
Highlights

Online Ensemble Model Compression for Nonstationary Data Stream
Learning

Rodrigo G. F. Soares, Leandro L. Minku

• An online, real time compression method for neural networks that de-
livers similar performance to ensemble techniques at the time cost of a
single model.

• An online neural network with improved predictive performance via
weight averaging through time.

• An online neural network capable of finding stable regions in weight
space through the search of wide minima.

Online Ensemble Model Compression for Nonstationary

Data Stream Learning

Rodrigo G. F. Soaresa, Leandro L. Minkub

aDepartment of Statistics and Informatics, Federal Rural University of Pernambuco, Rua
Dom Manoel de Medeiros, s/n, Recife, 52171-900, Pernambuco, Brazil

bSchool of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15
2TT, United Kingdom

Abstract

Learning from data streams that emerge from nonstationary environments
has many real-world applications and poses various challenges. A key char-
acteristic of such a task is the varying nature of the underlying data distri-
butions over time (concept drifts). However, the most common type of data
stream learning approach are ensemble approaches, which involve the train-
ing of multiple base learners. This can severely increase their computational
cost, especially when the learners have to recover from concept drift, render-
ing them inadequate for applications with tight time and space constraints.
In this work, we propose Online Weight Averaging (OWA) – a robust and
fast online model compression method for nonstationary data streams based
on stochastic weight averaging. It is the first online model compression for
nonstationary data streams, which is capable of compressing an evolving en-
semble of neural networks into a single model continuously over time. It
combines several snapshots of a neural network over time by averaging its
weights in specific time steps to find promising regions in the loss landscape
with the ability to forget weights from outdated time steps when a concept
drift occurs. In this way, at any point in time, a single neural network is
maintained to represent a whole ensemble, leveraging the power of ensem-
bles while being appropriate for applications with tight speed requirements.
Our experiments show that this key advantage of our proposed method also
translates into other advantages such as (1) significant savings in computa-
tional cost compared to state-of-the-art data stream ensemble methods while
(2) delivering similar predictive performance.

Keywords: Online model compression, Nonstationary environments, Data

Preprint submitted to Neural Networks November 25, 2024

stream learning, ensemble learning, neural networks

1. Introduction

The amount of data with potential relevance for real-world applications of
Machine Learning (ML) has been growing exponentially in the last few years.
Such ever-increasing volumes of data pose significant scalability challenges
to offline ML, which requires the whole training set to be stored in memory
and iterated through several times. This is especially the case for applica-
tions with tight time and space constraints such TinyML applications, which
require real-time monitoring and data analytics in compact devices, and are
beneficial in multiple domains such as agriculture, healthcare, conservation
and environment, etc [1].

Online approaches able to learn additional training examples without re-
quiring to reprocess all past training points are an effective alternative for
solving the issue of training and predicting with high-speed data for this
kind of application. However, data streams formed by incoming data in
real-world applications are often nonstationary, with their underlying data
distributions changing over time. This phenomenon is referred to as concept
drift [2], and typically causes ML models to start underperforming. To main-
tain their predictive performance, learning models must be updated or even
reset, depending on the severity and speed of the concept drift.

Ensemble algorithms have been widely used in data stream learning sce-
narios due to their ability to dynamically select appropriate learners accord-
ing to the current concept and to potential drifts [3, 4] while reducing learning
variance. However, since ensemble learning relies on the training of multiple
learners, these techniques may be prohibitive for certain data stream learning
scenarios [5], especially when there are strict time and space requirements.
In this context, techniques able to compress ensembles would be desirable.

The offline learning literature has a number of methods proposed to com-
press large models, so that smaller models can be adopted without signifi-
cant loss in predictive performance [6], especially in the area of deep learning
[7, 8]. However, existing approaches operate by taking an existing large
model (pre-trained) and then compressing it. In data stream learning, a
model compression approach able to operate in online mode is necessary,
such that compression occurs continuously over time and the learning sys-
tem can maintain its models in compressed format at all times while being
able to cope with concept drift.

2

In the context of ensemble learning, Fast Geometric Ensembling (FGE) [9]
chooses multiple nearby points in the weight space to create neural network
ensembles with high predictive performance in the time required to train a
single neural network. Izmailov et al. [10] suggest that the weights of the
networks combined by FGE are on the borders of the most desired region of
the weight space. They proposed Stochastic Weighting Averaging (SWA) and
showed that it was more promising to average the points in weight space and
use them as network weights, instead of training an ensemble with averaged
network outputs (in model space). SWA uses an equally weighted average
of the points traversed by Stochastic Gradient Descent (SGD) to form the
weights of a single network with higher predictive performance using virtually
no computational overhead. SWA produces wider solutions in weight space
than SGD, which leads to better generalization. However, SWA is not suited
for nonstationary data stream learning, where concepts may change rapidly,
rendering the averaged weights obsolete.

This paper aims to develop the first online model compression learning
approaches for nonstationary data streams. We propose a more efficient
stochastic weight averaging approach that can be used as an online model
compression approach for nonstationary data streams in which any type of
concept drift may occur. Each example is learned as soon as it arrives.
Overall, we answer the following Research Questions (RQs):

• RQ1: How to compress an ensemble of neural networks into a single
neural network in online nonstationary data stream learning? We pro-
pose a novel approach called Online Weight Averaging (OWA). This
approach uses weight averaging over time as an online technique to
obtain a high-performing single network with a simple drift detection
procedure to update the model when a concept drift occurs. OWA is
able to maintain a compressed ensemble of neural networks at all times
in the form of a single neural network, rather than relying on first grow-
ing an ensemble and then compressing it. We analyze the landscape
of the weights during stable periods and during concept drifts to show
that the optimization path of the proposed approach is able to recover
from concept drifts.

• RQ2: How does the proposed approach perform compared with existing
ensembles of neural neural networks for nonstationary data streams,
and the existing weight averaging method? As the proposed approach

3

is compressing an ensemble, it should ideally achieve predictive perfor-
mance that is no worse than that of ensembles themselves. Moreover,
as the existing weight averaging method SWA is not suited for non-
stationary data streams, the proposed approach should ideally outper-
form SWA. We compare the proposed approach to existing ensembles
of neural networks for nonstationary environments and SWA in exper-
iments with 20 artificial and 10 real-world data streams. The results
confirm that the proposed approach is able to obtain superior overall
predictive performance compared to SWA, especially during concept
drifts, while maintaining similar predictive performance to existing data
stream learning techniques. Our experiments also show that OWA is
robust to different types of concept drifts.

• RQ3: How does the proposed approach perform in terms of computa-
tional time compared to existing ensembles of neural networks for non-
stationary environments, and the existing weight averaging method?
The main motivation for the proposed compression approach is to re-
duce the computational time of ensembles. Therefore, the proposed
approach should ideally obtain lower computational time than ensem-
bles. Meantime, whilst the existing weight averaging method SWA is
unprepared for concept drifts, it is able to compress ensembles of neural
networks, reducing their computational cost. Therefore, the proposed
approach should ideally have a computational cost that is no larger than
that of SWA. Our experiments with 20 artificial and 10 real world data
streams show that our proposed approach was able to obtain computa-
tional cost from 1.05 to 130 times lower than that of existing ensemble
methods, and similar to that of SWA.

The remainder of this paper is organized as follows. Section 2 presents
our data stream learning scenario. Section 3 presents the state-of-the-art of
stream learning and model compression. Section 4 introduces our approach
to data stream learning. Our experiment design is introduced in Section 5.
Section 6 presents an analysis of the trajectory of the weights learned by the
proposed approach as a proof of concept for its ability to produce wider solu-
tions in the weight space in non-stationary environments. Together with the
proposed approach itself, this answers RQ1. This section also presents the
analysis of predictive performance to answer RQ2, and analysis of computa-
tional cost and time complexity to answer RQ3, and an analysis of sensitivity
to hyperparameters. Section 7 presents our conclusions and future work.

4

2. Problem formulation

We consider that examples arrive in the form of a data stream, which
is a sequence of examples S =

(
s(1), . . . , s(t), . . .

)
, where s(t) = (x(t), y(t)),

x(t) ∈ RD, D is the dimensionality of the input space, and y(t) ∈ {y1, . . . , yK}
denote the labels. Each value of t is referred to as a time step. We focus on
strict online learning algorithms, which update predictive models whenever
a new training example becomes available and discard it right after being
learned [11]. This is different from chunk-based learning, where incoming
examples arrive in or are stored into chunks/batches, and each chunk can be
iterated through multiple times for learning [3]. Strict online learning can
act as an enabler for learning in applications with high-speed data streams or
with strict time requirements [3], where it is not possible to iterate through
examples more than once.

In our learning scenario, we also assume that the model will have a warm-
start, that is, there will be a limited amount of data available to tune the
models. Thus, the early predictions would be more accurate. This is a dif-
ferent scenario from [12], which assumes a cold-start in the learning process.
Warm-start is the typical scenario for applications that provide previous his-
torical data to tune the model before the online learning process starts. For
example, in an application for personalized recommendations in Internet-
of-Things devices, an initial set of examples collected from different people
could be used for warm-start before the model starts to learn a specific user’s
preferences.

Each labeled example s(t) from the data stream is drawn from an unknown
distribution P(t). A concept drift is a change in the joint data distribution,
that is, p(t+1)(x, y) might differ from p(t)(x, y) within the length of a stream.
When concept drifts occur in a data stream, we say that the data stream is
operating in a nonstationary environment, which is the focus of this work.
Concept drifts can be categorized according to the rate at which a new con-
cept becomes the true target. In abrupt concept drifts, the change occurs
instantly (in one time step). In gradual concept drifts, the new concept takes
over slowly over time. Data stream learning algorithms need to adapt to such
concept drifts to avoid poor predictive performance over time [11].

Assume that the parameters of a compressed model being learned arew =
(w1, · · · , wd), where d represents the size of the parameter vector. At each
time step t, our problem consists of using w(t−1) and st to learn a compressed
model w(t) capable of representing an ensemble withmt ·d parameters, m(t) >

5

1, without having to use st to update each of these mt models separately.

3. Related work

As our proposed model compression approach compresses an ensemble of
neural networks into a single neural network, we discuss both related work on
single neural networks for nonstationary environments, ensemble methods for
nonstationary environments, and compression methods. Data stream learn-
ing algorithms for nonstationary environments are typically categorized into
explicit or implicit. Explicit methods use explicit drift detection mechanisms
to activate an adaptation procedure. Implicit methods are continuously up-
dated over time without explicit drift detection. Explicit algorithms are often
the most effective techniques for abrupt drifts, whereas implicit algorithms
often deliver better generalization for gradual drifts [2]. We will make use of
this terminology when discussing the approaches.

3.1. Single neural networks for nonstationary data streams

There are a few studies on neural networks for data stream learning that
use evolving architectures to deal with concept drift without the use of pre-
tuned hyperparameters. Autonomous Deep Learning (ADL) [13] is a ex-
plicit deep neural network for chunk-based continual learning that grows and
prunes its architecture according to the network significance metric. The NA-
DINE approach [14] tackles chunk-based continual learning by dynamically
evolving the depth and width of a MultiLayer Perceptron (MLP) structure
to quickly react to concept drifts. It is also an explicit approach that employs
network significance to trigger network changes. MUSE-RNN is an explicit
chunk-based recurrent neural network that grows and prunes hidden nodes
on demand. Network significance also drives the changes in its architecture.
These techniques focus on chunk-based learning, that is, they do not deal
with strict online learning, in which only a single instance arrives at each
time step.

