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I. HYPERPARAMETER SENSITIVITY

To analyze the impact of the choice of H and N on OSNN’s performance, we plot the prequential accuracy of OSNN
on both real and artificial streams, namely, Sine2, Elec, NOAA and Power Supply with nonuniform labeling distribution for
different values of these hyperparameters.

In Figure 1, we show the sensitiveness of OSNN to H and N for artificial data: the Sine2 stream with 20% labeled examples
and abrupt drift. H controls the complexity of OSNN. It is expected that smaller H produce simpler networks and simpler
manifold representations that might not have the sufficient variance to learn the correct decision boundary, however smaller
networks might adapt quickly to new concepts.
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Hyperparameter analysis - Sine2

Fig. 1: Prequential accuracy for H and N on Sine2 with 20% labeled examples and abrupt drift.

In contrast, OSNN with larger hidden layers can learn more complex decision boundaries, however it tends to overfit the
data and have slower adaptation to concept drifts. Such a trade-off is shown in Figure 1, where the best-performing value for
H is 600 and OSNN’s performance is slightly degraded with smaller or greater values. Figure 1 indicates that OSNN is fairly
robust to the choice of H , though a finer tuning of H can help further improving generalization.

With smaller N , OSNN may be able to more quickly adapt to new concepts. However, with larger N , OSNN may be able
to assess more information to induce the manifold and learn the scarce labels at the cost of computational time and speed of
adaptation to concept drifts. Such a trade-off is shown in Figure 1, where the tuned value of N is 300. Smaller or greater
values indicate worse balances and tend to degrade OSNN’s performance. More specifically, since this Sine2 data stream has
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abrupt concept drifts (drift length is 1 time step), larger values of N tend to make OSNN learn with data from an outdated
concept. That is, the learning process is not able to switch from one concept to another rapidly enough when the previous
concept should be forgotten instantly so that the model can learn an entirely different concept. This fact can be verified by the
steep descending slope for N > 300. Nevertheless, Figure 1 also shows that variation in accuracy for different choices of N
is relatively small. This fact demonstrates the robustness of OSNN to the choice of N .

In the context of real-world data streams, Figure 2 depicts the prequential accuracy as a function of H and N for the Elec
data stream. In this case, H is recommended at 700. Smaller values lead to smaller neural networks that are not able to properly
learn from data in Elec, whereas H > 700 tend to produce overfit networks. The hyperparameter N also has an impact on
performance. It is clear that the best N is 500. With smaller N , there is a local maximum at 200. OSNN’s performance start
degrading with N > 500. Such a fact indicates that the amount of recent data that OSNN requires depends on the length of
the concepts in each stream. Although H and N can be optimized via hyperparameter tuning, Figure 2 shows that the impact
in prequential accuracy of different choices of H and N is relatively small. This fact demonstrates the robustness of OSNN
to the choice of H and N .
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Fig. 2: Prequential accuracy for N and H .

The sensitivity of OSNN to N and H for the NOAA data stream is shown in Figure 3. Variations in accuracy for different
choices of H and N are relatively small, except when H is smaller than 100. This fact demonstrates the robustness of OSNN
to the choice of H and N . Considering variations with smaller magnitudes, we can notice that hyperparameter tuning can still
be beneficial.

In this stream, OSNN tends to need larger neural networks, i.e. larger values for the hyperparameter H , which might denote
that the NOAA data stream has overlapping classes with noisy data. The size of the neural network tends to stabilize with
H > 300. This fact might indicate that new data is not produced in a single unknown space, instead it might come from several
spaces that circumvent the current manifold. Therefore, larger H might be necessary in this case to represent the multiple
sources of the new concept. The plateau for N indicates that concepts are noisy and overlap severely. In this case, it is unclear
when the model should learn a new concept and forget the previous one. For the NOAA stream, a smaller N is advised for
time performance.
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Hyperparameter analysis - NOAA

Fig. 3: Prequential accuracy for N and H .

In Figure 4, the prequential accuracy produced by different values of H and N are analyzed with the Power Supply data
stream. As in the previous streams, H should be tuned in order to find a good trade-off for the network complexity. In this
case, H is best at 300, with smaller or larger values producing inferior predictive performance. The minibatch size N should
be set to 100, since OSNN with smaller N are not able to learn the current concept due to the lack of data; and OSNN with
N > 100 may not migrate rapidly enough from on concept to another. Such a fact indicates that the amount of recent data
that OSNN requires depends on the length of the concepts in each stream, the severity of the drift and of the complexity of
the decision boundary of each concept. Although H and N can be optimized via hyperparameter tuning, Figure 2 also shows
that the impact of different choices of H and N in generalization performance is relatively small. This fact demonstrates the
robustness of OSNN to the choice of H and N .
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Fig. 4: Prequential accuracy for N and H .

Figures 1, 2, 3 and 4 highlight the robustness of OSNN to the choice of H and N , and also show that properly tuning such
hyperparameters can bring some further small improvements to generalization. The recommended values for H depend on the
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data distribution and noise of each concept; the spatial differences between adjacent concepts; and the severity of the concept
drift. It is important to point out that most learning methods in literature have hyperparameters that regulate the trade-off for
model complexity and that their tuning is important for improving generalization performance. An adaptive H is a potential
alternative to improve OSNN’s predictive performance, as each concept might have severely contrasting data distributions with
different amounts of noise coming in varying speeds. On the other hand, an approach for adaptive H might introduce new
hyperparameters to the method.

As we can see from the above, the hyperparameters H and N have an effect on the behavior of OSNN and its ability
to learn different concepts or tackle concept drifts and should ideally be tuned. However, we can also see that most of the
time this effect is not large, meaning that the proposed approach is quite robust to hyperparameter choice. In particular, poor
choices of hyperparameter values rarely caused large decay in predictive performance. Moreover, our experiments done to
answer RQ3 have shown that the strategy of using an initial portion (the initial 10% of the stream) of the data stream for
tuning is successful in leading to hyperparameter choices that enabled our proposed approach to achieve top performances
compared to other existing approaches.

It is worth noting that the hyperparameter N controls the size of the data chunks. This kind of hyperparameter limits the
ability of existing sliding window or chunk-based approaches from the literature to perform well on data streams with sudden
drifts. This happens because these existing approaches usually reset their models when new chunks arrive, or create new models
from scratch for each new chunk. This means that large chunk sizes are necessary to achieve good performance during stable
periods. However, large chunk sizes prevent adaptation to sudden drifts. OSNN overcomes this issue based on the following
two strategies:

1) OSNN does not reset its model and does not create new models from scratch to learn new chunks. Therefore, its chunks
do not need to be very large for achieving good predictive performance during stable periods. This enables OSNN to
deal with both abrupt and gradual drifts while maintaining its ability to perform well during stable periods. The fact that
the chunks do not need to be very large is illustrated in our analysis of sensitivity to hyperparameters shown above.

2) The learning rate is automatically adjusted based on the chunk of data, so that an appropriate level of forgetting of
the data within the chunk is automatically chosen to tackle different kinds of concept drift or stable concepts. Such
adjustment is analyzed in Section VII.C of the main manuscript. The adaptive learning rate also helps our approach to be
more robust to different choices of N , as it can increase or decrease the size of the learning steps according to changes
in the incoming data distribution regardless the size of the minibatch. Such robustness to different values of N can be
observed in the hyperparameter sensitivity analysis shown above.

II. PREQUENTIAL ACCURACY FIGURES

In this section, we show all Figures with plots of the prequential accuracy of the compared methods. Figures 5, 6 and 7
present Prequential accuracy on the Agrawal data stream with uniform labeling distribution and abrupt concept drifts with 5%,
10% and 20% of labels, respectively. In Figures 8, 9 and 10, we show the plots for gradual concept drifts in the Agrawal
data stream with uniform labeling distribution and 5%, 10% and 20% of labels, respectively. We also show the plots for the
real-world data stream (Power Supply) with uniform labeling distribution and 5%, 10% and 20% of labels, respectively, in
Figures 11, 12 and 13.

We also show the Figures with plots of the prequential accuracy of the compared methods for nonuniform labeling distribution.
Figures 14, 15 and 16 present Prequential accuracy on the Agrawal data stream with nonuniform labeling distribution and
abrupt concept drifts with 5%, 10% and 20% of labels, respectively. In Figures 17, 18 and 19, we show the plots for gradual
concept drifts in the Agrawal data stream with nonuniform labeling distribution and 5%, 10% and 20% of labels, respectively.
We also show the plots of prequential accuracy for the real-world Power Supply stream with nonuniform labeling distribution
and 5%, 10% and 20% of labels, respectively, in Figures 20, 21 and 22.
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Fig. 5: Prequential accuracy for Agrawal1 with 5% of uniformly distributed labels and abrupt drifts.
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Fig. 6: Prequential accuracy for Agrawal1 with 10% of uniformly distributed labels and abrupt drifts.
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Fig. 7: Prequential accuracy for Agrawal1 with 20% of uniformly distributed labels and abrupt drifts.
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Fig. 8: Prequential accuracy for Agrawal1 with 5% of uniformly distributed labels and gradual drifts.
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Fig. 9: Prequential accuracy for Agrawal1 with 10% of uniformly distributed labels and gradual drifts.
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Fig. 10: Prequential accuracy for Agrawal1 with 20% of uniformly distributed labels and gradual drifts.
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Fig. 11: Prequential accuracy for Power Supply with 5% of uniformly distributed labels.
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Fig. 12: Prequential accuracy for Power Supply with 10% of uniformly distributed labels.
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Fig. 13: Prequential accuracy for Power Supply with 20% of uniformly distributed labels.
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Fig. 14: Prequential accuracy for Sine2 with 5% of nonuniformly distributed labels and abrupt drifts.
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Fig. 15: Prequential accuracy for Sine2 with 10% of nonuniformly distributed labels and abrupt drifts.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time step 10
4

40

50

60

70

80

90

P
re

q
u
e
n
ti
a
l 
a
c
c
u
ra

c
y
 (

%
)

Sine2 - Abrupt - 20% of labels

HTNB

OAUE

DDD

OSNN

Fig. 16: Prequential accuracy for Sine2 with 20% of nonuniformly distributed labels and abrupt drifts.
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Fig. 17: Prequential accuracy for Sine2 with 5% of nonuniformly distributed labels and gradual drifts.
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Fig. 18: Prequential accuracy for Sine2 with 10% of nonuniformly distributed labels and gradual drifts.
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Fig. 19: Prequential accuracy for Sine2 with 20% of nonuniformly distributed labels and gradual drifts.
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Fig. 20: Prequential accuracy for NOAA with 5% of nonuniformly distributed labels.
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Fig. 21: Prequential accuracy for NOAA with 10% of nonuniformly distributed labels.
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Fig. 22: Prequential accuracy for NOAA with 20% of nonuniformly distributed labels.

