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Adaptive Memory-enhanced Time Delay
Reservoir and Its Memristive Implementation

Xinming Shi, Leandro L. Minku IEEE Senior Member, and Xin Yao IEEE Fellow

Abstract—Time Delay Reservoir (TDR) is a hardware-friendly machine learning approach from two perspectives. First, it can prevent
the connection overhead of neural networks with increasing neurons. Second, through its dynamic system representation, TDR can
also be implemented in hardware by different systems. However, it performs poorly on tasks that involve long-term dependency. In this
work, we first introduce a higher-order delay unit, which is capable of accumulating and transferring the long history states in an
adaptive manner to further enhance the reservoir memory. Particle Swarm Optimisation is applied to optimize the enhanced degree of
memory adaptivity. Our experiments demonstrate its superiority both for short- and long-term memory datasets over seven existing
approaches. In light of the hardware-friendly feature of TDR, we further propose a memristive implementation of our adaptive
memory-enhanced TDR, where a dynamic memristor and the memristor-based delay element are applied to construct the reservoir.
Through circuit simulation, the feasibility of our proposed memristive implementation is verified. The comparisons with different
hardware reservoirs show that our proposed memristive implementation is effective both for short- and long-term memory datasets,
while exhibiting benefits in terms of smaller circuit area and lower power consumption compared with traditional hardware reservoirs.

Index Terms—Time Delay Reservoir, memristor, time series prediction.
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1 INTRODUCTION

R ESERVOIR computing (RC) was originally proposed to
provide solutions for the shortcomings of conventional

recurrent neural networks (RNNs), such as computationally
expensive weight update [1]. In RC, a recurrent neural
network is randomly created and remains unchanged dur-
ing training, which is called the reservoir. By virtue of its
modeling accuracy, modeling capacity, biological plausibil-
ity, as well extensibility and parsimony, RC methods have
quickly become popular [2], and constitute one of the basic
paradigms of RNN modeling.

Some researchers have implemented high dimensional
reservoirs by simulating neural networks, such as Echo State
Network (ESN) and Liquid State Machine (LSM), where the
different nonlinear activation functions (neurons) and their
connections are applied to realize the RC features. However,
this means that a reservoir with H neurons will have up to
H2 connections, potentially leading to large area and power
overhead when implemented in hardware [1]. In fact the
reservoirs do not necessarily need to be neural networks [2].
Some researchers have applied differential equation-based
dynamic systems to model the high dimensionality of the
reservoir instead of neurons [3]. This differential equation-
based RC called Time Delay Reservoir (TDR) can prevent
the large overhead of neuron-based RCs such as ESN by
using time multiplexing resources [1]. Therefore, TDR has
friendly features to physical implementations.

The physical implementation of machine learning ap-
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proaches has attracted increasing attention in diverse fields
of research, as they can have a fast speed of data processing
and low learning cost [4]. Depending on different types of
physical devices, electronic RC [5], spintronic RC [6], and
biological RC [7] have been widely studied, where electronic
RC have attracted great attention [8], [5], [9]. One way
of realizing electronic RC is to implement neuron-based
reservoir using neural network hardware or neuromorphic
computing techniques, such as FPGA [8] and MOSFET
crossbar array [5]. However, these neuron-based reservoirs
may incur a large area and power overhead caused by
H2 connections of neurons. Another method of realizing
electronic RC is to employ other dynamical systems instead
of neural networks. For that, researchers mainly focus on
exploring different dynamic systems that have the features
of a reservoir to serve as reservoirs [10] [11] [12].

Memristor is a new-type nonlinear electronic component
first predicted by Chua, which can vary its resistance ac-
cording to applied voltage or current [13]. The memristor
is resistance changeable, non-volatile, power-efficient, and
high-density integration friendly, so that it is very promising
in areas like storage, artificial neural networks, and logic
computation [14] [15] [16]. Therefore, researchers have made
their attempts to design memristive reservoirs constructing
dynamic systems directly by these memristors without neu-
ron circuits, taking advantage of the intrinsic nonlinearity
and/or volatile effects of the devices [17]. Many compu-
tational problems, such as time series pattern recognition,
prediction, and generation, have been addressed [18] [19].

Especially, time series modeling is an important topic
in machine learning, and it has been well addressed by
a variety of recurrent networks [20] and RC approaches
[10]. However, modeling long-range dependence remains a
key challenge. To alleviate the issue of vanishing gradients
in modeling long-range dependence, much effort has been
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spent on proposing networks and variants to overcome
vanishing gradients, e.g., LSTM [21], GRU networks [22],
different variants of RNN [23] and LSTM [20]. However,
these methods may result in large area and power overhead
caused by neuron connections especially from the hardware
implementation perspective [10] [1]. Compared with these
algorithms, TDR seems a good candidate for hardware
implementation since it avoids this overhead by time multi-
plexing resources and utilizes a single neuron and a delayed
feedback to create reservoirs (see the Supplemental Material
of [10]). However, its ability to tackle long term dependency
tasks still needs further exploitation.