The authors in [15] proposed a one-pass model to tackle online learning
without any assumption about the data distribution. However, they assume
a linear model to achieve certain theoretical learning properties. While a
linear model could be seen as a neural network with no hidden layer, their
approach is not applicable to neural networks with one or more hidden layers
as its formulation is based on a linear classifier. The Multiclass Imbalanced

6

and Concept Drift Network Traffic Classification Framework based on On-
line Active Learning (MICFOAL) [16] can tackle classification problems by
making use of an uncertain label request strategy based on the variable least
confidence threshold vector.

3.2. Ensemble learning for nonstationary data streams

Ensemble learning has been widely employed in data stream learning
[3, 4]. Their ability to create strong learners for stable concepts while being
able to create new models to learn new concepts and discard past obsolete
models [17, 18] has made them attractive approaches to handle concept drift.

The Adaptive Random Forest (ARF) [19] is an online ensemble method
for data stream learning, it is based on using a drift detection mechanism
for each base tree to monitor warnings and drifts. It trains new trees in
the background in case of a warning before replacing them when a drift
is detected. In [20], ARF received a feature extraction step to reduce the
dimensionality of the data before learning and improve generalization.

Online Bagging (OzaBag) is the online version of the Bagging ensemble
[21]. Instead of sampling with replacement, it assigns each a weight to each
example according to a Poisson probability distribution, so that the models
can be updated with each example separately upon arrival. OzaBag can be
enhanced with an explicit drift detection method such as Adaptive Window-
ing (ADWIN) [22], so that the ensemble can be reset when a concept drift
occurs. Diversity for Dealing with Drift (DDD) [23], Diversity Pool (DP)
[24] and Concept Drift Handling Based on Clustering in the Model Space
(CDCMS) [25] are explicit online ensemble approaches that employ diversity
to select and train base learners, improving robustness to different types of
concept drift. Recurring Concept Drift (RCD) [26] is an explicit ensemble
approach that employs a statistical test and memory management to iden-
tify recurring concepts. Kappa Updated Ensemble (KUE) [27] is an ensemble
that combines chunk-based and online learning, it employs Kappa statistic
for dynamic weighting and selection of base learners. It train base learn-
ers following a Poisson distribution and encourages diversity among them
by using random feature subsets. The Streaming Random Patches classifier
(SRPC) is an online ensemble algorithm that is able to tackle concept drifts
by combining random subspaces and bagging, and by using an explicit drift
detection mechanism [5]. SRPC can be interpreted as an adaptation of batch
learning ensemble methods that combines random samples of examples and
random subspaces of features.

7

Dynamic Weighted Majority (DWM) [17] is an implicit online approach
that adds and removes base learners according to global and local perfor-
mance on the stream. To perform such updates, DWM uses four mechanisms
to handle concept drifts: trains its online base learners, weights base learners
according to their performance, it removes them, also based on their perfor-
mance, and it adds new experts based on the global predictive performance
of the ensemble. Online Accuracy Update Ensemble (OAUE) [18] is an im-
plicit ensemble approach that maintains a weighted majority vote ensemble
with a pruning mechanism. The Cost-Sensitive Boosting (CSB2) online al-
gorithm combines mechanisms from AdaBoost and AdaC2 [28]. When the
ensemble correctly classifies a test example, CSB2 updates weights as in Ad-
aBoost. Otherwise, it updates weights as in AdaC2 as an attempt to deal
with concept drifts that may have occurred.

Except for ARF ans CSARF, all of the ensemble approaches above can
be adopted with any type of online base learner. While these ensembles
produce high generalization accuracy, they have the computational burden
of training multiple base learners, which is aggravated by the amount of
data that must be processed in typical data stream applications. Typically,
both training and prediction time required by these methods grow with the
number of base learners. This can make their computational cost prohibitive
for high-speed data streams or applications with strict time requirements.

The Comprehensive Active Learning Method for Multiclass Imbalanced
Streaming data with concept drift (CALMID) [29] is an ensemble that is
based on an asymmetric margin threshold matrix, and a class imbalance
evaluation method under an online active learning strategy. Authors could
show that it is effective and efficient on general classification tasks.

3.3. Model Compression

Model compression techniques have been widely applied to offline learn-
ing, more particularly, to deep learning for reducing the computational bur-
den of large neural networks [7, 8]. With deeper networks, model size, infer-
ence latency and energy cost have become critical issues. Therefore, model
compression is becoming increasingly demanded and studied [30, 31, 6]. How-
ever, these approaches operate by taking an existing large model (pre-trained)
and then compressing it.

A few online compression techniques were proposed to handle this train-
and-compress issue [32, 33]. For example, distillation algorithms have been

8

developed to perform knowledge online teaching in a one-phase training pro-
cedure. However, these techniques are designed for the sole purpose of re-
ducing the computational cost of the compression [34]. They were designed
for offline problems. In [35], a student-teacher online approach was proposed
for dealing with time-series analysis. Such algorithm uses a compact model
to approximate the function learned by more complex and highly performing
model. However, this approach still has to maintain and to train the original
larger and slower model, which limits the potential gains in computational
time provided by compressing the model. In data stream learning, a model
compression approach able to operate in online mode at the same time as the
model being compressed is being trained is necessary. This is so that com-
pression occurs continuously over time and the learning system can maintain
its models in compressed format at all times to achieve computational effi-
ciency while being able to cope with concept drift.

In the context of ensemble learning, Garipov et al. [9] and Izmailov et
al. [10] showed that local optima produced by Stochastic Gradient Descent
(SGD) can be connected by simple curves of near constant loss. FGE [9]
is a neural network ensemble technique that uses a cyclical learning rate to
combine models that are spatially close to each other and produce diverse
predictions. These base models are used to train ensembles with no compu-
tational overhead when compared to single neural networks. SWA [10] is a
technique that averages multiple points in weight space along the trajectory
of SGD with cyclical or constant learning rates. The solutions provided by
SGD are approximately sampled from the loss surface of the neural network,
leading to stochastic weights that are, in turn, stochasticaly averaged by
SWA. Such weight averaging can be seen as an ensemble compression tech-
nique and was able to improve the predictive performance of a number of
network architectures over several benchmarks with no significant increase
in time complexity. That is, SWA is able to achieve ensemble-like perfor-
mance without the time overhead since it effectively employs only a single
network. The reason for this performance is that averaging weights leads to
solutions that are wider than the optima found by SGD. SGD generally con-
verges to a point near the boundary of the wide flat region of optimal points.
SWA, on the other hand, is able to find a point centered in this region, of-
ten with slightly worse train loss but with substantially better generalization
[10].

Neither FGE nor SWA are suitable for data stream learning, especially in
the presence of concept drifts. We show in Section 6.1 that, when a concept

9

drift occurs, SWA is no longer able to find flat regions in weight space. The
stochastic selection of points in weight space performed by SWA becomes
obsolete and the algorithm is unable to recover from the changes in that
space, rendering the model with a low generalization performance. A novel
approach able reduce computational time while maintaining state-of-the-art
predictive performance in nonstationary data streams is necessary.

4. Online Weight Averaging (OWA)

The proposed method consists of a single MultiLayer Perceptron (MLP)
with weights w and an averaged vector of weights µ. The weights w cor-
respond to a neural network that is being trained on the current concept,
whereas the averaged vector of weights µ represents the compressed version
of an ensemble composed of MLPs previously trained on this concept. The
latter weights µ are used as the weights of a MLP for prediction purposes.
The former weights w are updated continuously with new examples to reflect
the current concept and are periodically incorporated into µ through weight
averaging. Such periodic incorporation enables µ to become a stronger model
through the incorporation of knowledge from additional models trained on
the current concept. A simple drift detection method that does not cause
computational overhead is used to handle concept drift. When this method
triggers a drift detection, the averaged vector of weights µ is reset to the
value of the current w, so that it immediately reflects only the most recent
MLP model. OWA as proposed in this section and its analysis performed in
Section 6.1 are targeted at answering RQ1.

Algorithm 1 depicts OWA, where the function f represents an MLP net-
work. Learning is performed while there are examples arriving in the data
stream (Line 6). Before θ examples have arrived in the data stream, there
is a single MLP f with weights w(t). OWA’s MLP w is trained with SGD
in this work (Line 12). Other online training algorithms can be used. When
used for neural networks in data stream learning, SGD provides, at each time
step t, a solution in the weight space that represents the current concept as
in Equation 1, where L(xt, yt) is a loss function and η is the learning rate:

w(t+1) = w(t) − η
∂L(x(t), y(t))

∂w(t)
. (1)

Note that the application of this equation at each iteration of the while loop
corresponds to the optimization process in stochastic gradient descent being
applied over time, to learn each example from the data stream.

10

Different from existing work adopting SGD, the learning rate η used in
OWA can and should be relatively large for the following reasons: (1) it
enables more diverse models to be incorporated into the compressed ensemble
represented by µ, making it stronger during periods of stable concepts; (2) it
enables faster adaptation to concept drift, due to the stronger emphasis that
it places on the current concept. Such benefits are an advantage of OWA
over standard online neural networks, for which small learning rates would
hinder adaptation to concept drifts while large learning rates would hinder
predictive performance during stable concepts, preventing them from being
successful in nonstationary data streams.

Once more than θ examples have been received, OWA starts averaging
points in the weight space to produce an effective model for periods of sta-
bility (Lines 22-26), where each point w(t) incorporated into the average
corresponds to an MLP model that was being learned at a different point in
time. In particular, at every C time steps, the current w(t) is incorporated
into the average of weights µ as described in Equation 2:

µ(t+1) =
m(t)µ(t) +w(t)

m(t) + 1
. (2)

where m(t) = i/C is the number of models learned in the current concept
and i estimates the length of time covered by the current concept so far by
counting the number of time steps since the last drift detection (or since
the beginning of learning, when no concept drift has been detected yet).
The length of the cycle C controls the rate at which the averaging of the
network weights is performed, that is, it regulates the extent at which the
MLP’s optimization path is included in the current weight average. The
averaging process to compose µ starts only after the data stream produces a
pre-defined number of examples θ, as OWA would not benefit from averaging
undertrained weights.

When a concept drift occurs, the prequential accuracy naturally drops.
This is detected by OWA with a light drift detection mechanism (Lines 14–
21) that keeps track of the prequential accuracy preq(ŷ, preq(t−1)), where
ŷ is the prediction for x(t). If the performance drops consecutively for F
time steps, this is likely to represent a concept drift. So, the average µ is
reset to the weights of the MLP w and the running averaging µ and m(t)

restarts with the time step count i = 1 so that OWA can adapt to the
new incoming concept (Lines 28–30). F is the maximum number of time
steps where accuracy has been lower than the maximum accuracy, that is,

11

it regulates the number of time steps the OWA is allowed to perform worse
than its previous best accuracy before resetting the weight average. Drift
detection is only performed from time step θ onwards, where θ is a pre-
defined hyperparameter representing the initial training period.

5. Experiment Design

In this section, we present the experimental setup used to answer RQ1-3,
to validate the ability of OWA to find local optima in broad regions of the
train loss, and the usefulness of using a weight averaging procedure in data
stream learning in terms of computational time and predictive performance.

