forecasts has shown in general similar
or better results than state-of-the-art, reactive and proactive approaches with other values for ℎ. For
instance, it frequently showed significant improvement in benefit and less number of switches, with a
similar/slight increase in cost than reactive and state-of-the-art approaches. This is because the average
forecasts have benefited the 𝐷𝐴𝑂 evaluation in terms of using the mean of forecasts of 𝑡 + ℎ and
hence being more realistic than specific ℎ values. In particular, it forecasts the future changes, selects
diversified architecture options which are currently optimal and expected to be optimal as well. This in
turn has avoided unnecessary switches (i.e. improved the system’s stability).

RQ2.3: What is the performance of the proactive approach against state-of-the-art architecture
evaluation approaches in other complex scenarios?
Motivation: In this experiment, we aim to convey how our proactive approach aids the architect in
evaluating the 𝐷𝐴𝑂 across other complex scenarios, such as Denial of Service (DoS) attack [48, 69],
in addition to the one introduced in RQ2.1 and RQ2.2. DoS denotes the presence of unexpected
behavior with an irregular pattern (i.e. randomized DoS that does not follow an exponential
distribution) [48]. The most common and popular type of DoS is Volumetric or flooding DoS attacks
[5]. This type of attacks causes service degradation by flooding the network with large number of
requests or traffic [5] (i.e. data). In the context of IoT environments, there are several reasons for
DoS attacks [21]: (1) the highly heterogeneity and mobility of IoT devices; (2) some or parts of IoT
systems, could be physically unprotected and/or controlled by diverse parties; (3) it is impossible to
request permissions for installations and user interactions, due to the large number of IoT devices.
One typical example of DoS attack is "a software update for a popular IP-enabled IoT device that
causes the device to use the DNS more frequently (e.g., regularly lookup random domain names
to check for network availability) could stress the DNS in individual networks when millions of
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Fig. 10. Sample of changing environmental conditions to simulate DoS attacks facing facing 𝑖𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 (i.e.
input for all of the 𝐷𝐴𝑂) along with other environmental conditions in Figure 4.

devices automatically install the update at the same time. [39]". To sum up, forecasting DoS attacks
and mitigating the risks for their presence in IoT architectures is a non-trivial case.
Experimental Design: To simulate DoS attacks, we varied the data transferred to cameras from
1000 to 3000Mbps as well as the number of nodes as shown in Figure 10 (along other environmental
conditions in Figure 4). We then reported the response time, network usage and energy consumption
quality concerns over time. For this experiment, we have used the same experimental parameters
and environmental conditions as in Experiment RQ2.2 (Figure 11). We examined two scenarios:
Best Case and Worst Case as Experiment RQ2.2 and generated the exponentially smoothed benefit
with respect to average number of forecasts ℎ (based on Experiment RQ2.2).
Analysis: The variation in the data transferred has caused sudden drops in the QoS of 𝐷𝐴𝑂 .
Therefore, our continuous and proactive approach have managed to discover and recover from
these failures by using the forecasting ability for change detection and selection of the most
balanced 𝑑𝑎𝑜 over time. In particular, from Table 11, it is clearly depicted that the proactive
approach outperformed the reactive and state-of-the-art approaches in most of the cases.
Overall Observations: The proactive approach has shown its ability to handle a common challenge
in IoT (i.e. DoS attacks), as compared with the state-of-the-art and reactive approaches.

6 DISCUSSION
6.1 Reflection on the experimental evaluation
In Section 5, we provided the architect with guidelines on: (i) how to determine the input attributes
required for forecasting (Table 5 and 6) and the number of training examples to potentially benefit
from forecasting (Figure 6a and 6b); (ii) how to select the learners; (iii) how to compare between
the further ahead timesteps (Figure 7a and 7b). We also provided a fair comparison of the proactive
approach against reactive, state-of-the-art, and baseline approaches (Table 9, 10, and 11 and Figure
8 and 9). Our proactive approach showed better results (Table 7 and 10) than reactive approach in
terms of stability (i.e. lower number of switches) and improved exponentially smoothed benefit
(Table 11)). Further, it outperformed the baseline, state-of-the-art, and reactive approaches (Table 9
and 10).
From the results in Section 5, we can see that the proactive approach outperformed the state-

of-the-art approaches in most of the cases in terms of exponentially smoothed benefit and cost
with less switches than the random and predefined approaches. It also provided similar/better
benefit than the reactive approach. Even though we cannot generalise the results of each case
(normal, StrictEC, StrictRTNU and StrictALL) to other cases in this or other domains, there are
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Table 11. The number of switches, mean exponentially smoothed benefit andmean cost for Static-, Predefined-
Selection, Random-Selection, Reactive and Proactive approaches for DoS attack case scenario. The best cases
of the proactive approach are highlighted in gray.
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Static-Selection Predefined-Selection Random-Selection Reactive Proactive

Normal Best 0 0.1973 0.4593 8 0.1461 0.495 0 0.1973 0.4593 0 0.1973 0.4593 2 0.3121 0.4650
Worst 0 0.1973 0.4593 8 0.1461 0.495 0 0.1973 0.4593 0 0.1973 0.4593 2 0.3121 0.4650

StrictEC Best 0 0.2034 0.4577 8 0.1507 0.4950 0 0.2034 0.4577 0 0.2034 0.4577 2 0.2347 0.4602
Worst 0 0 0.5581 8 0.1507 0.495 3 0.1775 0.4909 1 0.2713 0.4841 2 0.2015 0.4815

StrictRTNU Best 0 0.173 0.5589 8 0.1461 0.495 0 0.173 0.5589 0 0.173 0.5589 1 0.3836 0.4941
Worst 0 0.3762 0.5581 8 0.1761 0.495 2 0.3218 0.5351 0 0.3762 0.5581 1 0.4749 0.4841