To improve TDR’s ability to deal with long term depen-
dency tasks and produce a solution that can be implemented
in hardware requiring small area and low power consump-
tion, we propose an adaptive memory-enhanced TDR and
its memristive implementation. The main contributions of
this work are as follows:

• We propose a novel high-order time delay unit for
TDR able to accumulate and transfer long history
states.

• This proposed high-order time delay unit is opti-
mizable and adjustable. In particular, the order of
the time delay units can be optimized, where the
states with the long-term history are accumulated
and transferred to the current state, being automati-
cally adjusted to different tasks.

• Particle Swarm Optimisation (PSO) is applied to au-
tomate the optimization of the order of the time delay
units. As a result, our approach not only improves
prediction performance on both short memory and
long memory datasets over the existing reservoirs,
but also over other heavier approaches.

• We introduce a hardware implementation of our
proposed model based on two different types of
memristor.

• We show that the circuit area and power consump-
tion of our proposed memristive implementation
outperform other existing traditional work.

2 RELATED WORK

2.1 Standard Time Delay Reservoir

Delay differential equations (DDEs) can describe real-world
systems, where the events are rarely instantaneous. This can
be modelled as follows [24]:

y′(t) = f(y(t), y(t−τ1), y(t−τ2), ..., y(t−τd), t), t ≥ t0. (1)

where τi are the delay terms, and could be constant, or
variable as functions of t or even of the state y. Considering
these features of RC, DDE is a good approach to describe
the dynamic behavior of reservoir.

The states of the reservoir in TDR can be described
generally by the solutions of the following DDE [24]:

ḣ(t) = −h(t) + f(h(t− τ), x(t)), (2)

where h(t) refers to the states of reservoir, x(t) is the
input signal connected to the reservoir, and f refers to a
nonlinear function. With delay interval τ , N equidistant
points will be separated in time by θ = τ/N , and these N

equidistant points could be regarded as virtual neurons being
multiplexed in the given time scale. By Euler discretization
of Equation (2) with integration step θ, the reservoir state
hi(k) could be rewritten as:

h
(k)
i =

1

1 + θ
h
(k)
i−1 +

θ

1 + θ
f(h

(k−1)
i , x

(k)
i ). (3)

Considering that there is an error between the output
ŷ(k) and the target y(k) defined as ε(k), forming a sequence
of independent and identically distributed (i.i.d.) random
vectors received over time, and that Wyh represents the
output weights, the procedure of standard TDR can be
formulated as:{

y(k) = Wyhh
(k)
i + ε(k)
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2.2 Long-term Dependency Problem

Many real world applications produce datasets with long
memory effects, including language and music, den-
drochronology and hydrology, and financial data [25] [26].
Some researchers apply statistical methods to model long
memory datasets [27]. However, such statistical models
make strong parametric assumptions which are challenging
to be determined in real world problems. Moreover, they
appear to be quite rigid and inflexible for real-world ap-
plications compared to neural networks [20]. Using neural
networks to tackle the long-term dependency has been
drawing great attention in recent years. Since the issue of
vanishing gradients has been found, there is a large number
of studies focusing on this issue [21] [28] [29] [30] [31] [20].

Compared with the aforementioned neuron-based neu-
ral networks, TDR is more friendly to hardware implemen-
tations due to its dynamic system representation [10]. This is
important to enable fast speed of data processing and lower
learning cost [4]. However, existing TDRs are not prepared
for dealing with the long-term dependency. This paper will
address this issue.

2.3 Hardware Implementation of Reservoir Computing

Different types of RC algorithms that have been imple-
mented by hardware. For instance, ESN and LSM are two
types of RC algorithms based on nonlinear function neuron
and spiking neuron, respectively. Both ESN [8] [32] and LSM
[33] [34] [35] models have been fully developed in FPGA for
data recognition and classification.

Besides neuron-based RC models, the dynamic system-
based RC model, TDR, has also been implemented in hard-
ware. The photonic TDR has recently attracted widespread
attention. However, it requires expensive peripheral devices
such as a digitizer and waveform generator [11]. Electronic
TDR has also been actively studied for developing machine
learning devices with low training cost [4]. Some of the elec-
tronic TDRs are mostly built on traditional CMOS devices
combined with other components such as capacitor and
operational amplifier [12] [10] [11]. There have been several
TDRs implemented based on the emerging electronic device
named memristor [36] [37], which is more area-compact and
energy-efficient compared with the traditional CMOS one.
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3 ADAPTIVE MEMORY-ENHANCED TIME DELAY
RESERVOIR