5.1. Data streams

We employed artificial and real-world data streams. We used four dif-
ferent generators to obtain these artificial data streams. The Sine gener-
ator [36] produces streams that follow various forms of the sine function.
The Agrawal generator [37] generates categorical and ordinal data to predict
certain groupings of individuals. The SEA generator [38] uses numerical at-
tributes to produce streams with different forms of hyperplanes as the correct
decision boundaries. STAGGER [39] contains categorical attributes – size,
color and shape – for the prediction of a simple binary function of a set of
objects. Each generator contains a set of functions {ri}, where each function
represents a different concept. Different data streams can be produced by
using different sequences of functions. The sequences used in this work are
shown in Table 1, where each concept extends for 1000 time steps.

We produced different versions of these streams with different types of
concept drift, including abrupt, gradual, recurrent, non-recurrent and differ-
ent levels of severity. These streams were tailored to assess the adaptation
mechanisms and efficiency of the classifiers. For each sequence shown in Table
1, we generated 2 artificial data streams – one with abrupt and one with grad-
ual concept drifts. Abrupt drifts occur in one time step and gradual drifts
take 100 time steps to complete. The streams Sine1, Sine2, Agrawal3, SEA1,
SEA2, STAGGER1 and STAGGER2 possess recurrent concepts, as shown
in the column containing the concept sequences. The different sequences of
concepts also lead to drifts with different severities. The severities are shown
in Table 2.

The severity of a drift is calculated as the percentage difference between
the previous and the incoming concept as follows [25], based on one million

12

Algorithm 1 OWA algorithm

1: function OWA(θ, C, F)
2: t← i← 1 ▷ time step and length of current concept
3: fails← 0 ▷ current number of fails
4: bestacc← −∞ ▷ Best accuracy in the concept
5: µ← 0
6: while t < end of stream do
7: if t <= θ then
8: ŷ ← f(x(t),w)
9: else

10: ŷ ← f(x(t),µ)
11: end if
12: Update MLP weights using SGD (Eq. 1)
13: if t > θ then
14: acc← preq(ŷ, y(t))
15: if acc > bestacc then
16: fails← 0
17: bestacc← acc
18: else
19: fails← fails+ 1
20: end if
21: if fails < F then
22: if mod (i, C) = 0 then
23: m(t) ← i/C
24: Update OWA weights with Eq. 2.
25: end if
26: i← i+ 1 ▷ Update the concept length
27: else
28: Reset ensemble weights to w
29: µ← w
30: i← 1, fails← 0, acc← −∞
31: end if
32: end if
33: t← t+ 1
34: end while
35: end function

13

Table 1: Summary of data streams.

Data Concept Number of D K; Class
Stream sequences instances distribution

Artificial data streams
Sine1 r3 → r4 → r3 3000 4 2; uniform
Sine2 r1 → r2 → r3 → r4 → r1 5000 4 2; uniform

Agrawal1 r1 → r3 → r4 → r7 → r10 20000 36 2; uniform
Agrawal2 r7 → r4 → r6 → r5 → r2 → r9 24000 36 2; uniform
Agrawal3 r4 → r2 → r1 → r3 → r4 20000 36 2; uniform
Agrawal4 r1 → r3 → r6 → r5 → r4 20000 36 2; uniform
SEA1 r4 → r3 → r1 → r2 → r4 5000 3 2; uniform
SEA2 r4 → r1 → r4 → r3 → r2 5000 3 2; uniform

STAGGER1 r1 → r2 → r3 → r2 16000 7 2; uniform
STAGGER2 r2 → r3 → r1 → r2 16000 7 2; uniform

Real-world data streams
Electricity – 27549 7 2; 58%:42%
NOAA – 18159 8 2; 42%:58%
Chess – 503 8 2; uniform

Keystroke – 1600 10 4; uniform
Luxembourg – 1901 31 2; uniform

Ozone – 2534 72 2; 5%:95%
Power S. Day/Night – 29928 2 2; uniform

Power S. – 29928 24 24; uniform
Sensor – 130073 5 2; uniform

randomly generated examples:

diff(ra, rb) =

∑n
i=1|yira − yirb|

n
, (3)

where yifa and yifb are the class labels determined by the a-th and b-th func-
tions of a generator, respectively, and n is the total number of examples
generated uniformly at random to calculate the severity. According to [25], a
concept drift could be considered severe when the concepts before and after
the drift have at least around 50% difference, and mild if the difference is
around 25%.

We preprocessed all data streams by using one-hot encoding for categor-
ical attributes and by transforming ordinal attributes into real-valued vari-
ables. All attributes were scaled into [−1, 1] and all artificial streams consist
of binary classifications.

To assess the performance of the algorithms in diverse real-world domains,
we also used ten real-world data streams to evaluate classifiers, which are
also summarized in Table 1. The Electricity Pricing Data (Electricity) [40]
stream contains data from the electricity market. The NOAA stream [41]
has decades of daily weather measurements, such as temperature, pressure,

14

Table 2: Severity of Drifts as the Percentage Difference Between the Old and New Con-
cepts. Adjusted from: [25]

Sine SEA STAGGER

r1 r2 r3 r1 r2 r3 r4 r1 r2

r2 100.0% - - 8.5% - - - 59.3% -
r3 26.8% 73.2% - 7.4% 16.0% - - 77.8% 48.1%
r4 73.2% 26.8% 100.0% 13.1% 4.6% 20.6% - - -
r5 - - - 23.9% 32.5% 16.5% 37.1% - -

Agrawal

r1 r2 r3 r4 r5 r6 r7 r8 r9

r2 53.9% - - - - - - - -
r3 53.1% 50.8% - - - - - - -
r4 53.9% 20.5% 50.8% - - - - - -
r5 53.4% 47.6% 50.7% 47.7% - - - - -
r6 69.9% 28.9% 51.2% 35.5% 48.1% - - - -
r7 50.5% 53.3% 50.1% 53.5% 60.1% 57.2% - - -
r8 33.5% 60.4% 46.5% 59.6% 59.6% 59.8% 49.8% - -
r9 50.4% 53.3% 50.2% 53.5% 59.9% 57.3% 6.0% 49.5% -
r10 32.9% 61.3% 46.5% 61.3% 60.0% 59.9% 51.1% 1.8% 51.1%

All percentage differences were calculated using Eq. 3 based on one million random generated examples.

15

visibility, and wind speed. The task is to predict whether or not it will rain in
a given day. The Chess data stream [42] consists of chess game records from
chess.com from December 2007 to March 2010 with seven attributes. Each
player has a rating, which changes over time. Potential sources of concept
drift are changes in the player’s skills over time, participation in various types
of tournaments and competitions. The Keystroke data stream [43] is a subset
of a larger dataset [44], which is formed of recordings of the typing rhythm
from 51 users typing a certain password and the enter key 400 times over
eight sessions spread along different days. In the Keystroke data stream,
the typing rhythm is used to predict four different users. Ten attributes
were extracted from the flight time for each pressed key (the time difference
between the instants when a key is released, and the next key is pressed). This
data stream incrementally evolves as the users practice. The Luxembourg
data stream [42] is based on the European Social Survey from 2002 to 2007.
Each example represents a subject and his/her attributes are based on the
answers to a survey questionnaire and 1,901 examples collected over five
years. This classification aims to predict whether his/her internet usage is
high or low. Since internet usage changes over time, this data stream may
present concept drifts. The Ozone data stream [45] consists of air readings
collected from 1998 to 2004 at the Houston, Galveston and Brazoria areas.
This learning task aims to predict the ozone level (ozone day and normal
day) eight hours ahead of time. The Power Supply stream [46] contains
three years of hourly measurements of electricity supply. The task consists of
identifying at which hour of the day a given power supply has been recorded.
The Power Supply Day/Night is its binary classification version, we grouped
the 24 classes (hours) into two classes: day and night. The Sensor stream
[46] contains data of temperature, humidity, light and voltage collected from
sensors in a research laboratory. The task is to identify the sensor that
produced a given measurement. We considered the two largest classes in this
stream: sensors 29 and 31.

5.2. Experimental setup

We answer RQ2 and RQ3 by comparing OWA against six ensemble learn-
ing approaches that are also strict online learning approaches able to adopt
neural networks as base learners:

• Ozabag [21] – This is the baseline for our proposed approach and has
been chosen due to its popularity in online data stream learning for

16

stationary environments. To have a successful predictive performance,
OWA should perform at least as well as the Ozabag ensemble. Since
this method consumes very little computational time beyond the base
learners’ training, it will also be a good benchmark for efficiency.

• Ozabag-Adwin [21, 22] – We also employ a drift detection mechanism
(ADWIN) to consider the impact that an explicit warning of a drift
causes to the performance of our baseline (Ozabag).

• DWM [17] – This is a well established ensemble method dynamically
adapts its structure to a new incoming concept. DWM handles concept
drift by creating and removing weighted base learners in response to
changes in performance calculated at each time step. This method will
allow the comparison of OWA to an ensemble that changes over time
and can adapt to new concepts using only a few base learners at a given
time step.

• CSB2 [28] – This ensemble approach is based on AdaBoost and AdaC2;
and uses the ADWIN change detector. We aim to compare OWA to
a AdaBoost-based technique for data stream learning in nonstationary
environments.

• SRPC [5] – This ensemble approach is based on bagging and random
subspaces. It has been chosen for being a state-of-the-art approach that
can be used as a benchmark of predictive performance in data stream
learning. We expect OWA to deliver at least a comparable predictive
performance to SRPC while requiring less computational time.

• KUE [27] – This ensemble technique is based on Kappa statistic to
update its base learners. We expect to perform similarly to KUE with
less computational time.

• CALMID [29] – This ensemble algorithm uses a asymmetric margin
threshold matrix to tackle imbalanced data. We expect OWA to per-
form similarly to CALMID on balanced data streams and worse on
streams with imbalanced classes.

• MICFOAL [16] – This technique uses an uncertain label request strat-
egy based on the variable least confidence threshold vector. We expect

17

MICFOAL to perform similarly to CALMID when compared to OWA.

• SWA [10] – We aim to assess the predictive performance of our ap-
proach when compared to SWA, which is an approach based on weight
averaging that was not designed for data stream learning. It is not
prepared to cope with concept drift, even though it is a strict online
learning method when SGD is applied with a single epoch.

Izmailov et al. [10] studied SWA with two learning rate schedules: high
and constant; and cyclical. The design of a cyclical learning rate schedule for
data stream learning depends on the correct match (sync) of the learning rate
and the incoming of a new concept. Such a design is challenging because a
concept drift can occur at any given moment in time. That is, such a change
can occur when the learning rate is low, which would hinder the learning of
a new concept. Therefore, we employed a more aggressive constant learning
rate schedule as it generally leads to faster convergence [10] and OWA needs
to recover rapidly from concept drifts, as explained in Section 4.

To perform the hyperparameter tuning of each method, we extracted the
initial 10% of each data stream to form a validation stream. We performed
a random search with 200 iterations on the validation streams [47] following
the probability distributions in Table 3. The predictive performances of
the selected models were evaluated on the remainder of the streams with the
prequential G-Mean [48] measured over 30 replicates. G-Mean is appropriate
for both balanced and imbalanced datasets as it accounts for the model’s
accuracy on each class k. For time step t, it is defined as

gmean(t) =

(∏
k

sens
(t)
k

) 1
K

, (4)

where

sens
(t)
k =

ps

(t)
k

pn
(t)
k

, if y(t) = k,

sens
(t−1)
k , otherwise.

sens
(t)
k is the prequential sensitivity for class k, ps

(t)
k = acck + fading ∗ ps(t−1)

k ,

pn
(t)
k = 1 + fading ∗ pn(t−1)

k , acc = 1 if the model correctly classified instance
s(t) as class k and 0 otherwise, and fading is the fading factor fixed at 0.999.