StrictALL Best 0 0.1226 0.4577 8 0.0909 0.495 0 0.1226 0.4577 0 0.1226 0.4577 1 0.4163 0.4629
Worst 0 0 0.5581 8 0.0909 0.495 2 0.0693 0.4894 1 0.3962 0.4841 1 0.3962 0.4841

some observations on the behaviour of the approach that can explain the situations in which one
approach may be expected to perform similarly or better than the other approaches.
For instance, when there is a lot of variability in exponentially smoothed benefit over time,

the proactive approach with average forecasts may recommend less switches than the reactive
approach or the proactive approaches with single values for ℎ. This is because this approach may
be able to forecast that, despite a given 𝑑𝑎𝑜 being potentially poor at present, it will become better
again in the near future, meaning that no switch is required.
Furthermore, when the constraint for one of the quality attributes (e.g. energy consumption)

is too strict, the proactive approach provided similar behaviour to the reactive approach. This is
because the constraint was violated at some time intervals and the variability in the quality was
low, and so we did not benefit from the forecasts.
Additionally, when there are trends in the changes in exponentially smoothed benefit, the

proactive approach may achieve better exponentially smoothed benefit and cost trade-offs than
the reactive and state-of-the-art approaches, since it has the ability to detect the changes that will
happen in the future and hence may recommend better architecture options.

Thrashing was a problem in the reactive approach as the chances for reacting with configuring a
𝑑𝑎𝑜 that can get the system into thrashing or halt can be probable. However, the proactive approach
goes beyond the reactive approach by profiling these 𝐷𝐴𝑂 , where the knowledge can help in
informing when, whether and likely performance of switching to ensure seamless and smooth
dynamic configuration and to significantly reduce the likelihood of trashing.

6.2 Approach Assumptions
Our proposed method is fundamentally consistent with ATAM and CBAM practices in capturing
human and stakeholders input through various types of scenarios. We are only concerned with
requirements and qualities that have impact on the architecture (often referred as architecture
significant requirements); our techniques can work on any quality of interest with architecture
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relevance, where this quality has been observed over time and data associated with its observation
is available and converted into numerical format for our use.

Additionally, architecture design decisions could be static or dynamic in nature. Several structural
design decisions are static in nature; this implies that these decisions can be expensive to change
and cannot be altered very frequently at run-time. Henceforth, the architect should evaluate them
cautiously at design-time. Example of these decisions include network-related decisions such as
the physical connectivity between devices (e.g. how data bits are moving in/out of the IoT device),
logical connectivity (e.g. what protocols the software uses to transport these bits, such as MQTT),
and also the network topology. These decisions are affected by the expected incoming data volumes,
cost, memory requirements, etc. Therefore, they are quite difficult to change.
However, there are other decisions, which are dynamic in nature and could be customized at

run-time (e.g., predefined decisions that could be tailored to fit the run-time context; strategies and
tactics to address behavioural requirements). For instance, different deployment strategies, such as
the use of cloud, fog-cloud, etc, are an example of a decision that can be best evaluated dynamically.
When deemed to be necessary, diversification was also employed to provide "malleability" to alter
the structure through inclusion of limited number of tactics that can better meet the behavioural
requirements. In this context, our work is particularly interested in investigating and evaluating
dynamic design decisions.

6.3 Beneficiaries of approach
Who can benefit from the proposed approach? Architects from several domains could benefit from
our continuous evaluation approach. For instance, architects using DevOps are currently deploying
some industrial monitoring tools (e.g. AppDynamics [2] and New Relic [3]). Our approach could
be integrated to one of these tools, to aid the architect in evaluating, refining and/or phasing-out
of architecture design decisions. The forecasting ability could reduce the number of unnecessary
adaptations causing a decrease in development and implementation costs. Other applications
operating in dynamic environments, such as cloud-based architectures and service oriented archi-
tectures could employ the approach to assess abstract architecture model and its possible concrete
instantiations over different releases.

The evaluation of self-adaptive systems introduces new challenges that has to deal with evaluating
uncertainties and dynamism, making design-time evaluation approaches limited or unfit. Classical
approaches for designing adaptive systems tend to take design-time reasoning and evaluation, when
deciding on encoding switches, policies, adaptive decisions, etc. Continuous architecture evaluation
approach can benefit self-adaptive evaluation: (i) assisting in the systematic inception, elaboration,
refinement and evaluation of the adaptive design decisions and/or models (i.e. configurations) that
can influence QoS and justifying their need before the system is deployed in the next release cycle;
(ii) valuing, profiling, and forecasting the likely performance of these decisions and/or models in
meeting qualities in relation to alternatives over time as the software evolves; (iii) continuously
evaluating their cost-effectiveness and what to be encoded from these decisions and/or models; and
(iv) determine the frequency of adaptation, which have a significant impact on the architecture’s
stability and hence decide on which options could better improve the architecture’s stability for
run-time deployment.

7 THREATS TO VALIDITY
In this section, we aim to discuss the threats to construct, internal, and external validity.



Continuous and Proactive Software Architecture Evaluation 39:39

7.1 Threats to Construct Validity
These are related to used metrics, which reflect what we intend to measure [92]. For that, we
have adopted the Mean Square Error (MAE) and Root Mean Square Error (RMSE) as forecasting
performance measures. These measures are unbiased towards under or over estimations, which
make them adequate for determining the appropriate number of input attributes; selecting the
suitable number of training examples to start forecasting; comparing between the forecasting
algorithms; and choosing the suitable number of future ahead timestep. Friedman, post-hoc tests,
and Bonferroni-Dunn rank-based tests [45] were adopted to demonstrate the significance of the
statistical differences between groups (i.e. forecasting algorithms and further ahead timesteps) in
MAE and RMSE.