3.1 Memory Property of Standard Time Delay Reservoir
Let B be the backshift operator, defined as BjXt = Xt−j for
j ≥ 0, applicable to all random variables in a time series
{x(t)}. Therefore, hi−1

(k) = Bh(k) and hi
(k−1) = Bτhi

(k).
Equation (3) can be rewritten as:

h
(k)
i =

1

1 + θ
Bh(k)

i +
θ

1 + θ
f(Bτhi

(k), x
(k)
i ). (5)

According to [20], without loss of generality, assume that the
linear activation and output functions are identity. There-
fore, we can get:

h
(k)
i =

[
I − 1

θ + 1
B − θ

θ + 1
Bτ
]−1 θ

θ + 1
x
(k)
i . (6)

The inverse calculation in Equation 6 could be decom-
posed as:

∞∑
j=0

[
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B
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B
)−1

.

(7)
The first term in Equation 4 could be transferred into the

form of y(k) =
∑∞

j=0 Ajx
(k−j)+ε(k), since

(
I − 1

θ+1B
)−1

=∑∞
j=0(

1
θ+1 )

jBj , we can get:

Aj =
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1

θ + 1

)3j ( θ

θ + 1

)j+1

Wyh, (8)

Aj will decay exponentially. Therefore, standard TDR has
limited capability of handling long-range dependence data
due to this exponential decay.

3.2 Structure of our Proposed Memory-enhanced TDR
Let {x(t)}, {ŷ(t)}, {y(t)} be the input, output, and target
sequences of a time series, respectively, where ŷ(t) ∈ Rp,
y(t) ∈ Rp. The enhanced memory is introduced to TDR by a
higher-order delay unit, which can be depicted as:

D
(
h(t);λ

)
=
[
((I − B)τ+λ − I)

]
h(t), (9)

where B is the backshift operator, λ = (λ1, ..., λm)
′
, and

λ ∈ [0, 1] indicate the enhanced degree, h(t) represents
the reservoir states, and τ is the delay interval. Therefore,
the reservoir states can be described by the solution of the
following equation:

ḣ(t) = −h(t) + f
(
h(t−τ), D

(
h(t);λ

)
, x(t)

)
. (10)

The higher-order delay unit D
(
h(t);λ

)
can accumulate

the previous m states from long-term history, which will
provide the enhanced memory for TDR. As λ could be 0,
the related state in the j-th layer could not be accumulated
to the current state. Formally, as for the i-th higher-order
delay unit, it has:

D
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)
i
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h
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i

]
. (11)

With delay interval τ , N equidistant points will be sep-
arated in time by θ = τ/N , and these N equidistant points
could be regarded as virtual neurons being multiplexed in

the given time scale. By Euler discretization of Equation (10)
with integration step θ, the procedure of memory-enhanced
TDR could be formulated as:
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(12)
where f is a nonlinear function, and there is the error ε(k)

between the output ŷ(k) and the target y(k). This error forms
a sequence of independent and identically distributed (i.i.d.)
random vectors over time. We also illustrate the procedure
of Equation (19) in Fig. 1. As shown in Fig. 1, within an
interval τ , the TDR is discretized as N virtual neurons in
the vertical direction. These virtual neurons are all history-
dependent, so that history states could be transferred in
the horizontal direction. In addition, the neuron states in
the long-term history can also be transferred to the current
state from the higher-order unit D

(
h(k);λ

)
i
. Therefore, the

current reservoir state h
(k)
i in the memory-enhanced TDR is

traced from three parts:

• Neighboring-dependency in the same layer h(k)
i−1: the

state of its closest neighbourhood in the same layer
will be transferred to the current state.

• Self-dependency in the previous layer h
(k−1)
i : the

self inertance of states in the previous layer will be
considered to the current state;

• Long-term dependency
∑m

j=1

[
h
(k−j)
λj ·τ

]
from previ-

ous m layers: the states from long-term history will
be accumulated to present states.

hi-1
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(k)hi
(k)
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…
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Fig. 1. Reservoir state of memory-enhanced TDR. Whx ∈ Rp×q and
Wyh ∈ Rp×q represent the input weights and output weights respec-
tively; chp, chn, and chd represent the transfer factors between self-
dependency, neighboring-dependency and long-term dependency to
current states, respectively.

Fig. 2 shows the discrete form of our proposed memory-
enhanced TDR, which specifically illustrates how the
higher-order delay unit establishes the long-term depen-
dency to enhance the memory of TDR. For the previous
j-th layer (j ∈ (1, ...,m)), there will be the corresponding
state hk−j

λj ·τ related to current reservoir state h
(k)
i , where

λ = (λ1, λj , ...λm) indicates which state in the previous m
layers will be selected. Considering the large search space
incurred by the length of time sequence and delayed states,
we will apply PSO algorithm to determine which specific
delayed states should be transferred to current reservoir
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Fig. 2. The discrete form of our proposed memory-enhanced TDR.

state for different tasks. The details of this will be introduced
in Section 3.3.