18

For a fair comparison able to assess the impact of the various ensemble
approaches themselves, we employed the same MLP model as base learner to
all compared techniques. Following Demsar [49]’s recommendations on com-
parisons of multiple classifiers over multiple datasets, we used the Friedman
statistical test followed by the Nemenyi post-hoc test with significance level
of 0.05. One Nemenyi test was conducted to compare the approaches across
all artificial data streams, one was conducted to compare the approaches
across all real world data streams and one was performed to compare all
methods across all streams.

6. Analyses

6.1. Optimization paths and solution widths through concept drifts

According to [50, 51], the generalization produced by weights in a local
optimum is influenced by the width of that solution, where a large width
refers to solutions that have a wide neighborhood of other weights whose
predictive performance is similar to that of the solution, whereas a small
width refers to solutions whose neighbors have considerably poorer predictive
performance than that of the solution. The reason for this relationship is
that the surfaces of train loss and test error have an offset between them.
Therefore, it is useful to find a local optimum in a broad region of the train
loss so that the test error has a higher probability to be found in that same
high-performing region. Such wide solutions stay approximately optimal in
the presence of small perturbations. SWA is able to find such broad regions,
that accommodate local optima for both train loss and test error, and produce
good predictive performance for stationary classification scenarios [10].

However, such a characteristic does not hold for data stream learning.
As SWA maintains its averaged weights since the start of the stream, it
becomes obsolete when a concept drift occurs. That is, SWA is no longer
able to produce informative broad local optima after a concept drift. We
highlight this fact in Figure 1, where we use random projections of weights
to visualize the prequential accuracy landscape [52] and the optimization
path of SWA when a concept drift occurs. The Sine data stream is described
in Section 5.1. Both OWA and SWA use the same MLP in the figures of
this section. All hyperparameters, including the constant learning rate, were
tuned according to Section 5.2. We depict a gradual drift that starts at
time step 1000. Figure 1a shows that SWA was able to correctly find a wide
optimum for the current concept, which ranges from time step 1 to 1000. A

19

Table 3: Table of hyperparameter ranges for random search.

Hyperparameter Probability distributions for randomized
search

Ozabag
ensemble size uniform in [1, 50]

Ozabag-Adwin
ensemble size uniform in [1, 50]

DWM
ensemble size discrete uniform in [1, 50]

β uniform in [1−5, 10]
θ uniform in [1−5, 1−1]

period discrete uniform in [1, 100]
SRPC

ensemble size discrete uniform in [1, 50]
subspace size discrete uniform in [1, 20]

training method discrete uniform in {random subspaces, re-
sampling, random patches}

λ uniform in [1−3, 10]
CSB2

ensemble size discrete uniform in [1, 50]
positive cost uniform in [0, 1]
negative cost uniform in [0, 1]

KUE
ensemble size discrete uniform in [1, 50]

CALMID
ensemble size discrete uniform in [1, 50]
weight shrink discrete uniform in [1, 1000]

active threshold uniform in [0, 1]
active budget uniform in [0, 1]
random ratio uniform in [0, 1]
window size discrete uniform in [1, 500]

MICFOAL
active threshold uniform in [0, 1]
active budget uniform in [0, 1]
random ratio uniform in [0, 1]
low F1 score uniform in [0, 1]
high F1 score uniform in [0, 1]

SWA
start discrete uniform in [1, 100]

OWA
cycle discrete uniform in [1, 500]

maximum fails discrete uniform in [1, 100]
start discrete uniform in [1, 100]

20

gradual concept drift starts at time step 1001 and has a length of 100 time
steps. In Figure 1b, the weight solution starts to deteriorate as the solutions
are found near the borders of a wide optimum. This situation is aggravated 50
time steps later in Figure 1c, where the path shows solutions in sub-optimal
regions. Figure 1d shows that, even after 100 time steps after the end of the
concept drift, solutions are not produced in wide optimal regions. That is,
SWA could not recover from the concept drift within 100 time steps. This
fact might indicate that keeping the obsolete weight solutions in the current
averaging negatively affects current solutions.

In contrast, the proposed method is able to recover and find wide optimum
shortly after a concept drift occurs. This fact is shown in Figure 2, where
we depict random projections of the prequential accuracy surface and the
optimization path of OWA during a gradual concept drift that ranges from
time steps 1001 to 1100. In Figure 2a, OWA could find a wide optimum as
SWA, which leads to better generalization performance [10]. After 50 time
steps within the drift, OWA no longer produces solutions in middle of wide
regions (Figure 2b). However, 100 time steps later, in Figure 2c, the drift
ends and OWA finds again a solution in wide optimum region due to its
drift-handling mechanism. In Figure 2d, we show that, after 100 time steps
after the drift end, OWA could completely recover from the drift and find
a good weight solution in the middle of a wider optimum in the prequential
accuracy surface when compared to SWA.

In Figure 3, we plot the projection of the optimization path of SWA
before and 50, 100 and 200 time steps after an abrupt drift (it has a length
of one time step). This is a more severe change, as a new concept arrives
suddenly and the previous one becomes totally absent after a single time
step. Before this concept drift, SWA could find a wide optimum in weight
space. However, when a sudden change occurs (concepts are switched in
a single step), the weight average becomes outdated, which start drastically
and negatively affecting the quality of the current solution (Figure 3b). After
100 time steps (Figure 3c), SWA cannot adapt to the new concept. Even after
200 time steps (Figure 3d), SWA still could not produce weights in potentially
interesting regions. This degradation of the optimization is aggravated when
many concept drifts took place as SWA does not have mechanisms to forget
the weights found for previous concepts. That is, SWA is incrementally and
negatively affected by past concepts.

On the other hand, OWA is able to correctly learn the current concept
via its cyclical optimization process and to rapidly adapt to sudden changes

21

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

41.18

41
.1
8

45.06

45
.0
6

49.30

49
.30

53.94

53
.94

59.02

59
.02

64
.58

70
.6677.

31

(a)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

39.94

43.02

43.0
2

46.33

46.
33

49.90
49.

90

53.75
53.

75

57.89
57.

89

62.35

62.35

62.
35

67.15

67.
15

72.32

72
.32

72.3272.32

(b)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

21.1
8

25.09

25.09

29.7135.19

35
.1
9

41.68

41
.6
8

49.36

49
.3
6

58.47

58
.4
7

69.25
69.25

(c)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

21.1
8

25.09

25.09

29.7135.19

35
.1
9

41.68

41
.6
8

49.36

49
.3
6

58.47

58
.4
7

69.25

69.25

(d)

Figure 1: Prequential accuracy surfaces for SWA at 0, 50, 100 and 200 time steps after a
gradual concept drift of length 100 starts on the Sine data stream. Circles denote points
in weight space retrieved by the SWA optimization path, where darker/lighter circles
represent earlier/later positions in the path.

22

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface
36.36
40.4

0
44.8

9

49.88

49
.8
8

55
.4
2

55
.42

61
.5
8

61
.58

68
.42

76.
02

(a)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

26.
77

30.9535.79 41.39
47.86

55
.3
4

55.3
4

63.99

63
.99

(b)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

43.02

43.02

47.02

47.0251.39
56.17

61.40

67
.11

73
.35

73
.35

(c)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

42.19

46.94

46.94

52
.2
4

58.1364.68
71.97

80.0
8

(d)

Figure 2: Prequential accuracy surfaces for OWA at 0, 50, 100 and 200 time steps after a
gradual concept drift of length 100 starts on the Sine data stream. Circles denote points
in weight space retrieved by the OWA optimization path.

23

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts
Prequential accuracy surface

37.50
42.92
49.1256

.2
2

64
.3
5

64.35
73.64

(a)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface
8.04

10.54

10.54

13.82

18
.12

23.76

31
.14

31.14

40
.8
3

40.83

53
.5
2

53.5270.16

(b)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

17.09 20.98

25.
75

31.62

38
.82

38.82

47
.66

47.66

58
.5
1

58.51

71
.8
3

71.83

(c)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts
Prequential accuracy surface

16.95 16.95

16.95

20.50

20.50

24.81

30.02
36.32

43
.9
4

43.94

53
.1
6

53.16
64.32

(d)

Figure 3: Prequential accuracy surfaces for SWA at 0, 50, 100 and 200 time steps after
an abrupt concept drift occurs on the Sine data stream. Circles denote points in weight
space from the SWA optimization path.

by forgetting obsolete points in its averaging, considering only the current
concept in the training of its weights. Figure 4 depicts OWA’s optimization
path when a abrupt concept drift occurs. The proposed method could use
the average of weight vectors from different points in time to produce good
weight solutions for the current concept (Figure 4a). Only 50 time steps
after a sudden change (Figure 4b), OWA could find good weights in a wide
informative region for the new concept. And 200 time steps after the abrupt
concept drift, the proposed method continued to find solutions in safer re-
gions (further from the boundaries) of the wide optima, which leads to good
generalization.

24

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

49.85
53.81

53.81

58.09
58.09

62.70

62
.7
0

67.6873.06

78
.8
6

(a)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

15
.1
6

19
.0
5

23.93

30.05

30.05

37.75

37.75

47.42

47.42

59.56

59
.5
6

74.
81

(b)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

47
.5
1 51.32

55.44

55.44
59.90

59
.9
0

64.70

64
.7
0

69.90

69
.9
0
75

.5
1

81.58

81
.58

(c)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Weights

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

W
ei
gh

ts

Prequential accuracy surface

43
.60

43.6
0

47.54

47
.5
4

51.83

51
.83

56.52

56.
52

61.63

61.6
3

67.20

73.28

79.90

(d)

Figure 4: Prequential accuracy surfaces for OWA at time steps 0, 50, 100 and 200 after
an abrupt concept drift occurs on the Sine data stream. Circles denote points in weight
space from the OWA optimization path.

25

We answered RQ1 by proposing OWA – a single neural network for nonsta-
tionary data stream learning that compresses an ensemble based on weight
averaging. OWA is able to find solutions in wide optima both before and
after drifts. Solutions in wide optima are known to lead to good general-
ization [50, 51]. OWA will be further validated through a comparison of
predictive performance and computational cost against existing approaches
in Sections 6.2 and 6.3.

6.2. Predictive performance

This section validates OWA in terms of its predictive performance, an-
swering RQ2.

Artificial Data Streams. We conducted Friedman test and Nemenyi post-hoc
tests across all artificial data streams and types of concept drifts to compare
the G-Mean obtained by the methods. Friedman test detected significant
difference at the level of significance of 0.05 (p-value of 2.42 ∗ 10−11). Fig-
ure 5 depicts the critical difference diagram for the Nemenyi post-hoc tests
to identify which methods perform differently from each other. Based on
these tests, none of the compared methods produced significantly superior
predictive performance to OWA across artificial data streams. In particu-
lar, OWA was significantly better than SWA and no significant difference
has been found compared to Ozabag, Ozabag-Adwin, DWM, CSB2, KUE,
CALMID, MICFOAL and SRPC.