III. RQ2 – RESULT TABLES

In this section, we show the detailed result tables for answering Research Question (RQ) 2. Subsection III-A presents the
results for uniformly distributed labels. And, in Subsection III-B, we show the results for nonuniformly distributed labels.

A. Result tables for uniformly distributed labels

Tables I, II and III present the mean and standard deviation of each method in each data stream for abrupt drifts, gradual
drifts and real-world streams, respectively, with all amounts of labeled data in the scenario with uniformly distributed labels.
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TABLE I: Mean and standard deviation of prequential accuracy of our supervised version of our approach and OSNN on
artificial streams with abrupt concept drifts and uniformly distributed labels.

Type of drift: abrupt
OSNN (Supervised) OSNN

Labels at 5%
Sine1 76.144±6.271 72.946±7.794
Sine2 80.499±9.923 76.854±10.308

Agrawal1 61.289±13.76 60.068±12.358
Agrawal2 61.052±10.825 59.529±8.483
Agrawal3 52.457±2.076 53.618±2.261
Agrawal4 52.754±3.095 53.756±3.427

SEA1 81.104±5.317 81.545±6.804
SEA2 82.101±4.304 79.166±8.157

STAGGER1 93.602±4.76 81.308±8.405
STAGGER2 94.16±6.178 85.489±8.778

Labels at 10%
Sine1 78.264±6.681 76.453±6.494
Sine2 82.933±10.049 82.893±7.783

Agrawal1 63.76±15.579 61.218±13.950
Agrawal2 64.902±11.493 62.045±8.989
Agrawal3 53.91±2.158 52.793±2.112
Agrawal4 55.716±5.083 54.631±4.836

SEA1 84.213±4.496 82.240±5.930
SEA2 84.145±4.055 82.731±5.266

STAGGER1 95.998±4.388 93.651±4.051
STAGGER2 96.099±6.309 93.358±8.822

Labels at 20%
Sine1 77.926±9.337 78.505±4.553
Sine2 83.3±10.741 85.644±6.496

Agrawal1 66.95±16.222 61.728±13.926
Agrawal2 68.442±12.379 62.790±9.350
Agrawal3 55.994±3.506 53.484±2.766
Agrawal4 57.634±5.206 53.982±4.399

SEA1 85.618±3.466 84.121±4.109
SEA2 84.863±3.236 83.595±3.863

STAGGER1 96.99±3.699 97.979±2.477
STAGGER2 96.535±4.673 97.278±5.101
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TABLE II: Mean and standard deviation of prequential accuracy of our supervised version of our approach and OSNN on
artificial streams with gradual concept drifts and uniformly distributed labels.

Type of drift: gradual
OSNN (Supervised) OSNN

Labels at 5%
Sine1 75.03±7.223 71.878±8.297
Sine2 81.585±9.065 77.630±8.689

Agrawal1 60.169±13.175 59.083±11.734
Agrawal2 60.443±9.317 60.206±7.334
Agrawal3 50.409±1.721 51.848±1.899
Agrawal4 52.616±3.199 52.756±3.197

SEA1 81.695±4.728 80.859±5.696
SEA2 80.731±5.279 80.748±6.046

STAGGER1 93.378±4.459 82.310±9.939
STAGGER2 90.866±7.105 84.390±8.153

Labels at 10%
Sine1 77.573±6.823 75.539±6.177
Sine2 82.987±9.519 80.289±7.675

Agrawal1 64.318±15.582 61.166±13.522
Agrawal2 65.282±10.918 62.188±8.938
Agrawal3 54.171±2.588 53.829±3.218
Agrawal4 54.648±5.411 53.520±4.654

SEA1 84.285±3.975 82.819±6.495
SEA2 83.262±4.906 79.859±8.554

STAGGER1 95.639±4.561 93.159±4.759
STAGGER2 94.928±5.594 91.277±7.953

Labels at 20%
Sine1 78.309±8.061 77.582±5.876
Sine2 83.431±10.387 83.650±6.718

Agrawal1 67.24±15.747 60.542±12.687
Agrawal2 67.747±12.224 62.303±9.266
Agrawal3 57.516±3.126 54.412±3.124
Agrawal4 58.265±4.995 54.505±4.499

SEA1 85.081±4.012 83.091±5.091
SEA2 85.06±3.728 82.615±5.734

STAGGER1 96.484±4.291 96.822±3.619
STAGGER2 96.331±4.142 95.746±4.776

TABLE III: Mean and standard deviation of prequential accuracy of our supervised version of our approach and OSNN on
artificial streams with real-world streams with uniformly distributed labels.

OSNN (Supervised) OSNN
Labels at 5%

Elec 70.175±5.984 73.765±7.665
NOAA 73.764±3.139 71.264±3.207

Power Supply 63.739±3.194 65.279±3.588
Sensor 73.518±11.066 73.913±12.437

Labels at 10%
Elec 74.889±4.925 74.187±7.826

NOAA 76.717±2.369 72.083±2.629
Power Supply 64.519±3.371 66.003±3.357

Sensor 79.011±11.642 76.872±12.196
Labels at 20%

Elec 76.131±5.409 75.201±7.060
NOAA 78.525±2.052 73.123±2.379

Power Supply 64.573±3.225 67.336±3.085
Sensor 82.472±11.345 80.657±11.580

B. Result tables for nonuniformly distributed labels

Tables IV, V and VI present the mean and standard deviation of each method in each data stream for abrupt drifts, gradual
drifts and real-world streams, respectively, with all amounts of labeled data in the scenario with nonuniformly distributed labels.
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TABLE IV: Mean and standard deviation of prequential accuracy of our supervised version of our approach and OSNN on
artificial streams with abrupt concept drifts and nonuniformly distributed labels.

Type of drift: abrupt
OSNN (Supervised) OSNN

Labels at 5%
Sine1 61.487±6.785 71.058±4.889
Sine2 59.772±6.543 69.194±6.275

Agrawal1 52.919±5.648 53.683±6.270
Agrawal2 52.211±4.859 53.917±6.127
Agrawal3 51.879±2.462 51.777±2.118
Agrawal4 52.294±2.459 51.409±1.901

SEA1 56.198±3.848 65.622±4.595
SEA2 58.111±6.178 67.310±6.592

STAGGER1 59.671±9.880 68.210±10.137
STAGGER2 56.217±7.132 58.756±2.676

Labels at 10%
Sine1 59.823±5.573 59.840±6.310
Sine2 67.482±7.832 71.583±5.359

Agrawal1 52.409±3.358 55.559±7.257
Agrawal2 53.609±3.856 53.681±4.796
Agrawal3 50.598±1.305 51.058±2.008
Agrawal4 51.359±1.943 51.599±1.360

SEA1 56.785±5.956 63.591±4.972
SEA2 61.046±7.151 67.990±8.656

STAGGER1 62.862±12.878 69.589±8.013
STAGGER2 65.500±9.036 65.260±5.617

Labels at 10%
Sine1 63.198±3.412 64.436±4.306
Sine2 68.737±8.069 73.422±3.974

Agrawal1 57.496±10.329 57.022±9.180
Agrawal2 54.151±5.069 56.533±7.528
Agrawal3 52.770±2.736 50.355±1.711
Agrawal4 51.450±1.861 52.821±3.441

SEA1 69.236±6.850 68.714±7.047
SEA2 68.623±10.099 73.625±9.589

STAGGER1 66.413±8.716 69.899±8.622
STAGGER2 69.208±13.065 65.532±5.092



14

TABLE V: Mean and standard deviation of prequential accuracy of our supervised version of our approach and OSNN on
artificial streams with gradual concept drifts and nonuniformly distributed labels.

Type of drift: gradual
OSNN (Supervised) OSNN

Labels at 5%
Sine1 58.252±5.199 65.324±3.234
Sine2 57.608±8.374 66.803±7.472

Agrawal1 52.892±5.512 53.233±6.722
Agrawal2 52.687±5.330 53.461±4.067
Agrawal3 51.098±1.991 49.074±3.412
Agrawal4 51.479±1.867 52.165±3.086

SEA1 58.360±6.661 66.475±15.049
SEA2 59.049±6.731 67.990±4.933

STAGGER1 57.146±6.679 65.305±7.059
STAGGER2 55.921±5.459 59.712±4.051

Labels at 10%
Sine1 60.830±7.315 61.655±6.573
Sine2 62.581±6.177 67.090±4.905

Agrawal1 53.740±9.287 54.106±6.980
Agrawal2 55.012±8.020 52.362±4.453
Agrawal3 50.693±1.821 51.294±2.337
Agrawal4 51.145±1.560 50.686±1.258

SEA1 60.836±5.839 69.206±7.562
SEA2 58.490±5.591 66.025±5.567

STAGGER1 66.476±10.486 65.978±7.671
STAGGER2 56.253±4.852 57.406±4.190

Labels at 20%
Sine1 66.388±5.294 67.997±4.571
Sine2 66.955±4.584 66.480±3.747

Agrawal1 55.988±7.153 56.099±7.592
Agrawal2 53.551±2.746 54.561±3.011
Agrawal3 49.430±1.753 50.070±2.381
Agrawal4 50.423±1.277 51.386±2.492

SEA1 68.191±5.794 70.036±5.484
SEA2 63.793±6.464 65.742±6.721

STAGGER1 65.718±9.652 66.495±4.545
STAGGER2 73.234±8.928 64.202±3.564

TABLE VI: Mean and standard deviation of prequential accuracy of our supervised version of our approach and OSNN on
artificial streams with real-world streams with nonuniformly distributed labels.