According to Figs. 1 and 2, the reservoir input is the
masked input, where the mask is Whx ∈ Rp×q . This pro-
cess has two effects. First, the input mask distributes the
information contained in the same time series value into
all neurons and it makes the dimensional multiplexing of
the input. Second, the mask values with zero mean make
the input time series with non-zero mean to be zero; such
property is convenient for eliminating the intercept in ridge
regression. The readout weights Wyh can be trained by
offline mode. With the input signal of reservoir x(t), there
is a corresponding teaching signal y(t) ∈ Rp and a p-
dimensional output could be obtained by output matrix and
reservoir state y(t) := h(t)T ·Wyh. The training process will
find the output weights Wyh ∈ Rp×q by minimizing the
distance between the output and the teaching signal, which
is described as the following optimization problem:

Wyh := argmin
W

(
M∑
i=1

||h(t)
i

T
×W − y

(t)
i ||

2 + η||W ||2
)
(13)

where ||W ||2 refers to a regularisation term to prevent
overfitting, and η controls its intensity. In order to optimize
this problem, ridge regression [38] has been applied, whose
solution could be given by:

Wyh = (HHT + ηH)−1Hy. (14)

3.3 Optimization of Memory-enhanced TDR using PSO
As Section 3.2 shows, the enhanced memory behaves as the
weighted accumulation of the previous states in different
layers. λ = (λ1, λj , ..., λm)

′
indicates the memory-enhanced

degree of the long-term memory that existed in different
previous layers (from 1st to the m-th layer respectively).
However, confronted with tasks with different memory
dependencies, there will be (λ1, λj , ..., λm)

′
to be optimized

making the memory-enhanced degree adaptive. However,
this is an NP-hard problem.

PSO, one of the famous swarm intelligence optimization
algorithms, searches for optimal solutions using a popula-
tion of particles [39]. Each particle, marked by a pair of po-
sition and velocity (pi,vi), represents a candidate solution
to the given problem. Let pibest denote the personal best
position of the ith particle, and gbest denote the global best
position among all particles so far in the search process. The
objective function to be optimised is depicted by a function
called the fitness function. The velocity and the position of
each particle in a search space can be iteratively updated
with the following equations:

v
(t+1)
i = w · v(t)

i + c1 · rand() · (pibest − p
(t)
i )

+c2 · rand() · (gbest − p
(t)
i ),

(15)

p
(t+1)
i = pi + v

(t+1)
i , (16)

where w presents the inertia weight to balance between
exploration and exploitation process, c1 and c2 are factors
used to moderate the displacements of particles toward
the local or the global optimum, and rand() is a random
function in the range [0, 1].

Algorithm 1 gives the pseudo code showing how PSO
is applied to enhance the memory of TDR. This algorithm
receives as input the population size N , the maximum pos-
sible order m for the higher-order delay unit, the maximum
number of iterations max Iter and the fitness function
f . The fitness function can potentially be any measure of
predictive performance of the reservoir. In our experiments,
we will use Root Mean Squared Error (RMSE) as explained
in Section 5.2. Each particle i’s position pi corresponds to a
candidate value for λ = (λ1, λj , ..., λm)

′
. We first initialize

the population of particles with N particles corresponding
to λ values picked uniformly at random from [0, 1]m.

Then, if the number of iterations has not reached the
pre-defined value of max Iter, the following steps will be
executed (Ln 2-Ln 14). A memory-enhanced TDR will be
generated for each individual pi. Next, the velocity vi of
each particle will be computed by Eq. (15), and particle pi

will be updated by Eq. (16). Then, the fitness of pi will be
calculated by fitness function f . After that, we will update
the local best fitness by the max fitness in the popula-
tion. Next, if local best fitness > global best fitness,
p global best will be updated by p local best, and
global best fitness will be updated by local best fitness.
Finally, the p global best will be returned. This value is
the optimised λ to be used in the reservoir.

Further verification and analysis of the proposed adap-
tive memory-enhanced TDR for both of the short-term and
long-term dependency tasks will be introduced in Section 5.