7.2 Threats to Internal Validity
These are concerned with the impact of experimental parameters (e.g. the relative importance of
present/past, the confidence interval, etc) on the proposed approach. These experimental parameters
are treated as in our previous work [101], where we handled the threats related to internal validity
as follows: we analyzed our reactive approach by varying the evaluation parameters and hence
selected the ones which provide acceptable accuracy and stability. Note that the same experimental
parameters are used by the proactive approach.

7.3 Threats to External Validity
These are linked to the generalization of the experiments [92]. Though we have tested our approach
across state-of-the-art, baseline and reactive approaches for architecture evaluation and on a
dynamic environment, such as IoT, we cannot claim generality of the results to other data sets and
domains. In particular, the number of input attributes and examples found in RQ1.1 and 1.2 are not
to be adopted as default values for other use cases. Rather, the procedure followed in to reach those
values should be adopted.

Evaluation that is based on simulation can still be considered as design-time if the evaluation is
performed at design-time and before deployment. However, we also see potentials for the same
simulated approach to work in parallel with the running system, with info-symbiotic feedback
between the simulator and the running system to perform anticipatory evaluation of key design
decisions and their possible variants based on the run-time context, which may be difficult without
the aid of simulation.
It is possible to instantiate our framework by investigating what-if scenarios based on real

implementations of the different architecture decisions, and feeding them to the machine learning
model. However, in most cases, this would be very expensive in practice. Even if the evaluation
is conducted at the deployment stage, it is expected that architecture evaluation is a stage that
dominates the inception and elaboration stages of the evolved system and pre-requisite for a
detailed low design and implementation of the system to-be. In other words, a software system
is expected to evolve over time, and evaluation should typically be done as a prior step to the
implementation of such evolved software to prevent high costs. Our framework is in line with this.
Our framework goes beyond classical use cases to leverage simulators to derive a rich and

substantial amount of data that can assist the proactive evaluation, supported by machine learning.
In particular, the generated dataset can consider eventualities that relate to the norm, extreme,
classical or predicted uses. Additionally, several datasets can be compiled, as a result that may relate
to different modes of usage of the system. In fact, our work is forward looking in the way it uses data
for machine learning. It follows the ethos of what is now referred to as a "Digital Twin" to generate
data for predictive and proactive analysis, but linked to the architecture under the evaluation (i.e.,
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the architecture is analogous to the "twining" under test) and as an artifact to test the system before
being implemented. The simulation environments are approximations to real environments and
variation is expected. Variation can sometimes provide the analysts with insights into situations
that can rarely be encountered in real settings, providing room for what-if analysis. Nevertheless,
our experimentation has investigated the robustness of our reactive approach to noise [101], to
mimic variations (low/mid/high noise levels) and fluctuations in real settings and to check how
well the approach can handle this issue. Our results show that our reactive approach has managed
to select optimal options, even when introducing higher noise levels. It also managed to self-repair
from suboptimal choices (due to varying noise levels). These observations can be attributed to the
fact that our reactive approach makes use of reinforcement learning and an exponential smoothing
function for tracking and factoring in the most recent performing options over time.

Additionally and as explained in Section 3.3, a change detection method was also used to detect
whether the time-decayed benefit is deteriorating significantly. Our proposed proactive approach
was superior to the existing reactive approach in most cases, demonstrating a good behaviour on
this issue. We have also demonstrated the applicability of our approach to monitor the environment
at every T’ intervals if the real-time evaluation was expensive and the architects did not wish
to use simulation. The simulation component of the contribution has also provided flexibility to
experiment in ranges of value, i.e., eliminating experimentation bias in fixing the value. Therefore,
on the one hand, the use of simulation leads to a threat to external validity in that real data may
differ from simulated data, and so the results may not generalise to real data. However, on the other
hand, the use of simulations also improves generality in the sense that it enabled the approach to
be investigated under different conditions.
Finally, transfer learning methodology [90] has been recently adopted in [67], where the QoS

measurements are taken from a simulator and only a few samples are taken from the real system
leading to much lower cost and faster learning. In this context, the approach could potentially learn
from both simulated and run-time data, which is subject for future work.

8 RELATEDWORK
Architecture evaluation typically done as a milestone review that aims at justifying the extent to
which the architecture design decisions meet the quality requirements and their trade-offs. The
evaluation can aid in early identification and mitigation of design risks. The point of the exercise
is to avoid poor decisions and thus save integration, testing and evolution costs [97]. Several
architecture evaluation approaches exist, which can be divided into design-time, run-time, and
continuous approaches.

8.1 Design-time Architecture Evaluation Approaches
The best known systematic design-time architecture evaluation approaches include the work of
[19, 73, 86]. These approaches focus on selecting design decisions and patterns that are most
appropriate for quality requirements of interest and their trade-offs. These approaches heavily
rely on human inputs and expert judgment. Uncertainties and risks, linked to the deployment, are
identified through envisioning a set of scenarios (architectural test cases), taking the form of use
case, growth, and exploratory scenarios [73, 76]. Hence, the evaluation and its conclusion are highly
dependent on the choice of these scenarios. For example, the Architectural Trade-off Analysis
Method (ATAM) [73] is a generic design-time architecture evaluation method that uses a structured
walkthrough of scenarios to assess the value of, and risks in, architecture design decisions. The
Cost-Benefit Analysis Method (CBAM) [86] is an architecture evaluation method that extends
the ATAM to provide cost/benefit analysis for a set of proposed architecture design decisions
(called "architecture strategies" in the CBAM). Though the CBAM uses cost/benefit information
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to value the architecture design decisions and to justify their selection, this method is unable to
dynamically profile the added value of architecture decisions, which is essential for applications
operating in uncertain environments (such as IoT). Scenario-Based Architecture Re-engineering
(SBAR) [17] is another scenario-based architecture evaluation method that uses different techniques
to assess the quality attributes of interest: scenarios, simulation, and mathematical modeling [47].
For example, if a quality attribute is concerned with development and design-time properties, such
as maintainability and reusability, scenario-based techniques can be best utilized. Though scenario-
based analysis can be still used for behavioural and run-time properties, such as performance and
fault-tolerance, simulation and/or mathematical models can better provide meaningful insights
and can complement scenario-based ones. Architecture Level Prediction of Software Maintenance
(ALPSM) [18] is an architecture evaluation method that utilizes probabilities to determine the
likelihood of the impact of scenarios at the software architecture level [47]. It focuses on a single
quality concern maintainability. In [100], CBAM has been combined with options theory [63] to
predict the value of architecture decisions under uncertainty. Scenario-based evaluation approaches
can be best described as best-effort, where the evaluators’ expertise and the choice of stakeholders
and scenarios are factors that can dramatically influence the evaluation. Though these methods
can partially assess and predict the value of architecture decisions under uncertainty, they may
suffer from subjectivity, bias, and the limits of human attention.
Apart from the scenario-based design-time approaches, Palladio [16] is a modelling based tool