OSNN (Supervised) OSNN
Labels at 5%

Elec 55.709±6.941 55.124±13.538
NOAA 44.305±11.053 69.205±3.584

Power Supply 52.469±4.340 58.369±8.474
Sensor 51.211±9.323 60.137±10.583

Labels at 10%
Elec 52.695±8.819 51.199±9.622

NOAA 50.893±11.936 69.652±3.697
Power Supply 56.400±6.248 51.880±5.992

Sensor 52.343±9.839 59.993±15.509
Labels at 20%

Elec 60.245±11.148 67.668±6.542
NOAA 46.712±10.336 70.429±3.126

Power Supply 58.758±5.659 50.102±7.445
Sensor 54.296±9.758 59.506±11.393

IV. RQ3 – RESULT TABLES

In this section, we show the detailed result tables for answering RQ3. Subsection IV-A presents the results for uniformly
distributed labels. And, in Subsection IV-B, we show the results for nonuniformly distributed labels.

A. Result tables for uniformly distributed labels

Tables VII, VIII and IX present the mean and standard deviation of each method in each data stream for abrupt drifts,
gradual drifts and real-world streams, respectively, with all amounts of labeled data in the scenario with uniformly distributed
labels.
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TABLE VII: Mean and standard deviation of prequential accuracy on artificial streams with abrupt concept drifts and uniformly
distributed labels.

Type of drift: abrupt
HTNB OZABAG OAUE RCD DDD DP OSNN

Labels at 5%
Sine1 63.630±13.842 70.100±13.417 55.273±10.852 77.032±7.699 75.757±8.154 77.032±7.699 72.95±7.79
Sine2 63.785±19.531 61.237±18.182 64.597±12.971 80.500±8.246 79.924±8.768 80.500±8.246 76.85±10.31

Agrawal1 52.866±2.692 52.832±2.701 51.363±2.156 52.866±2.692 52.746±2.628 52.866±2.692 60.07±12.36
Agrawal2 52.643±2.357 51.547±2.205 51.343±1.292 52.815±2.306 51.458±2.074 52.643±2.357 59.53±8.48
Agrawal3 52.563±2.153 52.453±2.136 51.090±1.308 52.018±1.264 52.299±2.022 52.563±2.153 53.62±2.26
Agrawal4 52.171±2.779 51.586±2.368 50.712±1.295 52.109±2.809 52.089±2.068 52.171±2.779 53.76±3.43

SEA1 82.076±5.802 81.577±6.083 75.405±14.771 82.076±5.802 81.318±6.359 82.076±5.802 81.55±6.80
SEA2 82.476±4.580 81.875±5.255 74.714±14.053 82.476±4.580 81.852±5.206 82.476±4.580 79.17±8.16

STAGGER1 79.419±16.424 82.225±11.896 67.707±19.763 78.732±16.720 95.835±5.860 96.646±4.901 81.31±8.41
STAGGER2 70.623±24.328 70.932±24.128 62.539±13.129 78.238±17.157 94.918±6.598 95.652±6.013 85.49±8.78

Labels at 10%
Sine1 61.166±20.151 60.612±19.413 59.112±14.360 80.801±4.385 79.972±5.329 80.801±4.385 76.45±6.49
Sine2 58.080±29.440 62.062±19.744 62.089±16.383 84.641±7.463 84.920±7.376 86.567±6.543 82.89±7.78

Agrawal1 52.789±3.285 52.987±2.935 54.413±5.947 53.920±3.949 53.017±3.133 54.345±3.805 61.22±13.95
Agrawal2 54.249±5.845 54.477±7.304 53.414±3.862 54.536±5.863 54.764±6.067 54.770±6.012 62.04±8.99
Agrawal3 53.630±3.260 53.646±2.740 52.351±2.617 53.630±3.260 53.364±2.631 53.630±3.260 52.79±2.11
Agrawal4 52.656±4.243 52.952±3.768 52.093±2.910 53.128±3.472 51.984±2.413 53.462±3.847 54.63±4.84

SEA1 83.885±4.221 83.775±4.265 80.239±10.876 83.885±4.221 83.831±4.295 83.885±4.221 82.24±5.93
SEA2 83.766±4.049 83.702±4.227 79.368±11.086 83.766±4.049 83.648±4.343 83.766±4.049 82.73±5.27

STAGGER1 73.070±20.078 77.538±18.015 74.731±16.443 76.623±19.861 97.182±4.511 98.228±3.481 93.65±4.05
STAGGER2 68.822±22.760 71.355±21.107 77.580±15.786 79.044±17.487 96.770±6.333 96.822±6.255 93.36±8.82

Labels at 20%
Sine1 61.020±24.098 61.118±23.407 69.458±13.555 83.219±4.339 82.285±4.719 83.219±4.339 78.51±4.55
Sine2 59.380±18.717 59.445±18.411 71.861±14.471 88.005±4.285 86.935±5.129 88.005±4.285 85.64±6.50

Agrawal1 56.743±4.156 57.289±7.451 57.946±7.321 56.481±4.005 54.639±3.952 56.101±6.591 61.73±13.93
Agrawal2 55.872±6.890 56.850±8.124 57.119±6.412 55.672±4.915 57.613±7.742 57.776±6.738 62.79±9.35
Agrawal3 53.761±2.575 54.649±2.998 54.204±2.471 53.761±2.575 54.974±2.823 53.761±2.575 53.48±2.77
Agrawal4 56.467±3.748 55.206±3.305 54.691±2.748 53.387±3.531 53.473±1.781 56.870±3.313 53.98±4.40

SEA1 83.813±3.793 84.200±3.514 82.182±8.822 83.813±3.793 84.067±3.745 83.813±3.793 84.12±4.11
SEA2 83.713±3.564 83.466±3.643 81.357±8.840 83.713±3.564 83.689±4.080 83.713±3.564 83.59±3.86

STAGGER1 72.452±22.691 75.551±19.867 84.330±13.919 98.733±2.481 98.531±2.678 98.733±2.481 97.98±2.48
STAGGER2 69.202±22.596 79.427±13.388 83.033±13.697 88.872±12.685 98.302±4.372 98.332±3.977 97.28±5.10
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TABLE VIII: Mean and standard deviation of prequential accuracy on artificial streams with gradual concept drifts and uniformly
distributed labels.

Type of drift: gradual
HTNB OZABAG OAUE RCD DDD DP OSNN

Labels at 5%
Sine1 70.598±8.726 66.568±8.782 63.498±11.762 75.684±5.630 74.909±7.375 75.684±5.630 71.88±8.30
Sine2 56.210±24.421 56.257±21.740 55.177±20.404 81.912±7.235 81.745±7.809 81.912±7.235 77.63±8.69

Agrawal1 52.706±2.372 52.382±1.964 51.710±2.484 52.662±1.929 51.906±2.004 52.706±2.372 59.08±11.73
Agrawal2 52.167±3.702 51.893±3.352 50.455±0.948 52.193±3.143 52.631±2.985 53.620±3.128 60.21±7.33
Agrawal3 52.394±1.591 52.372±1.548 51.385±1.207 51.905±1.297 52.159±1.530 52.394±1.591 51.85±1.90
Agrawal4 52.748±3.370 52.097±2.872 50.859±1.270 51.887±2.044 52.052±2.891 52.748±3.370 52.76±3.20

SEA1 82.074±6.236 82.184±6.134 74.719±14.968 82.074±6.236 82.564±5.887 82.074±6.236 80.86±5.70
SEA2 81.522±6.177 80.992±7.243 74.840±13.803 81.522±6.177 80.850±7.342 81.522±6.177 80.75±6.05

STAGGER1 72.023±19.672 75.028±17.338 61.000±14.604 76.503±18.071 93.890±6.319 94.745±5.641 82.31±9.94
STAGGER2 66.969±21.481 67.175±19.827 62.814±14.135 71.963±17.892 92.650±7.953 91.987±7.694 84.39±8.15

Labels at 10%
Sine1 61.403±21.888 61.162±21.506 62.374±12.054 80.561±4.594 80.458±4.213 80.561±4.594 75.54±6.18
Sine2 64.800±17.618 63.420±18.191 67.948±12.278 82.531±7.516 82.091±7.486 82.531±7.516 80.29±7.68

Agrawal1 54.372±4.779 53.906±4.008 53.644±4.419 52.886±2.564 54.046±3.887 54.892±4.541 61.17±13.52
Agrawal2 53.147±5.338 53.930±5.202 52.790±3.307 54.430±4.728 54.605±5.141 54.546±4.843 62.19±8.94
Agrawal3 53.187±2.577 53.328±2.693 52.087±2.246 52.602±1.985 51.550±1.664 53.187±2.577 53.83±3.22
Agrawal4 52.782±4.256 52.370±3.754 52.047±2.478 51.725±3.148 52.748±2.353 53.185±4.077 53.52±4.65

SEA1 83.217±4.177 82.338±4.225 79.677±11.519 83.217±4.177 82.959±4.918 83.217±4.177 82.82±6.49
SEA2 82.440±4.792 82.450±5.374 78.858±11.207 82.440±4.792 82.281±5.606 82.440±4.792 79.86±8.55

STAGGER1 70.148±19.858 70.675±20.279 74.882±16.115 91.362±5.645 96.521±4.492 96.083±4.328 93.16±4.76
STAGGER2 67.518±21.689 70.680±19.549 73.762±13.175 88.627±8.978 94.397±6.283 94.072±6.429 91.28±7.95

Labels at 20%
Sine1 61.870±20.025 61.563±21.418 69.473±13.012 82.637±4.415 81.922±5.017 82.637±4.415 77.58±5.88
Sine2 58.330±22.172 61.623±19.001 69.828±14.049 85.870±5.800 85.027±6.088 85.870±5.800 83.65±6.72

Agrawal1 57.260±3.278 56.931±6.274 59.054±8.201 54.418±4.030 54.260±3.747 59.848±5.563 60.54±12.69
Agrawal2 55.609±8.255 56.223±9.193 56.457±7.280 56.837±7.975 55.671±7.537 57.374±8.213 62.30±9.27
Agrawal3 53.825±2.271 54.389±2.547 53.514±2.051 53.942±1.982 53.469±2.408 53.391±2.526 54.41±3.12
Agrawal4 54.959±4.474 55.737±4.831 54.798±4.362 52.960±4.269 52.836±3.269 54.313±4.691 54.50±4.50

SEA1 83.361±3.902 83.571±3.904 81.318±9.012 83.361±3.902 83.422±3.898 83.361±3.902 83.09±5.09
SEA2 83.181±2.964 82.924±3.580 81.102±8.946 83.181±2.964 82.994±3.740 83.181±2.964 82.62±5.73

STAGGER1 69.985±22.615 77.875±17.252 84.372±13.435 96.585±4.765 97.084±3.905 96.585±4.765 96.82±3.62
STAGGER2 68.808±23.044 72.464±20.215 81.915±13.132 93.299±5.722 95.633±5.023 95.115±4.940 95.75±4.78

TABLE IX: Mean and standard deviation of prequential accuracy on real-world streams with uniformly distributed labels.