Figures 6 and 7 further depict the heatmaps of G-Mean of each compared
method across several numbers of base learners (10, 20, 30, 40 and 50) on
each data stream separately with gradual and abrupt concept drifts, respec-
tively1. Regardless of the number of base learners, OWA delivered similar
generalization to the best methods. This is a very positive result, given that
OWA is based on a single MLP and a weight average, whereas all other
methods except for SWA are ensemble techniques2.

OWA outperformed SWA because SWA rapidly becomes obsolete when a
new concept arrives, whilst OWA can quickly adapt and produce good gen-
eralization even after abrupt drifts. This can be observed based on Figures 8

1Missing values denote that the method failed to run on the stream, even though all
public available implementation of these methods were tested.

2Due to space restrictions, plots with G-Mean across different numbers of base learners
are available in the Supplementary Material.

26

2 3 4 5 6 7 8 9

OZABAG_ADWIN [2.40]

OZABAG [2.50]

CSB2 [3.10]

OWA [3.85]

DWM [4.85]

 [9.10] KUE

 [8.43] CALMID

 [8.05] MICFOAL

 [6.53] SRPC

 [6.20] SWA

Critical difference diagram of average score ranks

Figure 5: G-Mean Nemenyi post-hoc statistical test across artificial data streams. For
ensemble methods, the number of base learners is 50. Values in brackets are mean ranks,
where smaller ranks represent higher G-Means. Groups of algorithms that are not signifi-
cantly different are connected with a bold solid line.

and 9, which show the G-Mean over time of the best run of each algorithm on
artificial data streams with gradual and abrupt concept drifts, respectively.
In particular, SWA’s performance tends to considerably decrease over time in
the presence of concept drift, whereas OWA’s performance presented a more
rapid recovery from concept drift, as its drift detection mechanism resets the
averaging procedure.

Figures 8 and 9 also show that OWA delivered G-Mean similar to the
best ensemble methods over time. It is important to highlight that the
compared ensemble methods have sophisticated learning mechanisms (for
example, DWM creates and removes base learners as necessary and KUE
updates its base learners according to an online statistic), whereas OWA
achieves similar performance with a simple weight averaging through time
that resets its weights to w when a concept drift is detected.

Real World Data Streams. According to Friedman statistical test with level
of significance of 0.05 on the G-Mean score run across all real-world data
streams, significant differences were found among the methods (p-value of
3 ∗ 10−4). The results of the Nemenyi post-hoc statistical test to identify

27

Si
ne

1

Si
ne

2

Ag
ra

wa
l1

Ag
ra

wa
l2

Ag
ra

wa
l3

Ag
ra

wa
l4

SE
A1

SE
A2

ST
AG

GE
R1

ST
AG

GE
R2

Data streams

ozabag_10
ozabag_20
ozabag_30
ozabag_40
ozabag_50

ozabag_adwin_10
ozabag_adwin_20
ozabag_adwin_30
ozabag_adwin_40
ozabag_adwin_50

dwm_10
dwm_20
dwm_30
dwm_40
dwm_50
srpc_10
srpc_20
srpc_30
srpc_40
srpc_50
csb2_10
csb2_20
csb2_30
csb2_40
csb2_50
kue_10
kue_20
kue_30
kue_40
kue_50

calmid_10
calmid_20
calmid_30
calmid_40
calmid_50

micfoal
swa
owa

Al
go

rit
hm

s

79.0 88.2 47.8 48.7 47.2 47.2 84.7 83.3 96.5 96.7
79.1 88.3 48.2 48.7 47.3 47.4 84.9 83.4 96.5 96.8
79.3 88.3 48.9 49.2 47.9 48.0 85.0 83.3 96.5 96.8
79.4 88.3 48.2 49.3 48.0 47.2 85.0 83.5 96.5 96.9
79.3 88.3 48.2 49.0 48.5 47.6 85.0 83.4 96.6 96.9
78.9 88.2 47.7 48.4 47.5 47.6 84.7 83.2 96.5 96.7
79.2 88.2 48.4 48.5 47.9 47.5 84.9 83.4 96.5 96.8
79.3 88.3 48.7 49.8 47.6 47.7 84.9 83.4 96.5 96.8
79.4 88.3 48.4 49.7 47.6 47.8 85.0 83.4 96.5 96.9
79.4 88.3 48.1 49.7 47.6 47.4 85.0 83.4 96.5 96.9
77.9 86.0 43.8 45.0 44.3 45.2 84.4 82.6 96.4 96.6
77.9 86.0 44.3 47.2 44.2 43.3 84.4 82.6 96.5 96.7
78.0 86.1 45.8 46.0 44.4 43.6 84.4 82.6 96.5 96.6
77.9 86.0 44.4 46.1 44.4 43.7 84.4 82.6 96.5 96.7
77.9 86.0 44.4 46.1 44.4 43.7 84.3 82.6 96.3 96.3
79.6 87.8 48.0 46.8 46.8 85.0 83.3
79.7 87.9 46.0 46.8 85.0 83.4
79.7 87.9 46.8 46.6 85.1 83.4
79.7 87.9 47.2 46.9 85.1 83.3
79.7 88.0 46.9 46.5 85.1 83.3
77.4 72.6 48.8 49.7 47.8 48.4 83.5 81.5 96.6 96.6
78.0 75.3 50.1 49.8 49.1 49.3 83.6 81.4 96.6 96.5
78.5 77.7 50.1 49.5 48.0 48.6 83.7 81.2 96.5 96.7
78.7 79.6 49.8 50.9 48.1 49.5 83.6 81.1 96.7 96.5
79.1 82.1 49.8 50.1 48.2 48.6 83.6 81.0 96.7 96.5
0.0 3.0 1.7 2.3 3.0 5.6 5.9 4.5 8.4 3.2
1.5 4.9 3.0 0.0 2.4 5.6 5.4 5.2 13.1 3.9
3.1 6.9 4.3 0.0 4.8 7.4 5.8 5.8 10.7 17.9
3.9 5.6 5.1 3.5 3.4 8.1 9.3 7.0 16.7 10.3
3.4 7.3 7.9 3.2 7.4 7.0 10.9 8.6 15.2 16.5
28.0 30.6 0.0 26.0 0.0 25.3 53.5 56.2 25.2 35.1
28.0 30.6 0.0 26.0 0.0 25.3 52.2 54.9 25.9 35.1
28.0 30.6 0.0 26.0 0.0 25.3 52.6 54.5 25.5 35.1
28.0 30.6 0.0 26.0 0.0 25.3 53.1 55.0 20.8 35.1
28.0 30.6 0.0 26.0 0.0 25.3 50.7 55.4 18.4 35.1
19.3 32.0 27.6 27.6 27.2 27.8 52.5 53.6 12.4 35.1
61.6 59.6 35.0 31.5 35.9 36.6 83.9 83.0 72.7 69.9
77.9 86.6 47.6 47.8 47.6 47.6 84.8 83.4 95.7 95.0

0

20

40

60

80

Figure 6: Heatmap of the mean G-Mean of each method using different numbers of base
learners (10, 20, 30, 40, 50) on artificial data streams with gradual concept drifts.

28

Si
ne

1

Si
ne

2

Ag
ra

wa
l1

Ag
ra

wa
l2

Ag
ra

wa
l3

Ag
ra

wa
l4

SE
A1

SE
A2

ST
AG

GE
R1

ST
AG

GE
R2

Data streams

ozabag_10
ozabag_20
ozabag_30
ozabag_40
ozabag_50

ozabag_adwin_10
ozabag_adwin_20
ozabag_adwin_30
ozabag_adwin_40
ozabag_adwin_50

dwm_10
dwm_20
dwm_30
dwm_40
dwm_50
srpc_10
srpc_20
srpc_30
srpc_40
srpc_50
csb2_10
csb2_20
csb2_30
csb2_40
csb2_50
kue_10
kue_20
kue_30
kue_40
kue_50

calmid_10
calmid_20
calmid_30
calmid_40
calmid_50

micfoal
swa
owa

Al
go

rit
hm

s

79.7 91.3 47.3 49.8 47.5 46.4 84.5 83.3 97.4 97.6
79.8 91.5 48.2 50.0 47.7 46.5 84.7 83.4 97.5 97.6
80.1 91.7 47.1 50.8 47.2 45.2 84.9 83.4 97.4 97.6
79.9 91.7 47.4 50.3 46.9 45.2 84.9 83.5 97.4 97.6
80.0 91.7 47.4 50.3 47.3 44.6 84.9 83.5 97.5 97.6
79.8 91.3 47.5 49.7 47.1 47.0 84.6 83.4 97.4 97.6
79.8 91.5 47.9 50.2 47.3 45.5 84.8 83.4 97.4 97.7
80.0 91.6 47.5 50.9 47.7 46.2 84.9 83.4 97.5 97.6
80.0 91.7 47.4 51.1 47.5 46.4 84.9 83.5 97.5 97.6
79.9 91.7 47.4 50.5 47.5 46.1 84.9 83.5 97.4 97.6
0.0 89.5 43.6 44.2 43.2 42.9 84.2 82.7 97.2 97.6
78.6 89.5 44.6 45.1 45.1 43.9 84.2 82.8 96.8 97.5
78.6 89.5 45.0 45.4 44.1 44.1 84.2 82.8 97.2 97.5
78.6 89.5 45.0 45.4 44.2 44.2 84.2 82.7 97.1 97.5
78.6 89.5 45.0 45.4 44.2 44.2 84.2 82.8 96.8 97.5
80.4 50.1 47.1 45.8 85.0
80.6 45.6 46.1 85.1
80.7 49.8 46.0 44.6 85.0
80.6 46.6 42.9 85.1
80.6 46.2 43.1 85.1
78.6 76.1 47.6 50.4 48.1 47.0 83.1 82.2 97.5 98.1
79.6 82.7 48.8 49.9 49.0 46.6 82.9 81.9 98.0 98.1
79.6 83.5 48.8 50.6 48.0 46.3 82.9 81.9 97.7 98.0
79.8 84.0 48.2 51.7 48.5 46.8 82.9 81.9 97.9 98.0
80.0 84.7 49.8 52.0 47.7 44.8 82.8 81.7 97.7 98.1
2.2 1.7 1.1 1.2 5.1 0.0 10.2 11.8 4.4 5.7
3.8 2.9 3.5 1.1 5.8 1.1 9.5 6.4 11.3 8.3
3.5 6.4 6.7 1.4 7.1 0.0 11.1 10.0 12.5 10.3
4.4 2.8 6.5 6.0 8.4 2.9 12.9 11.0 11.3 18.6
4.9 5.4 7.0 1.0 9.7 0.0 13.6 10.6 15.6 20.6
26.8 0.0 25.2 0.0 0.0 25.5 57.8 56.1 24.4 34.9
26.8 0.0 25.2 0.0 0.0 25.5 57.6 55.5 17.7 34.9
26.8 0.0 25.2 0.0 0.0 25.5 57.4 55.7 23.1 34.9
26.8 0.0 25.2 0.0 0.0 25.5 57.9 55.8 22.6 34.9
26.8 0.0 25.2 0.0 0.0 25.5 57.9 56.0 14.5 34.9
18.6 26.8 27.2 28.3 27.6 27.6 52.5 54.9 10.9 34.9
62.0 59.8 36.6 35.5 35.2 34.9 83.7 82.6 73.2 71.2
78.4 89.9 47.5 48.0 47.7 47.4 84.1 82.3 95.4 95.0

0

20

40

60

80

Figure 7: Heatmap of the mean G-Mean of each method using different numbers of base
learners (10, 20, 30, 40, 50) on artificial data streams with abrupt concept drifts.