that operates on the specification to generate models, skeleton code and various views to support
simulation of the software under consideration (i.e., architecture description and modelling tool
with analysis capability). It could be used to simulate the dynamic behaviour of architecture
options when evaluating them. In contrary, our continuous evaluation approach complements
existing classical trade-off architecture evaluationmethods and focuses on architecturally significant
requirements/qualities.
Other design-time methods perform decision-making using mathematical models (e.g. [52]),

linear programming (e.g. [4]), and evolutionary algorithms (e.g. [6]), and goal refinement (e.g. [31]).
In particular, these design-time methods use simulation and optimization to assist in the selection of
the candidate architectures and decisions. New domains can impose novelty and new challenges to
the evaluation [58, 80, 95], which canmake it hard for the architect to either experiment nor evaluate
architecture decisions at design-time only. Our continuous evaluation can assist in overcoming the
limitations of design-time approaches by providing continuous learning as built-in mechanisms for
proactive evaluation that intertwines design-time and run-time evaluation.

8.2 Run-time Architecture Evaluation Approaches
By run-time evaluation, we refer to approaches that use run-time and/or simulated data (e.g.
QoS) to capture the dynamic behaviour of architecture decisions under uncertainty and use such
information to profile and evaluate design choices. We examine some of these approaches in light
of our proposed approach. For instance, though the notion of models@run.time [25] has been
implicitly exploited as a way to evaluate the behavior of software systems, the effort was not
discussed from the architecture evaluation angle. In particular, models@run.time refers to "models
of the functional and/or non-functional software behavior are analyzed at run-time, in order to
select system configurations that satisfy the requirements" [33]. Models@run.time operates on
the assumption that possible run-time configurations have been already evaluated and encoded
in the system, where evaluation can be an after-thought through profiling configurations and
recommending alternatives.

In the spirit of models@run.time, several approaches which are architecture-specific have been
discussed in the context of self-adaptive and managed architectures [43, 103]. Examples of these
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approaches include [7, 36, 40, 56, 84], which use formal analysis of their architectural models. For
instance, the Rainbow framework [56] uses Markov processes to compute the expected aggregated
impact of each strategy on each quality attribute. This also requires high human intervention to
determine the effects of strategies with respect to quality attributes (i.e. predefined probabilities)
[38]. Epifani et al. [50] proposed a model-driven approach leveraging a Discrete Time Markov Chain
approach and Bayesian estimators to provide continuous automatic verification of requirements at
run-time and to support failure detection and prediction. These architecture-based approaches rely
on analyical models for the analysis.
This led others (e.g. [51, 74, 106]) to leverage machine learning techniques which gather ob-

servations of system properties over time. For example, FUSION [51] is an autonomous online
fine-tuning approach for adaptation logic, which is specifically tailored to feature modelling. Unlike
FUSION, our approach not only detects goal violations, i.e. constraints, but also checks if the current
architecture option is getting worse based on forecast values. A reinforcement learning online
planning technique was used by Kim et al. [74] to improve a robot’s practices with respect to
changes in the environment by dynamically discovering appropriate adaptation plans. However,
it does not continuously evaluate the cost-effectiveness of architecture decisions over time. The
majority of the aforementioned approaches tend to be reactive when simplistic learning, partial
or incomplete knowledge is used [77]: may suggest wrong decisions due to the unexpected future
environment changes; and recommend unnecessary switches due to the lack of future knowledge about
the candidate architecture decisions.

New methods have been proposed to proactively deal with effective decision-making for systems
facing uncertainties (e.g. [82, 83]). Moreno et al. [82] for example recently proposed a proactive
latency-aware adaptation approach that constructs most of the Markov Decision Processes offline
through stochastic dynamic programming. Their method focuses on optimizing the latency of
adaptation action based on forecasts, without considering the cost of architecture decisions and
multiple stakeholder QoS concerns.

Self-adaptive and managed architectures building on models@run.time can particularly benefit
from our continuous software architecture evaluation method to better handle uncertainty when
configuring concrete instances from abstract models. This is due to the following: (i) it exploits time
series forecasting algorithms to forecast and evaluate the cost-benefit of candidate architecture
options; (ii) it is designed to be flexible in handling various stakeholders concerns (i.e QoS) and
constraints; (iii) it also goes beyond existing approaches by using multi-objective optimization for
the various evaluation concerns and provide automated support; and (iv) it is a generic architecture
evaluation approach to assess architectures operating under uncertainty.
Runtime verification [13] is "the discipline of computer science that deals with the study, de-

velopment, and application of those verification techniques that allow checking whether a run of
a system under scrutiny satisfies or violates a given correctness property [79]". Our continuous
evaluation approach has been utilising proactive learning and evaluation to assist in dynamic
re-configuration of software architecture. We view runtime verification [79] as an additional step
to provide assurance and additional confidence for some of the re/configuration decisions, if would
be necessary. As runtime verification can be an expensive and would be impractical to use for
every single re-/configuration, we see that the proactive approach can help in prioritising decisions
that require further verification. In the future, we plan to check the validity of embedding runtime
verification tools to our framework. Though the focus of the paper is not on middleware, existing
middleware (e.g. [23, 41, 66]) and other verification approaches (e.g. [34]) may benefit from our
contribution to address proactivity.
Variability and commonality has been studied in Software Product Lines (SPLs) works. In par-