HTNB OZABAG OAUE RCD DDD DP OSNN
Labels at 5%

Elec 73.368±6.649 73.514±6.843 67.275±15.393 73.696±5.846 73.426±6.800 73.498±6.838 73.77±7.67
NOAA 65.562±2.794 67.955±2.670 67.723±3.375 65.562±2.794 69.194±3.303 65.562±2.794 71.26±3.21

Power Supply 64.877±2.324 64.793±2.301 62.393±5.775 64.877±2.324 64.844±2.863 64.877±2.324 65.28±3.59
Sensor 67.667±15.870 67.597±15.118 69.610±15.915 62.202±13.172 75.369±13.769 73.512±14.509 73.91±12.44

Labels at 10%
Elec 71.323±6.180 73.573±7.802 69.878±13.386 73.538±6.724 74.454±6.857 74.354±5.828 74.19±7.83

NOAA 69.324±3.132 71.639±2.843 71.599±2.717 69.308±3.148 71.020±3.447 69.309±3.147 72.08±2.63
Power Supply 64.982±2.251 64.981±2.245 63.078±4.760 64.982±2.251 64.279±2.444 64.885±2.353 66.00±3.36

Sensor 71.908±14.075 76.026±13.265 81.003±13.963 68.755±14.536 80.012±14.141 81.591±12.671 76.87±12.20
Labels at 20%

Elec 75.179±5.292 76.487±5.292 72.423±10.476 73.862±6.881 76.178±5.323 76.064±5.884 75.20±7.06
NOAA 65.154±2.825 65.368±2.807 67.226±3.029 66.110±2.861 69.968±3.530 66.005±2.722 73.12±2.38

Power Supply 64.714±3.005 64.887±3.042 64.366±3.648 64.714±3.005 64.720±2.597 64.714±3.005 67.34±3.09
Sensor 71.876±16.101 86.462±10.322 87.869±11.387 79.301±10.068 90.831±7.045 89.246±6.810 80.66±11.58

B. Result tables for nonuniformly distributed labels

Tables X, XI and XII present the mean and standard deviation of each method in each data stream for abrupt drifts, gradual
drifts and real-world streams, respectively, with all amounts of labeled data in the scenario with nonuniformly distributed labels.
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TABLE X: Mean and standard deviation of prequential accuracy on artificial streams with abrupt concept drifts and
nonuniformly distributed labels.

Type of drift: abrupt
HTNB OZABAG OAUE RCD DDD DP OSNN

Labels at 5%
Sine1 58.294 ±3.969 58.906 ±4.019 53.367 ±4.359 58.294 ±3.969 65.291 ±5.528 58.294 ±3.969 71.058 ±4.889
Sine2 52.629 ±7.370 53.597 ±7.512 49.532 ±4.639 52.629 ±7.370 64.570 ±8.998 59.415 ±10.504 69.194 ±6.275

Agrawal1 50.583 ±1.063 50.219 ±0.804 50.743 ±1.189 50.199 ±0.825 50.80 ±0.905 50.587 ±1.408 53.683 ±6.270
Agrawal2 51.636 ±2.370 51.731 ±2.190 51.610 ±2.426 51.717 ±2.48 50.727 ±1.375 51.766 ±2.691 53.917 ±6.127
Agrawal3 50.683 ±0.761 50.623 ±0.809 50.498 ±0.829 50.555 ±0.793 50.388 ±0.886 50.260 ±0.771 51.777 ±2.118
Agrawal4 50.259 ±1.191 49.919 ±1.331 49.880 ±0.975 50.077 ±1.415 50.256 ±1.077 50.358 ±1.038 51.409 ±1.901

SEA1 65.988 ±3.965 67.888 ±4.337 61.283 ±7.724 65.988 ±3.965 63.355 ±3.291 67.644 ±4.590 65.622 ±4.595
SEA2 72.348 ±6.124 70.884 ±7.147 67.962 ±12.371 72.348 ±6.124 71.988 ±6.665 69.056 ±4.643 67.310 ±6.592

STAGGER1 67.431 ±12.625 72.275 ±12.689 57.648 ±9.022 67.431 ±12.625 70.167 ±12.761 65.772 ±8.217 68.210 ±10.87
STAGGER2 49.900 ±10.548 54.191 ±6.404 46.794 ±8.424 49.900 ±10.548 56.090 ±5.645 62.858 ±10.526 58.756 ±2.676

Labels at 10%
Sine1 54.664 ±10.711 54.923 ±10.320 53.108 ±5.651 54.664 ±10.711 55.903 ±4.847 55.941 ±4.417 59.840 ±6.310
Sine2 63.734 ±10.447 61.603 ±11.642 60.87 ±7.98 63.734 ±10.447 70.341 ±10.367 64.697 ±11.774 71.583 ±5.359

Agrawal1 50.620 ±2.098 51.435 ±3.406 50.849 ±1.908 50.552 ±1.378 51.081 ±1.845 51.127 ±1.927 55.559 ±7.257
Agrawal2 50.455 ±1.115 50.369 ±1.338 50.322 ±1.756 49.781 ±1.303 50.334 ±1.382 50.529 ±1.312 53.681 ±4.796
Agrawal3 50.670 ±1.017 50.756 ±1.152 50.985 ±1.001 50.462 ±1.082 50.877 ±1.049 50.48 ±0.948 51.058 ±2.008
Agrawal4 50.166 ±0.920 50.223 ±0.954 49.884 ±0.891 50.380 ±0.775 50.269 ±0.751 50.520 ±0.761 51.599 ±1.360

SEA1 64.519 ±5.206 65.211 ±5.197 59.301 ±6.175 64.519 ±5.206 63.342 ±5.242 58.747 ±8.059 63.591 ±4.972
SEA2 66.077 ±9.003 66.232 ±8.801 64.765 ±9.400 66.077 ±9.003 67.682 ±8.815 65.621 ±8.68 67.990 ±8.656

STAGGER1 62.011 ±12.875 64.368 ±12.482 62.798 ±8.631 62.011 ±12.875 66.628 ±10.259 65.759 ±10.599 69.589 ±8.08
STAGGER2 67.834 ±9.168 68.309 ±9.270 70.651 ±10.209 67.834 ±9.168 66.588 ±3.982 64.988 ±3.530 65.260 ±5.617

Labels at 20%
Sine1 52.163 ±4.840 52.186 ±5.044 52.459 ±3.565 52.163 ±4.840 58.426 ±2.898 56.053 ±4.405 64.436 ±4.306
Sine2 60.667 ±11.014 61.536 ±11.674 65.824 ±9.321 60.667 ±11.014 70.559 ±8.244 58.376 ±11.605 73.422 ±3.974

Agrawal1 51.873 ±2.191 52.570 ±3.280 53.693 ±5.097 51.178 ±1.435 52.081 ±2.437 52.451 ±3.479 57.022 ±9.180
Agrawal2 52.421 ±4.602 52.191 ±2.977 52.391 ±3.846 52.607 ±4.603 52.554 ±4.009 52.163 ±4.614 56.533 ±7.528
Agrawal3 49.245 ±1.623 49.174 ±1.639 49.605 ±1.427 49.922 ±1.018 49.955 ±1.109 50.068 ±1.053 50.355 ±1.711
Agrawal4 50.724 ±1.556 50.935 ±1.961 51.218 ±1.767 50.028 ±1.181 50.763 ±1.689 50.521 ±1.392 52.821 ±3.441

SEA1 65.146 ±5.297 65.624 ±4.474 64.815 ±7.502 65.146 ±5.297 67.817 ±7.038 54.734 ±6.375 68.714 ±7.047
SEA2 73.478 ±4.871 74.658 ±3.923 69.085 ±9.609 73.478 ±4.871 79.030 ±5.654 58.844 ±10.128 73.625 ±9.589

STAGGER1 59.020 ±5.977 61.070 ±5.759 62.197 ±5.587 59.020 ±5.977 66.358 ±5.103 63.198 ±4.606 69.899 ±8.622
STAGGER2 65.777 ±5.84 60.528 ±7.369 60.569 ±9.948 65.777 ±5.84 65.903 ±8.399 61.304 ±6.659 65.532 ±5.092



18

TABLE XI: Mean and standard deviation of prequential accuracy on artificial streams with gradual concept drifts and
nonuniformly distributed labels.