4 MEMRISTIVE IMPLEMENTATION OF THE ADAP-
TIVE MEMORY-ENHANCED TDR
4.1 Dynamic Memristor Model
In software RC, a reservoir can perform nonlinear transfor-
mations of the input signals, and project them to a high-
dimensional space. According to Tanaka et al. [4], some
of the memristive devices or systems are capable of ex-
hibiting nonlinear dynamic behavior. In this work, we ap-
ply a Ti/T iOx/TaOy/Pt-based dynamic memristor model
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Algorithm 1: Pseudo code of PSO optimization of
the degree of memory enhancement for TDR

Data: population Num: N , order Num: m,
max Iter, fitnessFunction: f

Result: p global best
1 Initialise population p;
2 while max Iter not met do
3 for each individual pi in p do
4 Generate memory enhanced TDR with pi;
5 Compute velocity viof each individual by

Eq. (15);
6 Update individual pi by Eq. (16);
7 Calculate fitnessi of individual pi by f ;
8 end
9 Set: local best fitness←− max({fitnessi})

10 if local best fitness > global best fitness
then

11 p global best←− p local best
12 global best fitness←− local best fitness
13 end
14 end
15 Return: p global best

proposed by Zhong et al. [36], which is equipped with a
fading memory (forgetting effect) to construct the nonlinear
dynamic behavior. Its mathematical model is defined as:

I = KGV 3, (17)

G(t) = G0+r(G(t−1)−G0)+
a |V |

a |V |+ 1
(Gth−G(t)). (18)

Where I , V , and G(t) represent the output current, input
voltage, and the conductance at time step t, respectively. K
and Gth are the parameters varied with V , which can be
depicted as:{

K = sign(V )Kp + sign(−V )Kn

Gth = sign(V ),
(19)

where sign represents a sign function:{
sign(x) = 1 if x > 0
sign(x) = 0 if x ≤ 0.

(20)

Fig. 3 shows the I–V hysteresis curves of the dynamic
memristor model. The solid line represents the experiment
data sampling by the voltage scan, the dotted line represents
the simulation data by simulating the memristor mathe-
matical model, and the arrows indicate the direction of the
voltage scan. The output current of the dynamic memristor
model will be sampled as the reservoir states.

Fig. 4 shows the conductance change of the dynamic
memristor. As we can see, the conductance of the dynamic
memristor will decrease nonlinearly with the positive volt-
age switching from 5V to 0V, and the conductance will
increase nonlinearly with the negative voltage switching
from -5V to 0V. Considering the nonlinearity and fading
memory shown in Figs. 3 and 4, we will employ the dy-
namic memristor as the reservoir and the current of the
memristor will be used as the reservoir states in our work.

The parameters of the memristor models we applied in
our work are all listed in Table 1.

1

2

3

4

Scanning sequence

Fig. 3. I–V hysteresis curves of T i/T iOx/TaOy/P t-based dynamic
memristor model, where the experimental data comes from [36].

Fig. 4. Conductance change of the dynamic memristor.

4.2 Memristor-based Delay Element (MDE)

One single dynamic memristor can be used to construct
nonlinear node exhibiting nonlinear dynamic behavior with
fading memory. Instead of a dynamic memristor with the
short-term memory, we need memristors with nonvolatile
memory to construct the programmable memristor-based
delay element. HP memristor model is the one that has
this nonvolatile property and has been widely applied to
the programmable memristive unit [16]. Therefore, we have
also used the HP model to construct the programmable
memristive delay element. As Section 2.1 illustrated, the
classic TDR only has one type of delay from last state
x(t − 1), which may limit the predictive performance for
the long memory dataset. In order to enhance the memory
capacity of MTDR, the corresponding delay element are
required to MTDR. By manipulating the current starved
inverters and a memristor-based programming unit, the
memristor-based delay element (MDE) is shown in Fig. 5.
The MDE is composed of two inverters INV1, INV2, AND,
and a memristive programming unit (MPU).

In this work, we applied our proposed memristive re-
configurable unit [16] as the MPU in the delay element.
This MUP is composed of 4 transistors and one memristor,
by which the memristance Rm could be tuned by Config-
uration signal and Control signal. The MDE works in two
phases, which are configuration phase and operation phase,
respectively. Specifically, when Control signal is positive, the
S1 will connect to operation signal and the delay element
will work in the operation phase. When the Control signal
is negative, the S1 will connect to Configuration signal and
the delay element will work in configuration phase. And
different length of applied Configuration signal will lead to
different memristance. According to Elmore delay model
[40], the delay from low to high can be formulated as:

tpLH = 0.69(Reqn1 +Reqn2 +Reqn3 +Rm)CL, (21)
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TABLE 1
The parameters of two memristor models

Dynamic Memristor Value HP Memristor Value

G0 0.5 Vth ±1V
r 0.99 Ron 100Ω
α 0.23 Roff 40kΩ
Kp 9.13 µ0 10−16

Kn 0.32 D 10nm

Fig. 5. Schematic diagram of memristor-based delay element.

where Rm is the memristance of M , the equivalent on-
resistance Reqn1, Reqn2 and Reqn3 can be calculated by the
following equation [41] :

Req = −0.5VDD

∫ VDD/2

VDD

V dV/IDSAT (1 + λV )

≈ 3VDD/4IDSAT (1− 7λ/9),

(22)

where VDD is the supply voltage, IDSAT is the transistor’s
current in saturation region, and λ is the channel length
modulation factor. The memristor M used in the delay
element is a HP memristor model with threshold, which
is given by:

V (t) = (Ron
x(t)

D
+Roff(1−

x(t)

D
))i(t), (23)

dx(t)

dt
=

µvRon

D
i(t), (24)

where Ron and Roff represent the minimum and maximum
memristance, respectively. D, µv and x(t) denote the ef-
fective length of memristor, dopant mobility rate and the
length of memristor’s doped region, respectively. The pa-
rameters of memristor M are listed in Table 1. The value
µv is varied under different applied voltages, which can be
depicted as follows:{

µv = µ0 if |V (t)| ≥ Vth

µv = 0 if |V (t)| < Vth.
(25)

Once the applied voltage V (t) exceeds the threshold voltage
Vth, the dopant mobility rate will be µ0, otherwise, it will
be 0 and the memristance will remain constant. With this
threshold property, we set that the amplitude of Configura-
tion signal exceeds the threshold, so that the memristance
could be configured during the configuration phase, while
the memristance will be unchanged during the operation
phase.

Fig. 6. Simulation result of the memristor-based delay element.

According to Equation (24), the relationship between
resistance and charge (q(t)) can be written as:

Rm(t) =

(
R2

on

µv

D2
− RoffµvRon

D2

)
q(t) (26)

As Ron ≪ Roff , Equation (26) could be simplified as:

Rm(t) =

(
−RoffµvRon

D2

)
q(t). (27)

Therefore, there will be a differential equation of Rm(t) and
current im(t):

dRm(t)

dt
=

(
−RoffµvRon

D2

)
im(t). (28)

The amplitude of Configuration signal is denoted as Vconf

that exceeds the threshold of memristor Vth, so that its du-
ration ∆tconf can lead to different memristance. We assume
that the initial memristance of M is Rm(0). Then, according
to Ohm law, Equation (28) is solved as:

Rm(t) =

√
(Rm(0))2 ±

(
−2RoffµvRon

D2

)
Vconf∆tconf .

(29)
Therefore, the memristance of M will be varied with differ-
ent duration of Configuration signal, t.

Fig. 6 shows the simulation results of the memristor-
based delay element, where two sub-figures show two sce-
narios with different duration of Configuration signal. The
simulation contains both of the configuration and operation
phases, where the first half period (0-70ns) is the configu-
ration phase, and the last half period (70-140ns) represents
the operation phase. The red dash line represents the delay
signal, the blue dashdotted line represents the Configura-
tion signal, and the green solid line represents the output
voltage of the delay element. According to Equation (29)
and Equation (21), the larger duration of Configuration signal
will lead to larger memristance and incur the larger delay
further.

4.3 Architecture of Adaptive Memristive Memory-
enhanced TDR
The architecture diagram of the memristive implementation
of memory-enhanced TDR is shown in Fig. 7. The proposed
memory-enhanced TDR can be implemented by a dynamic
memristor and memristor-based delay elements. Moreover,
personal computer (PC) and necessary peripheral circuits
are also needed for the circuit experiments. The PC is
used to run the basic loops of proposed algorithm, and
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Fig. 7. The memristive implementation framework of proposed adaptive
memory-enhanced TDR.

the peripheral circuits are required to interact between the
algorithm and the memrisitve memory-enhanced reservoir,
where OPE represents the proportional operation module
to implement the function of proportion. In this work,
we implement this architecture by circuit simulation on
NGSPICE and interaction with algorithm loop on Python.
For sake of the convenient circuit simulation, we applied
the circuit shown in Fig. 8 as one form of OPE that draws
on the design of the current conveyor, where the relation-
ship between the input voltage and the output voltage is
VOUT = (1− R1

R2
)VIN .

The circuit schematic diagram of the memristive imple-
mentation is shown in Fig. 10. Executing the memristive
memory-enhanced TDR consists of 8 steps, related steps also
have been marked in the Fig. 10:

• Step 1: The first step is about the input data pre-
processing and MDEs configuration. As for input
data pre-processing, the input data will be dis-
cretized and normalized the time series between -1
and 1 by mask. As for the MDE configuration, the
MDEs will work in configuration phases to program
the memristance of M1 to Mn.

• Step 2: Added with the output signal of ADC, DAC
module will generates the voltage pulse with the
amplitude (0-3.3V) and pulse width of 120µs corre-
sponding the summed data value of the ADC output
and input data.

• Step 3: The amplitude of the generated pulse will
be changed to the range of -3 to 3V by OPE1, and
applying to the dynamic memristor DM.

• Step 4: The current of DM, IDM , will be transformed
into voltage by a constant resistor R7, of which value
is IDM × R7. And OPE2 is use to amplify the
amplitude of the voltage to a larger range (0-3.3V).

• Step 5: The output signal of OPE2 represent the
current state of DM in the form of voltage. Then,
this signal will be sent to MDEs in parallel.