ticular, some works have proposed modelling-based approaches (e.g. [30, 99, 110]) to evaluate
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and predict quality attributes in a software product line. Additionally, other works have used
evolutionary algorithms, e.g. to explore the configuration space of a software product line feature
model to automatically generate test suites [49], to generate at run-time optimum configurations
of the dynamic software product line [91], and dynamically chooses the best operators to solve the
product selection problem for SPL testing [53]), as it is infeasible to evaluate every single variant.
Other works employ machine learning to improve the decision-making. For instance, Temple at al.
[105] have used using machine learning algorithms to infer constraints for product lines. Safdar
et al. [94] have combined the use of evolutionary algorithms and machine learning algorithms to
mine rules constraining configurations of communicating products across product lines. Temple at
al. [105] and Safdar et al. [94] used machine learning to classify or cluster the variability points in
SPLs. However, the focus of our approach resemble similarities to dynamic software product line,
our work is different, as we employ regression algorithms to forecast the fitness values (i.e. quality
of service values and how they changed over time) of the architecture options for IoT architectures
and its dynamics configurations. Though our work is not aimed at dynamic SPL, existing work
on SPL can make use of our analysis and planning techniques to improve their dynamic decision
making for selecting variable options in a proactive manner.

8.3 Continuous Architecture Evaluation
There are few research efforts (e.g. [20, 50, 93]) which explicitly mention continuous architecting and
assessment, while some others implicitly adopt it (e.g. [14]). As an example, Pooley and Abdullatif
[93] define continuous assessment as the continuous production of performance evaluation tests.
Despite their work being one of the few approaches that explicitly provides continuous assessment,
it lacks run-time monitoring and forecasting of the performance of architecture decisions. In such
cases architecture is, at best, a modelling tool, which may (or may not) be applicable in dynamic
environments. Bersani et al. [20] propose a continuous architecting approach that aids the designers
in easing the static analysis of the architecture, but lacks dynamicity and is domain-specific (i.e. for
streaming applications). Further, though DevOps [14] advocates continuous integration as part of
the continuous development process, it lacks a systematic mechanism for evaluating the artifacts
generated out of such systems. Thus, novel continuous evaluation methods could aid the prior
methods by providing extra insights about the behaviour of candidate architectures to improve
decision-making. In particular, they can benefit from further analysis in terms of dynamic tracking
and forecasting of architecture decisions’ performances, and automated management of cost-benefit
trade-offs.

To the best of our knowledge, there are no examples of continuous software architecture evalua-
tion approaches that adopt proactive approaches and forecasting analytics in the research literature.
For that, we have proposed our continuous architecture evaluation framework. In particular, our
work is the first principled method that extends on classical architecture evaluation methods and
their systematic procedure to incorporate run-time and dynamic input to assist in the evaluation,
which is not currently captured in the current evaluation methods. Additionally, the evaluation
context and so the application of evaluate-forecast-detect-select are different: first, our focus goes
beyond performance to cover architecture design decisions - the treatment is fundamentally consis-
tent with ATAM/CBAM in being generic and do not explicate one quality of interest. However,
unlike ATAM/CBAM, our work is concerned with dynamic evaluation. Second, though the work
builds on fundamentals of self-adaptive systems (e.g. MAPE-K), the evaluate-forecast-detect-select
is a self-adaptive variant. However, our realisation in implementing the cycle is different and novel,
where we have used techniques that were not previously used (e.g., reinforcement learning in the
context of software architecture, change detection methods, time series forecasting, etc).
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9 CONCLUSIONS AND FUTUREWORK
In this paper, we contributed a novel approach for continuous software architecture evaluation, by
providing continuous learning as a built-in mechanism for proactive evaluation that complements
reactive approaches. In other words, our work is the first to define a proactive architecture evaluation
framework of the systems-to-be, supported by simulation, reinforcement learning and time series
forecasting. To instantiate the framework, we have shown how the simulator component (i.e.
iFogsim for this example due to its fit for the IoT case), when coupled with machine learning can
render an effective evaluation method that goes beyond the current practices. The combination
of these techniques (simulation, reinforcement learning and time series forecasting) are among
the major components of our architecture evaluation framework. As the common practice does
not often expect physical implementation as part of the architecture evaluation process, the use
of simulation together with our machine learning components goes beyond has this practice to
provide more assurance on the results.

We also explored how various forecasting learning techniques can be "orchestrated" at run-time
to better support evaluation and to demonstrate the impact of forecasting analytics on continuous
evaluation and decision-making. In most of the cases, our proactive run-time approach produces
promising results, because it learns and forecasts, and hence makes smarter decisions. This work
has paved the way for conducting further studies on continuous software architecture evaluation
that can leverage our approach. Though the approach was applied to a representative case of web-
operated IoT, it has the potential to benefit large scale dynamic and variant-intensive architectures.
In particular, our future investigations will look at how our approach can be applied to software
architectures of dynamic and uncertain environments such as volunteer services computing, mobile
services architectures and microservice architectures. Findings from such investigations can help
to further refine our methods. Additionally, we can explore how similar approaches can help in
monitoring and forecasting the health of qualities of interest and associated trade-offs that may
be difficult to evaluate using classical architecture evaluation methods, e.g., sustainability and
scalability of software architectures, among others.
We have found that when the price volatility when realising/implementing the architecture

design option is low, the use of exponential decay factor for cost is not necessary [88, 101]. The
current approach has focused on providing a continuous measure for the benefit of each 𝑑𝑎𝑜 (i.e.
exponentially smoothed benefit). We plan to investigate cases where price volatility can be high,
where using exponential decay for the cost can be important. Cases where Dao’s cost varies in
the presence of dynamic scale and fluctuation in demands can be a potential scenario to explore.
Findings can help in better understanding the sensitivity of the continuous architecture evaluation
decisions to volatility.