Type of drift: gradual
HTNB OZABAG OAUE RCD DDD DP OSNN

Labels at 5%
Sine1 55.227 ±3.490 55.297 ±3.87 51.997 ±3.011 55.227 ±3.490 61.343 ±3.298 58.688 ±3.961 65.324 ±3.234
Sine2 54.752 ±8.963 55.025 ±9.989 49.692 ±2.982 54.752 ±8.963 60.364 ±7.992 56.658 ±9.841 66.803 ±7.472

Agrawal1 50.575 ±1.669 50.658 ±1.780 50.295 ±0.983 50.345 ±1.238 50.285 ±1.072 50.48 ±1.198 53.233 ±6.722
Agrawal2 49.881 ±0.994 49.937 ±1.102 50.036 ±0.725 49.788 ±1.067 49.992 ±1.037 49.727 ±0.973 53.461 ±4.067
Agrawal3 49.856 ±0.865 49.944 ±0.974 50.223 ±0.891 49.856 ±0.865 49.888 ±0.965 50.002 ±0.850 49.074 ±3.412
Agrawal4 50.723 ±1.351 50.755 ±1.485 50.767 ±1.120 50.723 ±1.351 50.640 ±1.326 50.327 ±1.432 52.165 ±3.086

SEA1 64.739 ±5.793 65.852 ±6.022 62.111 ±9.995 64.739 ±5.793 65.376 ±8.820 65.505 ±5.479 66.475 ±15.049
SEA2 65.376 ±6.919 66.708 ±5.575 56.462 ±5.227 65.376 ±6.919 70.717 ±6.153 65.700 ±6.844 67.990 ±4.933

STAGGER1 60.198 ±7.444 64.656 ±11.986 54.066 ±7.089 60.198 ±7.444 68.127 ±9.394 59.441 ±5.299 65.305 ±7.059
STAGGER2 52.234 ±5.473 51.758 ±6.079 48.822 ±2.616 52.234 ±5.473 57.244 ±6.027 54.952 ±4.184 59.712 ±4.051

Labels at 10%
Sine1 53.328 ±8.387 53.528 ±8.253 50.749 ±5.987 53.328 ±8.387 54.457 ±3.851 54.304 ±4.273 61.655 ±6.573
Sine2 56.981 ±7.831 56.042 ±7.777 55.445 ±5.787 56.981 ±7.831 62.008 ±5.902 57.925 ±9.338 67.090 ±4.905

Agrawal1 50.683 ±1.241 50.696 ±1.408 50.937 ±1.328 50.624 ±1.251 49.974 ±0.826 50.635 ±1.955 54.106 ±6.980
Agrawal2 50.116 ±1.097 50.320 ±1.110 49.824 ±1.233 50.201 ±1.084 49.841 ±0.994 49.554 ±0.997 52.362 ±4.453
Agrawal3 50.709 ±1.785 50.327 ±1.633 50.917 ±1.622 50.259 ±1.207 51.024 ±1.388 50.998 ±1.749 51.294 ±2.337
Agrawal4 50.451 ±1.294 50.382 ±1.253 50.669 ±1.479 50.296 ±1.022 50.501 ±1.087 50.952 ±1.692 50.686 ±1.258

SEA1 72.740 ±5.892 72.282 ±5.215 66.907 ±7.946 72.740 ±5.892 68.451 ±5.85 66.783 ±6.548 69.206 ±7.562
SEA2 67.212 ±3.716 68.633 ±3.618 63.709 ±8.315 67.212 ±3.716 67.793 ±3.380 65.322 ±5.563 66.025 ±5.567

STAGGER1 53.931 ±11.685 58.017 ±7.890 58.543 ±7.975 53.931 ±11.685 62.609 ±10.100 59.357 ±7.419 65.978 ±7.671
STAGGER2 56.761 ±5.762 59.830 ±6.752 53.217 ±3.800 56.761 ±5.762 59.694 ±6.953 57.060 ±5.190 57.406 ±4.190

Labels at 20%
Sine1 52.495 ±3.238 52.84 ±3.115 55.191 ±5.363 52.495 ±3.238 60.591 ±6.948 54.431 ±3.186 67.997 ±4.571
Sine2 60.768 ±7.826 60.801 ±7.873 59.612 ±6.832 60.768 ±7.826 64.148 ±6.648 54.856 ±8.367 66.480 ±3.747

Agrawal1 51.569 ±2.210 52.066 ±2.464 51.678 ±3.178 51.809 ±2.210 52.521 ±2.363 52.332 ±2.237 56.099 ±7.592
Agrawal2 52.817 ±2.324 51.454 ±1.487 51.734 ±1.709 51.298 ±1.575 52.256 ±1.641 51.607 ±1.694 54.561 ±3.011
Agrawal3 50.092 ±1.653 50.354 ±1.605 49.832 ±1.156 50.129 ±1.81 49.770 ±1.285 49.912 ±1.083 50.070 ±2.381
Agrawal4 51.691 ±1.602 51.689 ±1.592 51.154 ±1.620 51.329 ±1.450 51.272 ±2.019 51.263 ±1.360 51.386 ±2.492

SEA1 66.956 ±3.424 66.878 ±3.678 64.451 ±6.031 66.956 ±3.424 67.002 ±6.957 64.879 ±5.901 70.036 ±5.484
SEA2 63.994 ±3.394 63.987 ±3.821 60.932 ±5.021 63.994 ±3.394 63.830 ±5.566 60.114 ±7.192 65.742 ±6.721

STAGGER1 57.740 ±6.163 59.231 ±5.570 59.286 ±4.947 57.740 ±6.163 59.153 ±7.029 63.841 ±7.895 66.495 ±4.545
STAGGER2 63.169 ±3.649 66.561 ±6.649 60.994 ±4.812 63.169 ±3.649 67.493 ±6.849 63.766 ±4.499 64.202 ±3.564

TABLE XII: Mean and standard deviation of prequential accuracy on real-world streams with nonuniformly distributed labels.

Type of drift: real
HTNB OZABAG OAUE RCD DDD DP OSNN

Labels at 5%
Elec 57.510 ±17.734 53.952 ±14.072 46.966 ±9.684 57.510 ±17.734 52.422 ±11.539 52.733 ±8.098 55.124 ±8.538

NOAA 57.329 ±4.121 57.485 ±4.140 59.274 ±9.84 57.329 ±4.121 58.817 ±7.145 59.887 ±6.200 69.205 ±3.584
Power Supply 54.528 ±12.735 54.405 ±12.755 58.520 ±10.436 54.528 ±12.735 52.575 ±12.280 55.300 ±8.883 58.369 ±8.474

Sensor 65.451 ±12.051 64.328 ±14.073 58.853 ±12.502 58.484 ±10.212 56.073 ±16.033 54.278 ±10.826 60.87 ±10.583
Labels at 10%

Elec 55.804 ±8.504 56.809 ±8.473 56.004 ±12.357 55.804 ±8.504 51.889 ±10.580 54.990 ±11.028 51.199 ±9.622
NOAA 65.232 ±5.490 65.208 ±5.485 65.094 ±5.444 65.232 ±5.490 56.786 ±10.096 64.277 ±5.012 69.652 ±3.697

Power Supply 49.737 ±6.98 46.808 ±6.625 51.588 ±7.465 49.737 ±6.98 50.615 ±7.625 48.937 ±7.656 51.880 ±5.992
SensorClasses 63.824 ±12.269 63.007 ±14.211 58.476 ±11.988 59.020 ±10.841 55.099 ±11.947 51.752 ±10.502 59.993 ±15.509

Labels at 20%
Elec 61.263 ±8.821 62.793 ±14.318 60.547 ±14.226 61.263 ±8.821 61.991 ±8.230 62.48 ±9.008 67.668 ±6.542

NOAA 52.429 ±4.239 52.478 ±4.236 54.436 ±6.405 52.429 ±4.239 52.789 ±4.934 61.767 ±8.466 70.429 ±3.126
Power Supply 60.82 ±5.167 57.864 ±6.228 53.837 ±6.647 60.82 ±5.167 55.654 ±7.201 54.234 ±7.926 50.102 ±7.445

Sensor 69.745 ±11.183 69.287 ±12.83 62.060 ±11.808 65.041 ±11.687 61.176 ±15.668 51.346 ±10.177 59.506 ±11.393

V. RESULTS FOR F-SCORE, PRECISION AND RECALL

In this Section, we show the detailed result tables for the F-score, precision and recall metrics evaluated in a prequential
manner in our experiments. We group 72 streams according to type of drift, amount of labels and data stream in two analyses:
with uniform and nonuniform labeling probabilities, shown in Subsections V-A and V-B, respectively. We used the Scott-Knott
multiple comparison procedure to evaluate statistical differences in prequential F-score, precision and recall. Best-performing
methods are successively assigned ranks 1, 2, . . . , 7.

The results for these added metrics, especially for F-score (which measures the trade-off between the number of false positives
and false negatives), support the conclusions of the prequential accuracy analysis shown in the main paper. In particular, OSNN
delivered significantly better trade-off between false positives and false negatives than all other methods when considering F-
score across data streams for the nonuniformly distributed label, while being in the top ranked group in terms of F-score across
data streams for the uniformly distributed labels.
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A. Uniformly distributed labels

The Scott-Knott test was performed for each group of streams with uniform labeling distribution. The rankings of these
groups for F-score, precision and recall are shown in Tables XIII, XIV, and XV, respectively. Algorithms with significantly
superior predictive performance are highlighted in green.

Table XIII shows the rankings for the F-score metric, which is the harmonic mean between precision and recall. The F-score
results indicate that, when the labels are uniformly distributed along the length of the streams grouped by amount of labels,
OSNN was among the highest ranking algorithms for all groupings and it outperformed HTNB, OzaBag and OAUE in most
cases. The fact that it performed similar to RCD, DDD and DP might indicate that these distributions of labels do not present
a useful structure that OSNN can exploit to improve predictive performance over the other methods. Such a result follows
the outcome from the groupings by concept drift and streams. The exception is the Agrawal stream, in which a meaningful
underlying structure is present in the unlabeled data and is revealed and exploited by OSNN to deliver higher F-score than
existing methods. Nevertheless, the F-score results show that OSNN delivered a competitive balance between the amount of
false positives and false negatives compared to other approaches. OSNN is consistently among the highest ranked algorithm
in most groups, which denotes its ability to use labeled data well when unlabeled data does not help.

TABLE XIII: Statistical ranking of prequential F-score on streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 2 2 3 1 1 1 1
20% 2 2 2 1 1 1 1

Grouped by type of concept drift
Abrupt 2 2 3 1 1 1 1
Gradual 2 2 3 1 1 1 1

Real-world 1 1 1 1 1 1 1
Grouped by streams

Sine 3 3 4 1 1 1 2
Agrawal 2 2 3 2 2 2 1

SEA 1 1 2 1 1 1 1
STAG. 3 3 3 2 1 1 2
Elec 2 1 2 1 1 1 1

NOAA 1 1 1 1 1 1 1
Power S. 1 1 1 1 1 1 1
Sensor 1 1 1 1 1 1 1

All streams 2 2 3 1 1 1 1
Highlighted ranks denote significant superior performance.