29

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Sine1 - gradual

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(a)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Sine2 - gradual

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(b)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal1 - gradual
Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(c)

0 1 2 3 4 5 6
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal2 - gradual
Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(d)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal3 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(e)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal4 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(f)

30

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

SEA1 - gradual

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(g)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

SEA2 - gradual

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(h)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

STAGGER1 - gradual

Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(i)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

STAGGER2 - gradual

Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(j)

Figure 8: Plots of G-Mean produced by the best run of each of the methods for artificial
data streams with gradual concept drifts. Dashed lines denote concept drifts.

31

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Sine1 - abrupt

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(a)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Sine2 - abrupt

Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(b)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal1 - abrupt
Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(c)

0 1 2 3 4 5 6
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal2 - abrupt
Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(d)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal3 - abrupt
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(e)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

Agrawal4 - abrupt
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(f)

32

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

SEA1 - abrupt

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(g)

0 1 2 3 4 5
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

SEA2 - abrupt

Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(h)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

STAGGER1 - abrupt

Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(i)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time step ×103

0

20

40

60

80

100

G-
M

ea
n

STAGGER2 - abrupt

Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(j)

Figure 9: Plots of G-Mean produced by the best run of each of the methods for artificial
data streams with abrupt concept drifts. Dashed lines denote concept drifts.

33

3 4 5 6 7 8 9

OWA [2.90]

OZABAG_ADWIN [3.55]

OZABAG [3.65]

SRPC [3.70]

DWM [4.75]

 [8.40] MICFOAL

 [8.25] KUE

 [7.65] CALMID

 [6.90] SWA

 [5.25] CSB2

Critical difference diagram of average score ranks

Figure 10: G-Mean Nemenyi post-hoc statistical test across real-world data streams. For
ensemble methods, the number of base learners is 50. Values in brackets are mean ranks.
Groups of algorithms that are not significantly different are connected with a bold solid
line.

which methods perform differently are shown in Figure 10. None of the
compared methods produced significantly superior predictive performance
to OWA across real-world data streams. As with the artificial data streams,
no significant difference has been found between the performance of the pro-
posed approach and Ozabag, Ozabag-Adwin, DWM, CSB2 and SRPC. On
the other hand, OWA was significantly superior to KUE, CALMID and MIC-
FOAL. This illustrates OWA’s ability to find more stable minima by aver-
aging weight solutions on the borders of wide minima. This leads to an
ensemble-like performance at the cost of a single method. OWA was sig-
nificantly superior to its offline counterpart – SWA – as expected. This
result indicates the usefulness of employing an online approach specifically
designed for data stream learning with a concept drift detection mechanism.
Such an averaging helps the neural network to obtain similar generalization
to ensemble methods while training only a single model.

Figure 11 depicts the heatmap of the G-Mean score for each algorithm
across several numbers of learners (10, 20, 30, 40 and 50) on each specific
data stream. For the Chess stream, OWA was superior to KUE, CALMID,
MICFOAL, SWA and DWM, and similar to the other techniques. Only

34

SWA and OWA delivered good predictive performances for Keystroke. In
particular, the other techniques are making large errors in a specific class,
which leads to poor G-Mean score. For Luxembourg, SRPC and OWA obtain
similar results, however OWA produced higher variance due to a potentially
large architecture for this stream. For Ozone, which is heavily imbalanced
(5%:95%), and for NOAA (32%:68%), SRPC and DWM were the superior
methods, while OWA was superior to KUE, CALMID and MICFOAL and
was similar to the other algorithms. This might indicate that SRPC could
handle imbalanced classes better than the other methods, which translates
to a much higher G-Mean score. A smaller architecture for OWA could
mitigate the higher variance. OWA also obtained similar performance to
the top techniques for the Electricity and Power Supply Day/Night streams.
This shows that the proposed approach is robust to large number of classes
(40). For Power Supply, which has 24 classes, OWA delivered significantly
superior performance, which denotes that it could find wide regions in weight
space to compute better minima than standard neural networks. OWA was
significantly better than SWA when all real-world streams were considered.
As mentioned earlier, these streams are likely to present drifts, which hinders
SWA’s performance. In contrast, OWA is able to deliver good generalization
by being able to find wide optima even after drifts in real-world data streams.

We plot in Figure 12 the G-Mean score over time of the best run of
each algorithm in each stream. For Chess and Keystroke, all methods de-
livered similar performance (except for SWA) as shown in Figures 12a and
12b. For Luxembourg (Figure 12c), DWM produced superior performance,
which might indicate that it could adapt to its small number of instances.
For Ozone (Figure 12d), OWA was superior to the other algorithms for the
longest section of the stream. On the Electricity data stream (Figure 12e), all
algorithms, except MICFOAL and SWA, produced similar predictive perfor-
mance. For NOAA (Figure 12f), SRPC was the top-scoring method through-
out the stream. For both Power Supply and Power Supply Day/Night (Fig-
ures 12h and 12g), OWA delivered top G-Mean despite being a single learner
compared with ensembles. On the Sensor stream (Figure 12i), DWM was the
superior technique and the other techniques delivered similar performance
(except KUE and MICFOAL).

We also performed a Friedman followed by a Nemenyi post-hoc test with
all streams and all numbers of base learners (Figure 13). OWA is among the
top performing ensembles and is significantly superior to CALMID, MIC-
FOAL, KUE and especially SWA. This evidence supports our hypothesis

35

Ch
es

s

Ke
ys

tro
ke

Lu
xe

m
bo

ur
g

Oz
on

e

El
ec

tri
cit

y

NO
AA

Po
we

r S
up

pl
y

Da
y/

Ni
gh

t

Po
we

r S
up

pl
y

Se
ns

or

Data streams

ozabag_10
ozabag_20
ozabag_30
ozabag_40
ozabag_50

ozabag_adwin_10
ozabag_adwin_20
ozabag_adwin_30
ozabag_adwin_40
ozabag_adwin_50

dwm_10
dwm_20
dwm_30
dwm_40
dwm_50
srpc_10
srpc_20
srpc_30
srpc_40
srpc_50
csb2_10
csb2_20
csb2_30
csb2_40
csb2_50
kue_10
kue_20
kue_30
kue_40
kue_50

calmid_10
calmid_20
calmid_30
calmid_40
calmid_50

micfoal
swa
owa

Al
go

rit
hm

s

51.2 0.0 45.3 15.8 83.1 55.8 89.8 3.0 59.2
51.9 0.0 45.0 15.6 83.4 56.2 90.6 3.0 59.3
51.6 0.0 44.9 15.5 83.6 56.2 91.0 2.9 59.3
52.2 0.0 44.6 15.7 83.7 56.4 91.3 2.9 59.5
51.8 0.0 44.6 15.5 83.8 56.4 91.4 2.9 59.5
51.0 0.0 45.3 16.0 83.1 55.7 89.8 3.0 59.2
52.2 0.0 44.2 15.6 83.4 56.1 90.6 3.0 59.5
51.2 0.0 44.6 15.7 83.6 56.3 91.0 3.0 59.5
51.9 0.0 44.7 15.5 83.7 56.3 91.3 2.9 59.4
52.0 0.0 44.9 15.6 83.8 56.4 91.4 2.8 59.5
0.0 0.3 23.0 0.0 84.7 59.3 91.7 0.1 69.3
0.0 0.1 25.5 0.0 84.7 59.3 91.7 0.1 70.4
0.0 0.6 16.3 0.0 84.7 59.3 91.7 0.1 71.0
0.3 0.3 17.9 0.0 84.7 59.3 91.7 0.1 70.6
0.0 0.0 27.0 0.0 84.7 59.3 91.7 0.1 71.4
50.4 0.0 42.6 15.8 84.4 59.2 91.2 3.2
50.4 0.0 43.1 15.5 84.6 59.5 91.6 3.1
52.5 0.0 43.6 15.5 84.7 59.6 91.6 3.1
52.9 0.0 43.8 15.5 84.7 59.6 91.6 2.9
51.9 0.0 43.6 15.5 84.7 59.7 91.6 2.9
50.6 0.0 19.3 17.1 82.5 56.5 0.0 65.3
50.4 0.0 17.4 15.9 83.1 56.9 0.0 65.1
49.8 0.0 16.6 15.5 83.3 57.2 1.7 65.0
49.7 0.0 15.7 15.4 83.4 57.3 0.0 64.7
49.9 0.0 15.7 15.6 83.6 57.4 12.1 64.8
0.0 0.0 0.4 0.0 13.4 0.0 0.7 0.0 2.6
0.0 0.0 0.0 0.0 0.0 2.1 0.0 5.3
0.0 0.0 0.8 0.0 1.3 6.6 0.0 15.8
0.0 0.0 0.1 0.0 0.0 5.5 0.0 11.2
0.0 0.0 1.0 0.0 1.1 7.0 0.0 22.2
0.0 0.0 8.6 0.0 19.6 11.0 9.5 0.0 5.4
0.0 0.0 8.6 0.0 11.0 11.0 9.5 0.0 5.7
0.0 0.0 8.6 0.0 11.0 11.0 9.5 0.0 5.7
0.0 0.0 8.6 0.0 11.0 11.0 9.5 0.0 5.1
0.0 0.0 8.6 0.0 11.0 11.0 9.5 0.0 5.4
0.0 0.0 0.0 0.0 11.0 0.0 9.3 0.0 2.4
42.2 74.0 32.9 5.7 8.0 0.0 23.2 0.0
50.4 75.8 43.8 15.4 84.6 57.8 91.6 5.4 58.0

0

20

40

60

80

Figure 11: Heatmap of the mean G-Mean of each method using different numbers of base
learners (10, 20, 30, 40, 50) from real-world data streams.

36

0 1 2 3 4
Time step ×102

0
10
20
30
40
50
60
70
80

G-
M

ea
n

Chess

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time step ×103

0

20

40

60

80

G-
M

ea
n

Keystroke

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time step ×103

0
10
20
30
40
50
60
70
80

G-
M

ea
n

Luxembourg

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(c)

0.0 0.5 1.0 1.5 2.0
Time step ×103

0
10
20
30
40
50
60
70
80

G-
M

ea
n

Ozone
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(d)

0.0 0.5 1.0 1.5 2.0 2.5
Time step ×104

0

20

40

60

80

G-
M

ea
n

Electricity

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
SWA
OWA

(e)

37

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time step ×104

0

10

20

30

40

50

60

G-
M

ea
n

NOAA

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(f)

0.0 0.5 1.0 1.5 2.0 2.5
Time step ×104

0

20

40

60

80

100

G-
M

ea
n

Power Supply Day/Night

Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
KUE
CALMID
MICFOAL
SWA
OWA

(g)

0.0 0.5 1.0 1.5 2.0 2.5
Time step ×104

0

2

4

6

8

G-
M

ea
n

Power Supply
Ozabag
Ozabag-Adwin
DWM
SRPC
KUE
CALMID
MICFOAL
SWA
OWA

(h)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time step ×105

0

20

40

60

80

100

G-
M

ea
n

Sensor

Ozabag
Ozabag-Adwin
DWM
CSB2
KUE
CALMID
MICFOAL
OWA

(i)

Figure 12: Plots of G-Mean produced by the best run of each of the methods for real-world
data streams.