• Step 6: OPE3 will integrate the signals from all the
MDE, giving a factor to all the delay signals.

• Step 7: ADC module will sample the integrated sig-
nal from OPE3, which will be further transformed
to the input terminal of DAC for the next loop of
training (back to Step 1) or to the PC for the post-
processing (moving to Step 8).

• Step 8: The output of the ADC module will be
transformed to PC for the post-processing, which
will be regarded as reservoir states and to calculate
the output time series.

Fig. 8. Circuit schematic of OPE module. PMOS uses M2SJ136 model
and NMOS uses M2SK1029 model in JPWRMOS library.

Fig. 9. Autocorrelation plot of Narma10 (top) and Nonlinear audio
dataset (bottom).

5 EXPERIMENTS

5.1 Datasets
Several works have discussed the memory term of different
datasets, which could be divided into the long-term memory
and short-term memory datasets according to the autocor-
relation plots [20][25]. We visualize the autocorrelation plots
of one short-term memory dataset (Narma10) and one long-
term memory dataset (Nonlinear audio) in Fig. 9.

5.1.1 Long-term memory datasets
We use three real and one synthetic long-term memory
dataset:

• Nonlinear Audio: searchers found that long memory
appears to be strongly represented in music [25]. This
dataset is from [42], which is a short recording of a
Jazz quartet. The length of training, validation and
test sets are set as 2000.

• Tree Ring: this dataset contains 4351 tree ring mea-
sures of a pine from Indian Garden, Nevada Gt Basin
obtained from R package tsdl 1, where 2500 items
are used for training, 1000 for validation and 850 for
testing.

• Dow Jones Industrial Average (DJI): The raw
dataset contains DJI daily closing prices from 2000 to
2019 obtained from Yahoo Finance, where 2500 items
are used for training, 1500 for validation and 1029 for
testing.

• ARFIMA series: We generated a series of length
4001 using the following model with obvious long
memory effect:

(1−0.7B+0.4B2)(1−B)0.4Yt = (1−0.2B)εt (30)

Where the length of training, validation and testing
set are 2000, 1200 and 800, respectively.

1. https://pkg.yangzhuoranyang.com/tsdl/
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Fig. 10. Memristive implementation of adaptive memory-enhanced TDR.

5.1.2 Short-term memory datasets

We use two real and three synthetic short-term datasets:

• Santa Fe Laser Set-A and Set-D: Santa Fe Laser data
set was used 2, which is a cross-cut through periodic
to chaotic intensity pulsations of a real laser. This task
is to predict the next value of the input sequence.
Two different Santa Fe datasets were used, the first
of which is the univariate time series A derived from
laser-generated data, and the second is the computer-
generated time series D. For both time series A and
D, we discarded the first 200 items as washout, then
used the next 2000 items for training, the next 4000
for validation, and the final 1800 for testing.

• Narma10 and Narma20: NARMA systems of order
10 and 20 are applied as short-term memory datasets,
of which equations are:

y (t+ 1) =0.3y (t) + 0.05y (t)
9∑

i=0

y (t− i)

+ 1.5s (t− 9) s (t) + 0.1,

(31)

y (t+ 1) = tanh (0.3y (t) + 0.05y (t)
19∑
i=0

y (t− i)

+ 1.5s (t− 19) s (t) + 0.1).
(32)

We selected the NARMA sequences with 8000 items,
where the first 200 items were discarded as washout,
the following 2000 items were used as the training
set, the following 4000 as the validation set, and the
remaining as the testing set.

• Hénon Map: Hénon map has been established as
a typical discrete-time dynamic system with chaotic
behavior. It describes a nonlinear 2-D mapping that

2. http://web.cecs.pdx.edu/∼mcnames/DataSets/index.html

(a)

(b)

(c)

(d)

Fig. 11. Actual predicted outputs of our proposed adaptive memory-
enhanced TDR vs corresponding targets. (a) Hénon Map; (b) Santa set-
A; (c) Nonlinear audio; (d) ARFIMA series.

transforms a point (x(n), y(n)) on the plane into a
new point (x(n+ 1), y(n+ 1)), which is:

x(n+ 1) = y(n)− 1.4x(n)2, (33)

y(n+ 1) = 0.3x(n) + w(n). (34)

5.2 Comparisons with different software models
With the objective of evaluating the predictive performance
of the proposed memory-enhanced TDR, we conduct com-
parisons with several existing models for time series predic-
tion, namely vanilla ESN [43], Deep ESN [23], standard TDR
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[10], vanilla LSTM [44], vanilla RNN [45], a variant of LSMT
(mLSTM) and a variant of RNN (mRNN) [20].

Root Mean Squared Error (RMSE) is used as a measure
of predictive performance in our experiments:

RMSE =

√〈
∥ŷ(t)− y(t)∥2

〉
, (35)

where y(t) is the desired output (target), ŷ(t) is the readout
output, ∥.∥ denotes the Euclidean norm, and ⟨.⟩ denotes the
empirical mean.