The precision rankings in Table XIV also indicate that, when the labels are uniformly distributed along the length of the
streams grouped by amount of labels, RCD, DDD, DP and OSNN have similar amounts of false positives. However, OSNN
is consistently among the highest ranked algorithm in most groups, which again denotes its ability to use labeled data well
when unlabeled data does not help.
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TABLE XIV: Statistical ranking of prequential precision on streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 2 2 2 1 1 1 1
20% 2 2 2 1 1 1 1

Grouped by type of concept drift
Abrupt 2 2 3 1 1 1 1
Gradual 2 2 2 1 1 1 1

Real-world 1 1 1 1 1 1 1
Grouped by streams

Sine 2 2 2 1 1 1 1
Agrawal 2 2 3 2 2 2 1

SEA 1 1 3 1 1 1 2
STAG. 4 4 4 3 1 1 2
Elec 1 1 2 2 1 1 1

NOAA 2 2 2 2 1 2 1
Power S. 1 1 1 1 1 1 1
Sensor 2 1 1 2 1 1 1

All streams 2 2 3 1 1 1 1
Highlighted ranks denote significant superior performance.

The rankings for prequential recall (Table XV) follow the results obtained for prequential precision in Table XIV. RCD,
DDD, DP and OSNN deliver statistically similar amounts of false negatives, that is, they are able to recover similar amounts
of instances of the positive class. The recall metric also indicates that the uniform labeling distributions do not present an
meaningful manifold structure that OSNN can exploit to improve predictive performance over the other methods. However,
OSNN is consistently among the highest ranked algorithm in most groups, which denotes its ability to exploit labeled data
well when unlabeled data is not useful.

TABLE XV: Statistical ranking of prequential recall on streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 2 2 3 1 1 1 1
20% 2 2 2 1 1 1 1

Grouped by type of concept drift
Abrupt 2 2 3 1 1 1 1
Gradual 2 2 3 1 1 1 1

Real-world 1 1 1 1 1 1 1
Grouped by streams

Sine 3 3 4 1 1 1 2
Agrawal 2 2 3 2 2 2 1

SEA 1 1 2 1 1 1 1
STAG. 5 4 6 3 1 1 2
Elec 2 1 2 1 1 1 1

NOAA 1 1 1 1 2 1 2
Power S. 1 1 1 1 1 1 1
Sensor 1 1 1 1 1 1 1

All streams 2 2 3 1 1 1 1
Highlighted ranks denote significant superior performance.

The results for F-score, precision and recall (Tables XIII, XIV and XV) follow the prequential accuracy outcome of the
experiment with uniformly distributed labels in main manuscript. The overall performance across all streams was also assessed.
OSNN regularly outperformed HTNB, OzaBag, OAUE and produced similar generalization to RCD, DDD and DP. Independent
of the factors of our analysis, OSNN is consistently among the highest ranked approaches. OSNN’s ability to adapt and to
exploit unlabeled data could compensate for the use of ensembles in existing methods when very few labels are available.

B. Nonuniformly distributed labels
The Scott-Knott test was performed for each group of streams with nonuniform labeling distribution. The rankings of these

groups for F-score, precision and recall are shown in Tables XVI, XVII and XVIII, respectively. Algorithms with significantly
superior predictive performance are highlighted in green.

Since the F-score metric is the harmonic mean between precision and recall and most of the streams have balanced classes,
the results for F-score in Table XVI follow the rankings of prequential accuracy for nonuniformly distributed labels in the
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experiments in main manuscript. OSNN was able to consistently deliver the highest F-score in most groups. For 10% and 20%
of labeled data, OSNN was superior to state-of-the-art ensemble methods (RCD, DDD and DP). For abrupt drifts, it delivered
higher F-score than HTNB, OAUE, RCD, DDD and DP. It was the superior approach for gradual drifts. This analyses for types
of drifts demonstrate OSNN’s ability to exploit unlabeled data to adapt its centers and weights when a sudden or gradual drift
occurs. For artificial data streams, OSNN was the superior method for Sine and STAGGER, and superior to most algorithms
for Agrawal. For real-world data streams, OSNN was superior to DDD and DP for all streams, except Elec, for which it was
a tie. OSNN was the superior approach for NOAA. This fact indicate the presence of useful underlying manifold structures
in the data. When all streams and all factors are analyzed, OSNN produced significantly superior predictive performance than
all other approaches.

TABLE XVI: Statistical ranking of prequential F-score on streams with nonuniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labels

5% 1 1 2 1 1 1 1
10% 1 1 1 1 1 1 1
20% 1 1 1 1 1 1 1

Grouped by type of concept drift
Abrupt 1 1 1 1 1 1 1
Gradual 2 2 2 2 2 2 1

Real-world 1 1 2 2 2 2 1
Grouped by stream

Sine 2 2 2 2 1 1 1
Agrawal 2 1 2 2 2 2 1

SEA 1 1 2 1 1 1 1
STAGGER 3 2 3 3 2 3 1

Elec 1 1 1 1 1 1 1
NOAA 2 2 2 2 2 2 1

Power S. 1 1 2 1 2 2 2
Sensor 1 1 2 2 2 2 2

All streams 2 2 3 2 2 2 1
Highlighted ranks denote significant superiority.

For prequential precision (Table XVII), OSNN was consistently between the highest scoring algorithms, especially for Sine,
Agrawal and NOAA streams. However, DDD and DP also delivered low false positives in most groups. There is typically a
trade-off between precision and recall, and the results for precision were contrasted by the recall metric as shown in Table
XVIII. OSNN produced the statistically lowest number of false negative in most groups, especially for gradual drifts, STAGGER
and NOAA. In fact, when all streams were considered, OSNN was the method with the lowest number of false negatives.

TABLE XVII: Statistical ranking of prequential precision on streams with nonuniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labels

5% 1 1 2 1 1 1 1
10% 1 1 1 1 1 1 1
20% 1 1 1 1 1 1 1

Grouped by type of concept drift
Abrupt 2 2 2 2 1 1 1
Gradual 1 1 2 1 1 1 1

Real-world 1 1 1 1 2 2 1
Grouped by stream

Sine 3 3 3 3 2 2 1
Agrawal 2 2 3 2 2 2 1

SEA 1 1 2 1 1 1 1
STAGGER 2 2 2 2 1 1 2

Elec 1 1 1 1 1 1 1
NOAA 2 2 2 2 2 2 1

Power S. 1 1 1 1 1 1 1
Sensor 2 2 1 1 1 1 1

All streams 1 1 2 1 1 1 1
Highlighted ranks denote significant superiority.
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TABLE XVIII: Statistical ranking of prequential recall on streams with nonuniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labels

5% 1 1 1 1 1 1 1
10% 2 1 2 2 2 2 1
20% 2 1 2 2 2 2 1

Grouped by type of concept drift
Abrupt 2 1 2 2 2 2 1
Gradual 2 2 2 2 2 2 1

Real-world 1 1 1 1 1 1 1
Grouped by stream

Sine 2 2 2 2 1 1 1
Agrawal 2 1 2 2 2 2 1

SEA 1 1 2 1 1 1 1
STAGGER 3 2 3 3 2 3 1

Elec 1 1 1 1 1 1 1
NOAA 2 2 2 2 2 2 1

Power S. 1 1 2 1 2 2 2
Sensor 1 1 2 2 2 2 1

All streams 3 2 3 3 3 3 1
Highlighted ranks denote significant superiority.

For nonuniformly distributed labels, OSNN is the highest ranking method in precision in most cases, however, when
considering all streams, there is no significant difference between five of these algorithms. On the other hand, OSNN is
able to significantly reduce the number of false negatives in comparison to the other approaches. In fact, when considering
all streams, OSNN delivers the statistically highest recall. The F-score metric (which combines precision and recall) shows
consistent results to the ones found for prequential accuracy in the main manuscript. When label arrival depends on the region
of input space instead of time, the advantages of the data representation and regularization mechanisms in OSNN over single
and ensemble learners become more evident. OSNN was the approach with highest performance in the vast majority of cases.
In fact, when we grouped all streams, OSNN produced superior generalization compared to all other algorithms. Such a result
demonstrates that OSNN is the most robust classifier to scarce labels, different types of concept drift and diverse data from
different environments, with uniformly and nonuniformly distributed labels.

VI. EXPERIMENTS WITH VISUAL DATA

Despite our approach not being proposed for the specific problem of image classification, we have also run experiments with
four image datasets to evaluate its predictive performance on such a problem. In this Section, we analyze the results for the
accuracy, F-score, precision and recall metrics evaluated in a prequential manner in our experiments. We group 4 visual streams
according to amount of labels and data stream in two analyses: with uniform and nonuniform labeling probabilities, shown
in Subsections VI-A and VI-B, respectively. We used the Scott-Knott multiple comparison procedure to evaluate statistical
differences in prequential accuracy, F-score, precision and recall. Best-performing methods are successively assigned ranks
1, 2, . . . , 7.

We used 4 data streams: Outdoor [8], Rialto [8], CIFAR [7] and Rotated MNIST [9], where the instances in Outdoor and
Rialto are naturally ordered forming a true data stream. CIFAR and Rotated MNIST are datasets typically used for offline
learning, as they have images in randomized orders. However, they were used to simulate data streams by presenting such
images sequentially to the machine learning approaches. The summary of these streams is as follows:
• Outdoor [8] consists of color images recorded by a smartphone camera in a garden environment of 40 different objects,

such as balls, shoes, pliers, cans, among others. We selected objects 0 and 19 as the classes for our classification problem.
This stream has 200 instances and 21 features (dimensions).