38

6 8 10 12 14 16 18 20 22

OZABAG_ADWIN_50 [5.78]
OZABAG_50 [5.95]

OZABAG_ADWIN_30 [6.02]
OZABAG_30 [6.75]

OZABAG_ADWIN_10 [8.12]
OZABAG_10 [8.35]

OWA [8.57]
CSB2_50 [8.75]
CSB2_30 [9.28]
CSB2_10 [9.55]

DWM_30 [11.15]
DWM_50 [11.65]

 [20.95] KUE_10
 [20.32] KUE_30
 [19.73] KUE_50
 [18.87] CALMID_50
 [18.77] CALMID_30
 [18.75] MICFOAL
 [18.55] CALMID_10
 [15.22] SWA
 [12.68] SRPC_50
 [12.23] SRPC_10
 [12.13] SRPC_30
 [11.88] DWM_10

Critical difference diagram of average score ranks

Figure 13: G-Mean Nemenyi post-hoc statistical test across all data streams and, for
ensemble methods, the numbers of base learners are 10, 30, 50. Values in brackets are
mean ranks. Groups of algorithms that are not significantly different are connected with
a bold solid line.

that weight averaging is useful for nonstationary data stream learning, de-
livering ensemble-like generalization while being able to adapt to all types of
drifts.3

We answered RQ2 by performing several experiments with artificial and
real-world streams with statistical and visual examination. The results
showed that OWA produced better generalization than SWA in all cases,
and similar or better predictive performance across data streams than ex-
isting data stream learning techniques. This fact denotes that the cycli-
cal learning and the ability to adapt to new concepts positively affect the
predictive performance in weight averaging approaches on nonstationary
environments.

6.3. Computational time

This section validates OWA in terms of its time complexity and compu-
tational time, answering RQ3.

3We provide a comprehensive and detailed analysis with boxplots of predictive perfor-
mance in the Supplementary Material.

39

Assessing the time complexity of state-of-the-art data stream learning
ensembles is challenging, because it mainly depends on the base learners and
on the drift detection mechanisms employed. For example, let tbase be the
computational time of a base learner and gens be the number of base learn-
ers, then OzaBag is in O(genstbase). Typically, such ensemble methods have
drift detection mechanisms. For instance, Ozabag may be implemented with
ADWIN, which is based on the Bernstein Bound to detect concept changes.
ADWIN maintains a window (W) of examples at a given time and compares
the mean difference of any two sub-windows of older and recent examples
from W . It requires multiple passes in the current window. The time com-
plexity of ADWIN is O(log |W |). With ADWIN, Ozabag becomes, at each
time step, O(genstbase log |W |). With the same base learner (MLP), the mini-
mum difference in computational time between OWA and ensemble methods
mainly depends on the number of base learners to be trained (we are not
considering other learning mechanisms as they vary between ensemble tech-
niques), as their computational complexity usually grows linearly with the
number of base learners and the number of base learners can grow large
depending on the application and the ensemble learning approach. As our
experiments will show in this section, with the same MLP model as base
learner, OWA is able to learn with the computational time orders of magni-
tude less than other methods, as its time complexity does not grow with the
number of models compressed into the ensemble.

It is important to highlight that OWA only keeps a shallow MLP and
the averaged weights µ, as it is based on a single model. OWA’s time com-
plexity, with a single hidden layer of size H, to predict and train on a single
time step is O(H(D +K)). As will be shown in this section, OWA is more
time efficient than state-of-the-art methods, whilst preserving the benefits of
ensemble learning as shown in Section 6.2.

We have performed the Friedman followed by the Bonferroni-Dunn sta-
tistical test [49] to establish whether the computational time of OWA is
significantly different than that each other technique. Bonferroni-Dunn was
used instead of Nemenyi because it is stronger when using a single control
method, which is the case for the analysis done in this section, where OWA
is the control method. Based on the Friedman test, there are significant
differences among methods at the level of significance of 0.05 (p-value of
7, 8 ∗ 10−3). Based on the Bonferroni-Dunn tests, for all artificial and real
world data streams, OWA significantly reduced the computational time com-
pared to all ensemble methods according to this test with the largest p-value

40

of 7, 8 ∗ 10−3. This result is further illustrated by Figures 14, 15, 16 which
contain plots of the computational time (in seconds) for all methods. As
expected, OWA had similar computational time to SWA since they are both
single neural networks. However, OWA is tailored for data stream learn-
ing, producing significantly higher predictive performance as demonstrated
in Section 6.2.

It is worth highlighting that, as expected, the computational time for
most ensemble approaches grows linearly with the number of base learners.
In contrast, SWA and OWA are significantly faster because they compress
their ensembles into single models. Although OWA and SWA have similar
computational time, OWA has the advantage of delivering better predictive
performance.

We answered RQ3 by studying the computational time of the proposed
approach. Our comprehensive experiments confirmed that OWA requires
significantly smaller computational time than ensemble approaches, and
similar computational time to the existing weight averaging approach SWA.

6.4. Sensitivity analysis

C is the main hyperparameter of OWA regarding its predictive perfor-
mance according to our experiments. So, we further analyze it in detail here.
This hyperparameter regulates the rate at which the weight average is up-
dated in OWA and is related to the number of learners in ensembles. Since
we are comparing the proposed technique to ensembles, we analyze the im-
pact of the choice of C on OWA’s performance by depicting its prequential
G-Mean score on two artificial streams, namely, Sine and SEA for different
values of C in Figure 17. In Figure 17a, it is possible that a more intense
rate of averaging is necessary for the Sine2 stream (C = 5) with gradual
concept drifts (Figure 17a). With abrupt concept drifts (Figure 17c), a more
intense rate of averaging also obtained good performance (similar G-Mean
to that obtained by C = 10 and C = 50). This illustrates the robustness of
our methods to C with respect to the type of concept drift. The results on
the SEA stream (Figures 17b and 17d) also indicate the approach’s robust-
ness to C. In particular, the choice of C had a negligible impact for both
gradual and abrupt concept drifts on this stream. In general, we suggest C
to be optimized in [1, 500], with smaller values possibly being among the top
performing ones.

We have also measured OWA’s time sensitivity to C. The impact of C on

41

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

Ti
m

e
(s

)

Sine1 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(a)

10 15 20 25 30 35 40 45 50
Number of learners

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

Sine2 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(b)

10 15 20 25 30 35 40 45 50
Number of learners

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

Agrawal1 - gradual
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(c)

10 15 20 25 30 35 40 45 50
Number of learners

0

200

400

600

800

Ti
m

e
(s

)
Agrawal2 - gradual

Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(d)

10 15 20 25 30 35 40 45 50
Number of learners

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

Agrawal3 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(e)

10 15 20 25 30 35 40 45 50
Number of learners

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

Agrawal4 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(f)

42

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

500

Ti
m

e
(s

)

SEA1 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(g)

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

500

Ti
m

e
(s

)

SEA2 - gradual
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(h)

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

Ti
m

e
(s

)

STAGGER1 - gradual
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(i)

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

Ti
m

e
(s

)

STAGGER2 - gradual
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(j)

Figure 14: Plots of computational time required by the best run of each of the methods
for artificial data streams with gradual concept drifts.

43

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

Ti
m

e
(s

)

Sine1 - abrupt
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(a)

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

500

600

700

Ti
m

e
(s

)

Sine2 - abrupt
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(b)

10 15 20 25 30 35 40 45 50
Number of learners

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

Agrawal1 - abrupt
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(c)

10 15 20 25 30 35 40 45 50
Number of learners

0

200

400

600

800

Ti
m

e
(s

)
Agrawal2 - abrupt

Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(d)

10 15 20 25 30 35 40 45 50
Number of learners

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

Agrawal3 - abrupt
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(e)

10 15 20 25 30 35 40 45 50
Number of learners

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

Agrawal4 - abrupt
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(f)

44

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

500

Ti
m

e
(s

)

SEA1 - abrupt
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(g)

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

Ti
m

e
(s

)

SEA2 - abrupt
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(h)

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

Ti
m

e
(s

)

STAGGER1 - abrupt
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(i)

10 15 20 25 30 35 40 45 50
Number of learners

0

100

200

300

400

Ti
m

e
(s

)

STAGGER2 - abrupt
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(j)

Figure 15: Plots of computational time required by the best run of each of the methods
for artificial data streams with abrupt concept drifts.

45

10 15 20 25 30 35 40 45 50
Number of learners

0

200

400

600

800

Ti
m

e
(s

)

Chess
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(a)

10 15 20 25 30 35 40 45 50
Number of learners

0

500

1000

1500

2000

2500

Ti
m

e
(s

)

Keystroke
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(b)

10 15 20 25 30 35 40 45 50
Number of learners

0

500

1000

1500

2000

2500

3000

Ti
m

e
(s

)

Luxembourg
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(c)

10 15 20 25 30 35 40 45 50
Number of learners

0

200

400

600

800

1000

Ti
m

e
(s

)

Ozone
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(d)

10 15 20 25 30 35 40 45 50
Number of learners

0

500

1000

1500

2000

Ti
m

e
(s

)

Electricity
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
SWA
OWA

(e)

46

10 15 20 25 30 35 40 45 50
Number of learners

0
1000
2000
3000
4000
5000
6000
7000
8000

Ti
m

e
(s

)

NOAA
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(f)

10 15 20 25 30 35 40 45 50
Number of learners

0
250
500
750

1000
1250
1500
1750
2000

Ti
m

e
(s

)

Power Supply Day/Night
Ozabag
Ozabag-Adwin
DWM
SRPC
CSB2
CALMID
MICFOAL
KUE
SWA
OWA

(g)

10 15 20 25 30 35 40 45 50
Number of learners

0
500

1000
1500
2000
2500
3000
3500

Ti
m

e
(s

)

Power Supply
Ozabag
Ozabag-Adwin
DWM
SRPC
CALMID
MICFOAL
KUE
SWA
OWA

(h)

10 15 20 25 30 35 40 45 50
Number of learners

0

2000

4000

6000

8000

Ti
m

e
(s

)

Sensor
Ozabag
Ozabag-Adwin
DWM
CSB2
CALMID
MICFOAL
KUE
OWA

(i)

Figure 16: Plots of computational time required by the best run of each of the methods
for real-world data streams.

47

5 10 50 100 200 300 400
Cycles

86.0

86.5

87.0

87.5

88.0

G-
M

ea
n

Sine - Gradual

(a)

5 10 50 100 200 300 400
Cycles

82.0

82.5

83.0

83.5

84.0

G-
M

ea
n

SEA - Gradual

(b)

5 10 50 100 200 300 400
Cycles

89.8

90.0

90.2

90.4

90.6

G-
M

ea
n

Sine - Abrupt

(c)

5 10 50 100 200 300 400
Cycles

81.5

82.0

82.5

83.0

83.5

84.0

G-
M

ea
n

SEA - Abrupt

(d)

Figure 17: Box plots of G-Mean for several cycle lengths in OWA.

48

the computational time was marginal. For instance, for the Sine data stream
with abrupt concept drifts, the choice of C in [1, 500] caused around a 0.2s
variation in computational time. Thus, in terms of efficiency, OWA was the
statistically least time-consuming (together with SWA) and this result was
robust to different choices of C.