We propose to extend the modeling of quality aggregation functions to consider more complex
dependencies between architecture decisions as future work. Though our change detection test de-
scribed in Section 3.3 produced satisfactory results, we plan to extend our approach to explore other
change detection tests. Further, we intend to implement the framework in a decentralised manner,
which may potentially improve the computational overhead. However, further investigations are
necessary to confirm the efficiency of decentralisation mode.

Further, we aim to demonstrate the usefulness of the transfer learning methodology (introduced
in Section 7.3 – the use of a simulator along with the running system) on the continuous architecture
evaluation approach. For instance, the framework could be adopted to evaluate an application
built using AWS IoT and Greengrass suites [11] by profiling the QoS data from the CloudWatch
monitoring tool [12] along with simulated data from iFogSim (as an example). This could provide
the architect with extra insights on the provision of an application’s challenges in a real setting.
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Learner Parameter Value
kNN Number of neighbours 3

Perceptron Learning rate 0.025
Fading factor 0.9

SGD Multiclass Learning rate 0.01
FIMTDD Tie threshold 0.5

Learning rate constant
Tree type regression tree

FTM Fading factor 0.9
AddExp Factor for decreasing the weights of experts 0.5

Initial expert weight 0.1
Loss threshold 0.01

Table 12. The parameters for the single and ensemble learners.

In this context, the use of transfer methodology could learn from both simulated and run-time
data and hence potentially confirm the accuracy of the forecasting models. Finally, implementing
our framework as a decision support tool can accelerate the adoption of our contributions in an
industrial setting.
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A ADDITIONAL PLOTS AND TABLES
A.1 Learning Parameters
In this section, we aim to tabulate the parameters of learners adopted for experiment (RQ 1.3, 2.1,
and 2.2) in Table 12.

B BINOMIAL TREES FOR DESIGN-TIME EVALUATION
In this appendix, we aim to demonstrate how the design-time evaluation (left part of Figure 1) has
chosen the 𝑑𝑎𝑜 which appear to provide the most balanced cost-benefit trade-offs over time as
an exemplar. For that, we rely on our previous work [100], where a systematic binomial analysis
method is used. The static-selection approach uses experts’ (e.g. architects and other stakeholders)
assumptions on the likely utilities of a𝑑𝑎𝑜 over a predefined period of time [100]. In our experiments,
the predefined period of time corresponded to 120 timesteps. The expert’s opinion is depicted by a
utility tree that is provided at design-time, without making use of any run-time information. The
design-time approach [100] then uses this utility tree to compute the likely benefit of a 𝑑𝑎𝑜 over the
predefined period time based on binomial real option analysis (the left part in Figure 1). Therefore,
even though this is a design-time evaluation approach, it provides information on the expected
run-time benefit of the diversified architecture options, being a meaningful design-time approach
to compare against.

Next, wewill discuss briefly the steps of design-time evaluation approach through an exemplar (i.e.
StrictRTNU case). The other cases in Table 4.4, such as normal constraint, StrictEC, and StrictALL,
and as well as worst case scenario are performed using the same procedures described in this
appendix: (1) Identifying diversified architecture options and attributes of interest (From Section
4); (2) Eliciting the benefits and costs of the diversified architecture options from stakeholders; (3)
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Table 13. Costs, Options, and Net values of diversified architecture options for StrictEC case (The 𝑑𝑎𝑜𝑖 with
the highest net value is highlighted in lightgray).

𝑑𝑎𝑜𝑖 Operating Cost Switching Cost Option Value Net Value 𝑁𝑉𝑑𝑎𝑜𝑖
𝑐1
𝑑𝑎𝑜𝑖

(𝑡) 𝑐2
𝑑𝑎𝑜𝑖

(𝑡) 𝑂𝑑𝑎𝑜𝑖 (i.e. after deducting switching cost)
1 $1800 $600 $3611.61 $3011.61
2 $1000 $500 $4505.03 $4005.03
3 $1200 $1000 $4952.04 $3952.04
4 $1500 $700 $3030.09 $3030.09
5 $900 $300 $4494.36 $4194.36
6 $1100 $900 $7774.24 $6874.24

Evaluating the diversified architecture options using binomial trees (the results of this step are
shown in Table 13).

C THE EFFECT OF ENVIRONMENTAL CONDITIONS ON DECISION-MAKING
In this section, we highlight on whether the change detection by our approach (either reactive
or proactive) is aligned with the environmental conditions. We analyse this link with respect to
normal case scenario, where the best 𝑑𝑎𝑜 is initially deployed.
By mapping the environmental conditions to the evaluation of 𝐷𝐴𝑂 based on the informed-

selection approach (Figure 11a and 11b), the approach has detected significant deviations which are
consistent with input environmental conditions. In particular, the change could be triggered either
from high fluctuation and/or a deterioration in one/all of QoS. For instance, from timestep 1 to 5, we
see an increase in the values of application response time and network usage, caused by a (smaller)
increase in network and camera latency (Figure 11a). These result in a decrease in the exponentially
smoothed benefit, which is considered as significant when reaching timestep 5 (Figure 11c). Since
the approach is still building knowledge about the current 𝑑𝑎𝑜 and having highly dynamic changing
conditions during the initial observation period, this caused a change detection at almost every
consecutive 5 timesteps until timestep 27 (Figure 11). However, these only led to switches when
another better 𝑑𝑎𝑜 was available (at timestep 22). This led to improvements in the exponentially
smoothed benefit of the proposed informed-selection approach over the following timesteps (Figure
11c). Further, at 𝑡 = 46 (Figure 11a), an increase in network camera latency has caused a noticeable
rise in application’s response time and network usage, which accordingly resulted in the detection
of a significant change in environmental conditions. However, the approach found that the current
𝑑𝑎𝑜 still provided the most balanced cost-benefit trade-off and hence the approach kept using this
𝑑𝑎𝑜 for the next 15 timesteps (though other change detections were triggered). After that, at 𝑡 = 61,
the approach detected a significant change (i.e. a high power load, network and camera latency)
and has then selected another 𝑑𝑎𝑜 which provided the most balanced cost-benefit trade-off. After
𝑡 = 61, the exponentially smoothed benefit was just oscillating resulting in no significant changes
(i.e. no changes were detected), as reflected by the exponentially smoothed benefit (Figure 11c).