• Rialto [8] contains color images extracted from time-lapse videos recorded by a webcam in a fixed position. The recordings
cover 20 consecutive days from May to June 2016, capturing various colorful buildings next to the famous Rialto bridge
in Venice. We employed the buildings number 0 and 4 were considered as the classes for our classification problem. It
has 16,450 instances and 27 features.

• CIFAR contains resized (16x16 pixels) gray-scale images from the original CIFAR10 dataset [7]. We selected instances
from classes “automobile” and “dog”. This stream has 12,000 instances and 256 features.

• Rotated MNIST [9] consists of rotated resized (16x16 pixels) gray-scale images of handwritten “0” and “1” digits. It
has 12,670 instances and 256 features.
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A. Uniformly distributed labels

The Scott-Knott test was performed for each group of streams with uniform labeling distribution. The rankings of these
groups for accuracy, F-score, precision and recall are shown in Tables XIX, XX, XXI, and XXII, respectively. Algorithms with
significantly superior predictive performance are highlighted in green.

Table XIX demonstrates the significantly superior performance of OSNN for most groups according to prequential accuracy
for streams with uniformly distributed labels. When OSNN was not the highest scoring method, it was among the top performing
approaches. Although none of these methods was specially designed for visual data, OSNN was able to exploit unlabeled data
and learn useful structures in the data when compared to the other approaches. In fact, when grouping by streams, OSNN
obtained the highest accuracy for CIFAR and Rotated MNIST. When considering all visual streams, OSNN was the approach
with significantly best accuracy among all methods.

TABLE XIX: Statistical ranking of prequential accuracy on visual streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 1 1 1 1 1
10% 2 2 2 2 2 2 1
20% 2 2 2 2 2 2 1

Grouped by streams
Outdoor 1 1 1 1 1 1 1
Rialto 1 1 1 1 1 1 1
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 2 2 2 2 2 2 1
All streams 2 2 2 2 2 2 1

Highlighted ranks denote significant superior performance.

In Table XX, we show the results for the prequential F-score metric with uniformly distributed labels. F-score is the harmonic
mean of precision and recall. Such a metric shows the trade-off in each method between the amounts of false positives and
false negatives. This Table supports the results of Table XIX, as it also indicates that OSNN delivered significantly higher
predictive performance for most groups, delivering the best compromises between false positives and false negatives among
all approaches. In fact, when grouping by streams, OSNN outperformed all other methods in terms of accuracy for CIFAR
and Rotated MNIST, while obtaining competitive results for Outdoor and Rialto. Therefore, when considering the behaviour
across all visual streams, OSNN was the approach with significantly best accuracy among all methods.

TABLE XX: Statistical ranking of prequential F-score on visual streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 2 2 2 2 2 2 1
20% 2 2 2 2 2 2 1

Grouped by streams
Outdoor 1 1 1 1 1 1 1
Rialto 1 1 1 1 1 1 1
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 2 2 2 2 2 2 1
All streams 2 2 2 2 2 2 1

Highlighted ranks denote significant superior performance.

Table XXI present the results for prequential precision with uniformly distributed labels. For most cases, all algorithms
obtained similar amounts of false positives. This might denote the challenge of learning a good decision boundary for visual
data when the algorithms do not take advantage of particular features of the images (e.g. notion of neighborhood among pixels).
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TABLE XXI: Statistical ranking of prequential precision on visual streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 1 1 1 1 1 1 1
20% 1 1 1 1 1 1 1

Grouped by streams
Outdoor 1 1 1 1 1 1 1
Rialto 2 1 3 2 1 2 3
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 1 1 1 1 1 1 1
All streams 1 1 1 1 1 1 1

Highlighted ranks denote significant superior performance.

Table XXII shows the prequential recall with uniformly distributed labels. OSNN obtained the significantly lower number of
false negatives than the other algorithms for most groups. For the other groups, OSNN was still able to be among the highest
performing approaches. OSNN delivered the highest recall for CIFAR and Rotated MNIST. When considering the performance
across all streams, OSNN was the best approach with significantly better recall than the other methods.

These results indicate that OSNN is able to learn from both labeled and unlabeled data to construct meaningful models for
visual data with uniformly distributed labels when compared to the other approaches. Such outcome is important since none
of these algorithms are specially designed to learn from visual data.

TABLE XXII: Statistical ranking of prequential recall on visual streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 1 1 1 1 1
10% 2 2 2 2 2 2 1
20% 2 2 2 2 2 2 1

Grouped by streams
Outdoor 1 1 1 1 1 1 1
Rialto 1 1 1 1 1 1 1
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 2 2 2 2 2 2 1
All streams 2 2 2 2 2 2 1

Highlighted ranks denote significant superior performance.

B. Nonuniformly distributed labels

The Scott-Knott test was performed for each group of streams with nonuniform labeling distribution. The rankings of these
groups for accuracy, F-score, precision and recall are shown in Tables XXIII, XXIV, XXV, and XXVI, respectively. Algorithms
with significantly superior predictive performance are highlighted in green.

For prequential accuracy (Table XXIII), OSNN was significantly better than all other approaches for CIFAR and Rotated
MNIST. The results for F-score, in Table XXIV, show that OSNN delivered the best trade-off between false positives and false
negatives for 20% of labeled data and for CIFAR. For the other groups, there was single superior algorithm. When considering
the performance across all data streams, most approaches performed similarly in terms of accuracy and F-score. A similar
outcome is observed for prequential precision, as shown in Table XXV. In terms of prequential recall, as shown in Table
XXVI, OSNN performed significantly better than all other methods in terms of performance across all data streams.

TABLE XXIII: Statistical ranking of prequential accuracy on visual streams grouped by factors with nonuniformly distributed
labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 1 1 1 1 1
10% 1 1 1 1 1 1 1
20% 1 1 1 1 1 1 1

Grouped by streams
Outdoor 1 1 2 1 1 1 2
Rialto 1 1 2 1 1 1 2
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 2 2 2 2 2 2 1
All streams 1 1 2 1 1 1 1

Highlighted ranks denote significant superior performance.
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TABLE XXIV: Statistical ranking of prequential F-score on visual streams grouped by factors with nonuniformly distributed
labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 1 1 1 1 1 1 1
20% 2 2 2 2 2 2 1

Grouped by streams
Outdoor 1 1 2 1 1 1 2
Rialto 1 1 1 1 1 1 1
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 2 2 2 2 2 1 1
All streams 1 1 2 1 1 1 1

Highlighted ranks denote significant superior performance.

TABLE XXV: Statistical ranking of prequential precision on visual streams grouped by factors with nonuniformly distributed
labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 1 1 1 1 1 1 1
20% 1 1 1 1 1 1 1

Grouped by streams
Outdoor 1 1 1 1 1 1 1
Rialto 1 1 2 1 1 1 2
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 1 1 2 1 1 1 2
All streams 1 1 2 1 1 1 1

Highlighted ranks denote significant superior performance.

TABLE XXVI: Statistical ranking of prequential recall on visual streams grouped by factors with nonuniformly distributed
labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN
Grouped by amount of labeled data

5% 1 1 2 1 1 1 1
10% 1 1 1 1 1 1 1
20% 2 2 2 2 2 2 1

Grouped by streams
Outdoor 1 1 2 1 1 1 2
Rialto 1 1 1 1 1 1 1
CIFAR 2 2 2 2 2 2 1

Rotated MNIST 2 2 2 2 2 2 1
All streams 2 2 3 2 2 2 1

Highlighted ranks denote significant superior performance.

The results for nonuniformly distributed labels might be explained by the fact that these algorithms are not designed to exploit
specific features in visual data (e.g. neighborhood among pixels) that help in the learning of a predictive models for images.
Without the ability to fully access many useful features in images, these algorithms suffer with the nonuniform distribution
of labels. The scarce and nonuniform labels hinders the learning of good decision boundaries by not revealing and distorting
important structures in the data. Without the ability to use image-specific structures, none of these approaches was able to
significantly overcome the lack and misleading of label information for the majority of groups. Only OSNN was able to be the
exception for prequential accuracy in CIFAR and Rotated MNIST; for F-score in 20% of labels and CIFAR; for precision in
CIFAR; and for prequential recall in 20% of labels, CIFAR, Rotated MNIST and prequential recall across all streams. These
results indicate that the SLVQ may be able to extract useful information from scarce and misleading labels even without the
use of image-specific features.

VII. SEVERITY OF CONCEPT DRIFTS

Our experiments evaluate the proposed approach on synthetic data streams containing different types of drift with different
severities, including recurrent drifts. Table XXVII summarizes the data streams. In particular, the streams Sine1, Sine2,
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Agrawal3, SEA1, SEA2, STAGGER1 and STAGGER2 have recurrent concepts, as shown in the column containing the concept
sequences. Table XXVIII shows the severities.

TABLE XXVII: Summary of data streams.

Stream Concept sequences Number of
inst.

Dim.

Artificial data streams
Sine1 r3 → r4 → r3 12000 4
Sine2 r1 → r2 → r3 → r4 → r1 20000 4

Agrawal1 r1 → r3 → r4 → r7 → r10 20000 36
Agrawal2 r7 → r4 → r6 → r5 → r2 → r9 24000 36
Agrawal3 r4 → r2 → r1 → r3 → r4 20000 36
Agrawal4 r1 → r3 → r6 → r5 → r4 20000 36

SEA1 r4 → r3 → r1 → r2 → r4 20000 3
SEA2 r4 → r1 → r4 → r3 → r2 20000 3

STAGGER1 r1 → r2 → r3 → r2 16000 7
STAGGER2 r2 → r3 → r1 → r2 16000 7

Real-world data streams
Elec – 27549 7

NOAA – 18159 8
Power S. – 29928 2
Sensor – 130073 5

TABLE XXVIII: Severity of Drifts as the Percentage Difference Between the Old and New Concepts. Adjusted from: [5]
Sine SEA STAGGER

r1 r2 r3 r1 r2 r3 r4 r1 r2
r2 100.0% - - 8.5% - - - 59.3% -
r3 26.8% 73.2% - 7.4% 16.0% - - 77.8% 48.1%
r4 73.2% 26.8% 100.0% 13.1% 4.6% 20.6% - - -
r5 - - - 23.9% 32.5% 16.5% 37.1% - -

Agrawal
r1 r2 r3 r4 r5 r6 r7 r8 r9

r2 53.9% - - - - - - - -
r3 53.1% 50.8% - - - - - - -
r4 53.9% 20.5% 50.8% - - - - - -
r5 53.4% 47.6% 50.7% 47.7% - - - - -
r6 69.9% 28.9% 51.2% 35.5% 48.1% - - - -
r7 50.5% 53.3% 50.1% 53.5% 60.1% 57.2% - - -
r8 33.5% 60.4% 46.5% 59.6% 59.6% 59.8% 49.8% - -
r9 50.4% 53.3% 50.2% 53.5% 59.9% 57.3% 6.0% 49.5% -

r10 32.9% 61.3% 46.5% 61.3% 60.0% 59.9% 51.1% 1.8% 51.1%
All percentage differences were calculated using Eq. 1 based on one million random generated examples.