According to our preliminary experiments, the choice of θ has little impact
on the performance (typically less than 1% variation in G-Mean) as long as
a relatively small number is chosen, because it should be less than the length
of the first concept of the stream. F controls the extension of performance
degradation that is allowed in OWA, leading to the model being reset if this
threshold is exceeded. Both of these hyperparameters are problem-dependent
and should be optimized, for example, via random search or bayesian opti-
mization. According to our preliminary experiments, we suggest tuning these
both of these hyperparameters in [1, 100]. We have also found that OWA is
sensitive to the size of the MLP, which is also true for the ensemble techniques
that employ several MLPs.

7. Conclusions

Typical data stream learning scenarios require high predictive perfor-
mance and low computational time to handle the high volumes of incom-
ing data or to operate in applications with strict time requirements. Of-
ten, in such scenarios, concept drifts pose additional challenges for learning
algorithms, which have to adapt to potentially sudden and severe target
changes. This is usually tackled by ensemble learning approaches, whose
computational time cost is high. In this work, we proposed the first online
model compression approach for nonstationary data streams. Our compre-
hensive experiments with artificial and real-world data streams from multi-
ple domains and different types of concept drifts show that OWA was able
to deliver similar or better predictive performance to existing data stream
ensemble learning methods, while requiring significantly less computational
time to be trained. Such ensemble-like performance is due to its optimization
via averaging weights through time, which finds solutions in wide regions of
weight space. The larger width of solutions leads to robust generalization.
Its superior time efficiency is due to the use of a single model to represent
an ensemble, instead of maintaining a collection of base learners. In future
studies, we aim to further investigate the influence of adaptive learning rates
and momentum to improve OWA’s recovery time from concept drifts, and the

49

impact of averaging parameters over time in other types of learning model,
such as decision trees.

Acknowledgments

This work was funded by the National Council for Scientific and Techno-
logical Development – CNPq.

References

[1] Vijay Janapa Reddi. Machine Learning Systems – Principles and Prac-
tices of Engineering Artificially Intelligent Systems. Last updated in
2024.

[2] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learn-
ing in nonstationary environments: A survey. IEEE Computational In-
telligence Magazine, 10(4):12–25, 2015.

[3] B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, and M. Wozniak.
Ensemble learning for data stream analysis: a survey. Information Fu-
sion, 37:132–156, 2017.

[4] Heitor Murilo Gomes, Jean Paul Barddal, Fabricio Enembreck, and Al-
bert Bifet. A survey on ensemble learning for data stream classification.
ACM Computing Surveys, 50(2):23.1–23.36, 2018.

[5] Heitor Murilo Gomes, Jesse Read, and Albert Bifet. Streaming random
patches for evolving data stream classification. In 2019 IEEE Interna-
tional Conference on Data Mining, pages 240–249, November 2019.

[6] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A Survey
of Model Compression and Acceleration for Deep Neural Networks.
arXiv:1710.09282, June 2020.

[7] Suraj Srinivas and R. Venkatesh Babu. Data-free parameter pruning for
deep neural networks. In British Machine Vision Conference, July 2015.

[8] Ke Tan and DeLiang Wang. Towards Model Compression for Deep
Learning Based Speech Enhancement. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 29:1785–1794, 2021.

50

[9] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov,
and Andrew Gordon Wilson. Loss surfaces, mode connectivity, and fast
ensembling of DNNs. In Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems, pages 8803–8812, 2018.

[10] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov,
and Andrew Gordon Wilson. Averaging Weights Leads to Wider Optima
and Better Generalization. arXiv:1803.05407, February 2019.

[11] João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola
Pechenizkiy, and Abdelhamid Bouchachia. A survey on concept drift
adaptation. ACM Computing Surveys, 46(4):44.1–44.37, March 2014.

[12] Bruno Veloso, João Gama, Benedita Malheiro, and João Vinagre. Hy-
perparameter self-tuning for data streams. Information Fusion, 76:75–
86, dec 2021.

[13] Andri Ashfahani and Mahardhika Pratama. Autonomous Deep Learn-
ing: Continual Learning Approach for Dynamic Environments, pages
666–674. Society for Industrial and Applied Mathematics, Philadelphia,
PA, May 2019.

[14] Mahardhika Pratama, Choiru Za’in, Andri Ashfahani, Yew Soon Ong,
and Weiping Ding. Automatic construction of multi-layer perceptron
network from streaming examples. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
pages 1171–1180, November 2019.

[15] Peng Zhao, Xinqiang Wang, Siyu Xie, Lei Guo, and Zhi-Hua Zhou.
Distribution-free one-pass learning. IEEE Transactions on Knowledge
and Data Engineering, 33(3):951–963, 2021.

[16] Weike Liu, Cheng Zhu, Zhaoyun Ding, Hang Zhang, and Qingbao Liu.
Multiclass imbalanced and concept drift network traffic classification
framework based on online active learning. Engineering Applications of
Artificial Intelligence, 117:105607.1–105607.17, 2023.

[17] J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An
ensemble method for drifting concepts. Journal of Machine Learning
Research, 8(91):2755–2790, 2007.

51

[18] Dariusz Brzezinski and Jerzy Stefanowski. Combining block-based
and online methods in learning ensembles from concept drifting data
streams. Information Sciences, 265:50–67, 2014.

[19] Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabŕıcio
Enembreck, Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem.
Adaptive random forests for evolving data stream classification. Machine
Learning, 106(9-10):1469–1495, 2017.

[20] Maroua Bahri, Heitor Murilo Gomes, Albert Bifet, and Silviu Maniu.
CS-ARF: Compressed adaptive random forests for evolving data stream
classification. In 2020 International Joint Conference on Neural Net-
works, pages 1–8, July 2020.

[21] Nikunj Oza. Online bagging and boosting. In 2005 IEEE International
Conference on Systems, Man and Cybernetics, volume 3, pages 2340–
2345, 2005.

[22] Albert Bifet and Ricard Gavaldà. Learning from time-changing data
with adaptive windowing. In Proceedings of the 2007 SIAM Interna-
tional Conference on Data Mining, pages 443–448, 2007.

[23] Leandro L. Minku and Xin Yao. DDD: A new ensemble approach for
dealing with concept drift. IEEE Transactions on Knowledge and Data
Engineering, 24(4):619–633, 2012.

[24] Chun Wai Chiu and Leandro L. Minku. Diversity-based pool of models
for dealing with recurring concepts. In 2018 International Joint Con-
ference on Neural Networks, pages 1–8, July 2018.

[25] Chun Wai Chiu and Leandro L. Minku. A diversity framework for deal-
ing with multiple types of concept drift based on clustering in the model
space. IEEE Transactions on Neural Networks and Learning Systems,
33(3):1299–1309, 2022.

[26] Paulo Mauricio Gonçalves Jr and Roberto Souto Maior de Barros.
RCD: A recurring concept drift framework. Pattern Recognition Let-
ters, 34(9):1018–1025, 2013.

52

[27] Alberto Cano and Bartosz Krawczyk. Kappa updated ensemble for drift-
ing data stream mining. Machine Learning, 109(1):175–218, January
2020.

[28] Boyu Wang and Joelle Pineau. Online Bagging and Boosting for Im-
balanced Data Streams. IEEE Transactions on Knowledge and Data
Engineering, 28(12):3353–3366, December 2016.

[29] Weike Liu, Hang Zhang, Zhaoyun Ding, Qingbao Liu, and Cheng Zhu.
A comprehensive active learning method for multiclass imbalanced data
streams with concept drift. Knowledge-Based Systems, 215:106778.1–
106778.15, 2021.

[30] Shupeng Gui, Haotao Wang, Haichuan Yang, Chen Yu, Zhangyang
Wang, and Ji Liu. Model compression with adversarial robustness: A
unified optimization framework. In Advances in Neural Information
Processing Systems, volume 32, 2019.

[31] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger,
and Yixin Chen. Compressing neural networks with the hashing trick. In
Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pages 2285–2294, July 2015.

[32] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi,
George E. Dahl, and Geoffrey E. Hinton. Large scale distributed neural
network training through online distillation. arXiv:1804.03235, August
2020.

[33] Xu Lan, Xiatian Zhu, and Shaogang Gong. Knowledge distillation by
on-the-fly native ensemble. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31, 2018.

[34] Devesh Walawalkar, Zhiqiang Shen, and Marios Savvides. Online En-
semble Model Compression Using Knowledge Distillation. In Computer
Vision – ECCV 2020, volume 12364, pages 18–35, 2020.

[35] Dihia Boulegane, Vitor Cerquiera, and Albert Bifet. Adaptive model
compression of ensembles for evolving data streams forecasting. In 2022
International Joint Conference on Neural Networks, pages 1–8, July
2022.

53

[36] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learn-
ing with drift detection. In Brazilian Symposium on Artificial Intelli-
gence, pages 286–295, 2004.

[37] R. Agrawal, T. Imielinski, and A. Swami. Database mining: a perfor-
mance perspective. IEEE Transactions on Knowledge and Data Engi-
neering, 5(6):914–925, 1993.

[38] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm
(SEA) for large-scale classification. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 377–382, 2001.

[39] Jeffrey C. Schlimmer and Richard H. Granger. Incremental learning
from noisy data. Machine Learning, 1(3):317–354, March 1986.

[40] Michael Harries. SPLICE-2 comparative evaluation: Electricity pricing.
Technical report, University of New South Wales, School of Computer
Science and Engineering, 1999.

[41] National Oceanic and Atmospheric Administration (NOAA). Fed. Cli-
mate Complex Global Surface Summary of Day Data - Version 7 - USAF
Datsav3 Station n. 725540, 2012. [Online; accessed 2020-02-01].

[42] Indrė Žliobaitė. Combining similarity in time and space for training set
formation under concept drift. Intelligent Data Analysis, 15(4):589–611,
December 2011.

[43] Vińıcius M. A. Souza, Diego F. Silva, João Gama, and Gustavo E. A.
P. A. Batista. Data stream classification guided by clustering on nonsta-
tionary environments and extreme verification latency. In Proceedings
of the 2015 SIAM International Conference on Data Mining, pages 873–
881, June 2015.

[44] Kevin Killourhy and Roy Maxion. Why did my detector do that?! Pre-
dicting keystroke-dynamics error rates. In Proceedings of the 13th Inter-
national Conference on Recent Advances in Intrusion Detection, pages
256–276, 2010.

[45] Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017.

54

[46] X. Zhu. Stream data mining repository, 2010. Accessed online on 2020-
02-01, http://www.cse.fau.edu/~xqzhu/stream.html.

[47] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(10):281–305,
2012.

[48] Yanmin Sun, Mohamed Kamel, and Yang Wang. Boosting for learning
multiple classes with imbalanced class distribution. In Sixth Interna-
tional Conference on Data Mining, pages 592–602, December 2006.

[49] Janez Demšar. Statistical comparisons of classifiers over multiple data
sets. Journal of Machine Learning Research, 7(1):1–30, December 2006.

[50] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for
deep learning: Generalization gap and sharp minima. In International
Conference on Learning Representations, 2017.

[51] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun,
Carlo Baldassi, Christian Borgs, Jennifer Chayes, Levent Sagun, and
Riccardo Zecchina. Entropy-SGD: biasing gradient descent into wide
valleys. Journal of Statistical Mechanics: Theory and Experiment,
2019(12):124018, dec 2019.

[52] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Visualizing the loss landscape of neural nets. In Advances in Neural
Information Processing Systems, volume 31, 2018.

55