D EXTRA EXPERIMENTAL EVALUATION
D.1 Further Analysis of RQ2.2 for Normal, StrictEC and StrictALL cases
In this section, we show the analysis of RQ2.2 in detail for Normal, StrictEC and StrictALL cases.
We also present the analysis of the behaviour of the static, predefined and random approaches.

• Static-Selection:
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(a) The impact of network and camera latency on application’s response time and
network usage.

(b) The impact of power load on application’s energy consumption.

(c) Exponentially smoothed benefit of informed-selection with change detection
and switches.

Fig. 11. An illustration of the input environmental conditions for the 120 timesteps including network latency,
smart camera’s latency, power load on the devices, change detection, and switching occurrence, as well as
the output exponentially smoothed benefit of informed-selection approach for strict quality constraints and
prioritized ranking score for StrictRTNU (best scenario) as an example. The red squares represent change
detections that did not lead to switching 𝐷𝐴𝑂 , and green circles represent change detections followed by 𝑑𝑎𝑜
switching.

– Generally, for the best case scenario, the static-selection for all the cases provided bet-
ter mean exponentially smoothed benefit with lower cost as compared with predefined-
selection and random-selection approaches (Table 9). However, its mean exponentially
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smoothed benefit and cost were much worse than reactive and proactive approaches, except
for StrictALL (Table 9 and 10).

– The static-selection approach is ignoring the run-time changes. In this context, it has
deployed only one 𝑑𝑎𝑜 over time (i.e it has zero switches as seen in Table 9) based on the
design-time knowledge (i.e. benefit estimations from the architects). So no matter how
this 𝑑𝑎𝑜 will behave over time in terms of benefit, the static-selection will keep using it.
For example, for the best case scenario, a 𝑑𝑎𝑜 has been selected by the architects, which
seemed to provide good mean exponentially smoothed benefit (Table 9), as compared to
predefined and random approaches. However, for the worst case scenario, the selected 𝑑𝑎𝑜
was always violating the QoS constraints over time except for StrictRTNU, resulting in a
zero mean exponentially smoothed benefit (Table 9).

• Predefined selection: In all the cases (Table 9 and 10), the predefined selection behaved the
same. It is providing the lowest mean exponentially smoothed benefit, highest mean cost,
and highest number of switches (8 switches). This is because it has predefined 𝐷𝐴𝑂 for
deployment, regardless of their benefit at run-time, it will keep using them.

• Random-Selection: In most of the cases, the random-selection approach produces low mean
exponentially smoothed benefit with high cost and increased number of switches (Table 9)
as compared with static-selection, reactive and proactive approaches. Though the random-
selection approach detects the changes in 𝑑𝑎𝑜’s benefit, it suggests replacements to random
𝐷𝐴𝑂 . In particular, the adhoc selection in Random-selection approach caused the approach
to recommend 𝐷𝐴𝑂 which are not always the best, resulting in poor exponentially smoothed
benefit over time. More detailed representative analysis for the behavior of the random-
selection approach is shown after the summary of results.

• Overall: The static-selection and predefined-selection approaches are biased towards their
design-time decisions, which may (not) provide good mean exponentially smoothed benefit
and cost (Table 9). Further discussion related to how these approaches operate over time is
shown in the representative example (i.e. StrictRTNU) explained after the summary of results.
Finally, the predefined- and random-selection approaches showed the worst number of
switches, mean exponentially smoothed benefit and cost, as compared with other approaches
(Table 9 and 10).

D.2 Detailed Analysis of the Behaviour of the Approaches of RQ2.2 for StrictRTNU
case:

Next, we will demonstrate key representative examples for the diversified architecture options’
evaluation by all approaches and its corresponding behavior for StrictRTNU case. The underlying
behaviour of the approaches for other cases is similar, and therefore were omitted.
From Figure 8, we can see that all approaches have initially observed a gradual decrease in the

exponentially smoothed benefit in StrictRTNU Case (best) over the first 5 timesteps. This means
that the current option (𝑑𝑎𝑜6) was not working well. This may be due to internal problems in
devices (e.g. ageing affects) and/or high computation in fixed devices. The approaches then behaved
as follows in response to that:

• The static-selection approach never changes the diversified architecture option. Therefore, it
kept using the same option (i.e. 𝑑𝑎𝑜6) regardless of exponentially smoothed benefit changes
at run-time. This led to better mean benefit (i.e. 0.4907) and mean cost (i.e. 0.5841) than
random-selection and predefined-selection approaches (Figure 8a), but much worse than
reactive and proactive approaches. This is because, despite this decrease in exponentially
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smoothed benefit, 𝑑𝑎𝑜6 still provided relatively good exponentially smoothed benefit for
some time intervals (e.g. from 85𝑡ℎ to 95𝑡ℎ and 100𝑡ℎ to 110𝑡ℎ timesteps), as seen in Figure 8b.