The severity of a drift is calculated as the percentage difference between the old concept and the new concept, calculated
as follows [5]:

diff(ra, rb) =

∑n
i=1 |yira − y

i
rb
|

n
(1)

where yifa and yifb are the class labels determined by the a-th and b-th functions of a generator, respectively, and n is the
total number of examples generated uniformly at random to calculate the severity. According to [5], a concept drift could be
considered severe when the concepts before and after the drift have at least around 50% difference, and mild if the difference
is around 25%.

VIII. ADAPTIVE LEARNING RATE

Our approach does not need to explicitly detect the type of drift in order to decide how much to increase (decrease) the
learning rate. The amount by which the learning rate increases (decreases) is determined by backtracking line search [1], [3]
(Algorithm 1). This procedure starts with a large learning rate of η = 1 and iteratively reduces the learning rate until a learning
rate that results in a decrease of the loss is found (or the minimum allowed learning rate of tol is reached).
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Algorithm 1 Backtracking line search

1: Input: B(t), w(t), H−1

2: Output: w(t+1)

3: η ← 1
4: tol← 10−8

5: while η > tol do
6: ∆w ← −ηH−1∇wL
7: if L(B(t), w(t)) < L(B(t), w(t) + ∆w) then
8: η ← η/2
9: else

10: w(t+1) ← w(t) + ∆w,
11: η ← 0
12: end if
13: end while
14: if η > 0 then
15: Armijo condition not fulfilled.
16: end if

Algorithm 1 works in conjunction with the Newton-Raphson method (or other optimizers, such as gradient descent). One of
the advantages of using the Newton-Raphson method is that it calculates the curvature information of the loss function [3] as
it uses Hessian matrix (i.e. second-order properties of the error surface, which are controlled by the Hessian matrix) [3]. Such
information is very useful for identifying changes in the slope of the loss function. When a concept drift occurs, the current
loss function slope changes. Such a change is affected by, among other factors, the type of concept drift [6], [4]. Abrupt drifts
present potentially sudden changes to the loss surface, whilst gradual drifts reveal more parsimonious changes on the current
curvatures.

Therefore, Algorithm 1 attempts to fit ∆w into the current weights w(t) with a decreasing η. When an abrupt drift happens,
OSNN learns a substantial correction in the weights ∆w. In particular, the loop from line 6 will iterate few times, leading to
the adoption of a larger learning rate η, as a fairly large learning rate will result in a decrease in the loss. When a gradual
drift happens, OSNN learns more cautious correction in the weights ∆w. In particular, the loop from line 6 will iterate several
times, because large learning rates will not result in a reduction in the loss.

In Figures 23 and 24, we show the training of C and η throughout the Sine1 stream with abrupt and gradual drifts,
respectively. We plot η (orange plot) and the function ∆C =

∑
i ||c

(t)
i − c

(t−1)
i || (blue plot) as a measure of the adaptation of

C at each time step1.

1The codebook starts to vary (blue line) after the first H instances are received to form this set, that is, t > H .
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Fig. 23: Adaptive C and η for Sine1 with abrupt concept drifts (dashed lines) and uniform labeling distribution.
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Fig. 24: Adaptive C and η for Sine1 with gradual concept drifts (dashed lines) and uniform labeling distribution.

In Figure 23, after each abrupt drift (with time steps denoted by dashed lines), the learning rate increases because OSNN
produces a weight update ∆w that will potentially cause a large decrease in the loss function and Algorithm 1 will identify
(line 7) and take advantage of that fact by delivering a high η (the while loop will have few steps). At the other time steps,
the weight update should be smaller because there is no change in the current concept (the impact of update ∆w should be
reduced), therefore Algorithm 1 will produce smaller η (the while loop will have several steps). In contrast, in Figure 24,
OSNN produces a more parsimonious response to gradual drifts (dashed lines). The learning rate increases and decreases more
smoothly after drifts because our algorithm is able to detect that a certain amount of the knowledge of the previous concept
should be kept while learning the weights for a new one. In line 7, the algorithm would detect that a large weight update
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towards the new concept would cause a higher loss (due to the presence of the previous concept in the stream), then it would
iterate and produce a smaller η (line 8) to fit ∆w so that both concepts can be learned gradually. It is important to highlight
that the peak learning rate produced by OSNN for abrupt drifts (Figure 23) is higher than the peak for gradual drifts (Figure
24). This result is expected since OSNN is able to adapt faster to abrupt drifts, which demands larger step sizes (learning
rates).

The codebook variations (highlighted in blue) in Figures 23 and 24 show that OSNN, via SLVQ, is able to train the centers
differently in presence of abrupt and gradual drifts, respectively. For abrupt drifts, SLVQ relocates the centers more quickly
towards the region of the new concept due to the sudden arrival of instances in new regions and sudden absence of instances
in the regions of the previous concept. In gradual drifts, instances from two different concepts arrive at the same time window.
SVLQ partially adapts its centers to the new concept, while maintaining knowledge from the previous one. This is the reason
why the variation of the positions of the codebook in Figure 24 is smoother than in Figure 23, as the latter required quicker
adaptation.

Overall, our training method is able to learn appropriate directions and curvatures for the optimization of w(t) for abrupt
and gradual drifts. The line search can adjust the learning step size (i.e. the amount of correction) according to the type of
changes that are occurring.

IX. TABLE OF SYMBOLS

In Table XXIX, we present the table of symbols of this work.

TABLE XXIX: Table of symbols

Symbol Description
x Input instance
y True instance label
t Time step
D Input dimension
B(t) Minibatch at time step t
B

(t)
l Set of labeled instances in B(t)

B
(t)
u Set of unlabeled instances in B(t)

L Size of B(t)
l

U Size of B(t)
u

N Size of B(t)

C(t) Set of network centers (codebook) at time step t
V (t) Set of graph vertices at time step t
H Number of network hidden neurons
S(t) Similarity matrix
fi Learner output as posterior class probabilities for instance xi ∈ B(t)

ui Pseudo-label for instance xi ∈ B(t)

w Weight vector
L Loss function
φij Basis function output for instance xi and neuron j
zi Net input for neuron i
Ri Region of influence of neuron i in RD

σi Width of basis function of neuron i
CL Number of classes
q(x) Vector quantization of x
I1 Functional for the minimization of the average quantization error
gi Density function for basis function of neuron i
Ki Scaling factor for gi
I2 Functional for the minimization of the average quantization error
Iemp Approximation of I2 via empirical risk minimization
B′(t), B′′(t) Sets containing labeled instances of the majority and minority classes of Ri, respectively
β Scalar that controls the radius of influence of each basis function
H Hessian matrix

Acronyms
1NN 1-Nearest Neighbor
DDD Diversity for Dealing with Drift
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TABLE XXIX: Table of symbols

Symbol Description
HTNB Hoeffding Tree with Naive Bayesian Learning
MR Manifold Regularization
OAUE Online Accuracy Update Ensemble
OSNN Online Semisupervised Radial Basis Function Neural Network
OzaBag Online Bagging
RCD Recurring Concept Drift
SLVQ Semisupervised Learning Vector Quantization
VQ Vector quantization

X. TABLE OF BASELINE HYPERPARAMETERS

Table XXX depicts the hyperparameter probability distributions used in randomized search for tuning the baseline algorithms
in our study.

TABLE XXX: Table of hyperparameter ranges for randomized search.

Hyperparameter Probability distributions and
ranges [2] used by the random search
used for hyperparameter tuning

Ozabag
ensemble size uniform in [1,20]

OAUE
ensemble size uniform in [1, 20]
window size d uniform in [1, 1000]
base learner HTNB

RCD
ensemble size uniform in [1, 20]
p-value s uniform in [0.01, 0.05]
rate the tests t uniform in [1, 1000]
k fixed at 1
batch size b uniform in [1, 1000]
base learner HTNB
drift detection uniform in {DDM, EDDM, ADWIN}

DDD
ensemble size uniform in [1, 20]
weight W uniform in [5 ∗ 10−4, 5 ∗ 10−1]
pl uniform in [0, 1]
ph uniform in [0, 1]
base learner HTNB
drift detection uniform in {DDM, EDDM, ADWIN}

DP
ensemble size uniform in [1, 20]
batch size uniform in [1, 1000]
statistical test uniform in {Entropy, Q-Statistics}
base learner HTNB
drift detection uniform in {DDM, EDDM, ADWIN}

XI. RUNTIME

To show the runtime of OSNN on specific hardware, we employed machines with Intel(R) Xeon(R) CPU E5-2690 v3 at
2.60GHz and 16Gb of RAM. In the Table XXXI below, we depict the speed at which this machine could process several data
streams. It is important to highlight that this runtime includes not only the learning time, but also the time for the machine to
read the stream, predict a new instance, obtain and save the output and calculate the accuracy measures.
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TABLE XXXI: Speed (rate of instances per second) at which OSNN could process instances in our experiments run in an
Intel(R) Xeon(R) CPU E5-2690 v3 at 2.60GHz and 16Gb of RAM.

Data stream speed (instances processed per second)
Sine1 16.48
Sine2 16.64

Agrawal1 3.76
Agrawal2 3.74

SEA1 14.25
SEA2 14.33

STAGGER1 1.36
STAGGER2 2.20
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