• The predefined-selection also ignores run-time changes, but it deploys predefined diversified
architecture options from design-time evaluation based on the contextual requirements
(𝑑𝑎𝑜3 in weekends and 𝑑𝑎𝑜6 in weekdays). The predefined-selection produced very high
exponentially smoothed benefit up to 0.8-0.9 in some contexts, where 𝑑𝑎𝑜6 was deployed
(e.g. Figure 8b). However, due to goal violation in other contexts (i.e. 𝑑𝑎𝑜3), it provided zero
exponentially smoothed benefit. This describes the high fluctuation leading to low overall
exponentially smoothed benefit (e.g. Figure 8a). This poor result is a consequence of the
design choices not matching the architects’ expectations at runtime.
In particular, the behavior of predefined-selection was due to the following: (i) The deployed
diversified architecture options did not work as expected. In particular, at run-time, it turned
out that 𝑑𝑎𝑜3 (i.e. one of the predefined options for run-time deployment) had poor exponen-
tially smoothed benefit, which resulted in low mean exponentially smoothed benefit; (ii) Even
though 𝑑𝑎𝑜3 was not working well, the predefined-selection did not consider the run-time
changes (i.e. no change detection test was adopted). Therefore, the predefined approach
did not benefit from the design-time knowledge. Instead it applied unnecessary predefined
switches between architecture options (i.e. had negative impact on the architecture stability)
without noticeable improvement in benefit.

• Random-selection switches to a random diversified architecture option, which ends up
producing a drastic drop in exponentially smoothed benefit (from 0.95 to 0.3 as shown in
Figure 8b) until t=25, instead of improving the benefit or at least keeping it the same. This
has been followed by adhoc switches, which resulted in a significant degradation of benefit
over time (an average of 0.4291), and a high mean cost of 0.5510 with very high number of
switches (7 switches), as seen in Figure 8a, 8b, and 8c.

• The proactive and reactive approaches have continued adopting 𝑑𝑎𝑜6 till 𝑡 = 25. Though
there was significant degradation in exponentially smoothed benefit from 0.95 to 0.42 (Figure
8b and 8b), other architecture options did not obtain better balanced cost-benefit than 𝑑𝑎𝑜6
until 𝑡 = 25. These approaches were able to detect that and keep using 𝑑𝑎𝑜6 until 𝑡 = 25,
leading to competitive cost and benefit (Figures 8b and 8c). Afterwards, both approaches
detected a change at 𝑡 = 27 and hence suggested a replacement to 𝑑𝑎𝑜4, which resulted in a
remarkable improvement in benefit from 0.42 to 0.82 (Figure 8b).

• The reactive and proactive approaches provided similar behaviour (i.e. performed same
selection of 𝑑𝑎𝑜) until 𝑡 = 61. This is because the proactive approach will have to wait for
21 timesteps to start using the forecasts (𝜂𝑚𝑖𝑛 + 𝜁 = 15 + 6 = 21), as stated in RQ1.2. In this
context, the proactive approach used the actual values of quality attributes as the reactive
approach. After that, both approaches switched to 𝑑𝑎𝑜4 at 𝑡 = 27. Since 𝑑𝑎𝑜4 showed a gradual
increase in exponentially smoothed benefit until the 55𝑡ℎ timestep (Figure 8b), no significant
changes were detected by both approaches until this timestep.

The reactive and proactive for short-term and long-term forecasts approaches have observed a
significant drop in exponentially smoothed benefit at 𝑡 = 61. We will discuss the approaches’
behavior in response to that, as follows (Figure 8):

• Due to the lack of future benefits, the reactive and proactive (i.e. 𝑡 + 1) approaches’ evaluation
to 𝐷𝐴𝑂 was based on either actual/short-term forecasts, respectively. Therefore, this resulted
in several detection and replacements to inefficient 𝑑𝑎𝑜 (e.g. 𝑑𝑎𝑜5), which caused a gradual
rise in exponentially smoothed benefit from 0.3 to 0.5 (Figure 8b) with a decrease in cost from
0.5 to 0.45 (Figure 8c) at 𝑡 = 71. As mentioned earlier, the decrease of 0.05 in cost over longer
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timestamps can be significant (or not) over longer period of time for some context, if the
trend would be maintained. Further, a drop in exponentially smoothed benefit from 0.5 to 0.2
has occurred (Figure 8b) then fluctuation in exponentially smoothed benefit over time. This
in turn has affected the mean exponentially smoothed benefit (i.e. 0.5), as seen in Figure 8a.

• The proactive approach using average and long-term forecasts has overcome the previous
unnecessary switches. They kept evaluating 𝑑𝑎𝑜4 over time with respect to its long-term
future benefit. This has led to a reduction in number of replacements (i.e. more stable system)
because the change detection is based on long-term future value rather than actual/short-term
one.

• Finally, a remarkable rise in exponentially smoothed benefit by almost 175% has occurred
at 𝑡 = 61 for proactive approach using average and long-term forecasts, as compared with
short-term forecasts and reactive approach (Figure 8b and 8b). This has caused an increase of
about 40% for the average exponentially smoothed benefit and less switches with 4% increase
in mean cost, in reference to reactive approach (Figure 8a).

The behaviour of the approaches for the worst case scenario was similar to that obtained for the best
case scenario, in terms of their 𝐷𝐴𝑂 evaluation and selection. For example, the predefined-selection
used the same predefined design-time decisions, whereas the random-selection detected significant
changes in benefit and selected adhoc 𝐷𝐴𝑂 (Figure 9b and 9b). The proactive approach and reactive
approach initially suffered from low benefit in the first 5 timesteps (Figure 9b and 9b), but then
they quickly handled that and switched to the same 𝐷𝐴𝑂 as in the best case scenario over time
(Figure 8b,8b, 9b, and 9b). The static-selection adopted a single 𝑑𝑎𝑜 over time regardless of run-time
changes. In particular, it has recommended an architecture option (𝑑𝑎𝑜2), which seemed to violate
the constraints all the time. This explains why it produces zero benefit over 120 timesteps (e.g.
Figure 9b and 9a).
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