The parameter settings of all approaches used in the
experiments are listed in Table 5.2. For a fair comparison,
the hidden size or the number of nodes of the different
models are all set as 200. As for the mRNN and mLSTM,
the hyperparameter K are set as 100 and 25, respectively,
as existing work [20] has shown that larger K will lead
to better performance for mRNN, while smaller K will be
beneficial to mLSTM. As for Deep ESN, the parameters
are set to the same values used in [23]. As for the PSO
optimization part of our proposed method, the population
is set as 20 and the maximum iteration is 200. Once the
hyperparameters were set, the experiments were run 20
times for each dataset.

Fig. 11 shows the superposition between the actual out-
puts of our proposed model and the corresponding targets
for both of the short-term (Hénon Map and Santa Set-A)
and long-term (Nonlinear audio and ARFIMA) memory
datasets. They show that the signal generated by our pro-
posed model mimics the desired signal. In order to further
verify and evaluate our proposed model, the predictive
performance with other existing models are given in Table 3,
which lists the average RMSE for 20 runs of each model, and
its average ranking (AveRan.) of one model on two types
of dataset, as well the overall average ranking for all the
datasets.

For the short-term memory datasets, mRNN can im-
prove RNN by introducing a memory filter, while mL-
STM and LSTM perform similarly on short-term memory
datasets. Our proposed method can outperform other exist-
ing models on the short-term memory datasets (the average
ranking is 1). Improvements in RMSE were obtained for
all short-memory datasets and were particularly large for
Hénon Map, where the improvements were from 0.5713
(RNN) to 0.0042 (memory-enhanced TDR). Improvements
in the predictive performance on short-memory datasets
probably occurred because the adaptive connection between
the current states and the states in the short-term memory
will be optimized by PSO. This is likely beneficial no matter
whether the datasets are short-term or long-term memory
datasets.

In terms of the average performance on long-term mem-
ory datasets, the performance of mRNN and mLSTM is
better than RNN and LSTM, and Deep ESN performs better
on long-term memory datasets than the short-term datasets
did. Our proposed method outperformed the existing meth-
ods on the long-term memory datasets, obtaining average
ranking of 1. Improvements were obtained in all long-
term memory datasets and were particularly high on the
Arfima task, where improvements were from 1.1620 (RNN)
to 0.0866 (memory-enhanced TDR). The improvements ob-
tained for the long-term memory datasets were greater than

TABLE 2
Parameter Settings

Models Parameter setting

RNN hidden size=200; nonlinearity=’tanh’
LSTM hidden size=200;

mRNN hidden size=200; nonlinearity=’tanh’; K=100
mLSTM hidden size=200; K=25

ESN hidden size=200; nonlinearity=’tanh’;
leaking rate=1,spectral radius=0.9

Deep-esn hidden size=100; num layer=4; nonlinearity=’tanh’;
leaking rate=1,spectral radius=0.9

TDR num node=200; α = 0.6; β = 0.75; θ = 0.2

Our work num node=200; num order=20; θ = 0.2;
population=20; max iteration=200

the improvements on the short-term memory datasets. The
reason for that is twofold. First, the higher-order delay
units can accumulate the states existing in the long-term
memory and transfer them into the current state. Second,
PSO optimization of the enhanced degree makes such “ac-
cumulation” to be established in a correct and adaptive way.

From the perspective of overall performance on all the
datasets, the average ranking of our proposed method out-
performs all other existing models. In summary, the memory
of TDR can be enhanced by our proposed adaptive design.
The proposed adaptive memory-enhanced TDR can outper-
form other exiting models on both short-term and long-term
memory datasets, where its performance improvement on
long-term memory datasets is more obvious than that on
short-term memory datasets. The Mann–Whitney U tests
of the existing models with our proposed method are con-
ducted, of which P value are given in Table 4. The level
of significance is 0.05, therefore, we can confirm that our
proposed adaptive memory-enhanced TDR can improve the
predictive performance compared with the existing models.
Overall, the proposed adaptive memory-enhanced TDR was
verified on both short memory and long memory datasets.
It improved not only improve prediction performance over
the existing reservoirs such as ESN [43] and standard TDR
[10], but also over other heavier approaches such as RNNs
[45], LSTMs [44], deep-ESN [23], and variants of RNN and
LSTM [20].

5.3 Comparisons of different hardware reservoirs

We also compare our proposed memristive TDR with other
hardware reservoirs, where the comparisons contain pre-
dictive performance comparison (shown in Table 3), and
hardware performance comparison (shown in Table 5).

From Table 3, we can see that our hardware implemen-
tation obtained better RMSE than other hardware-based
reservoirs in all datasets where their performances were
available for comparison. Moreover, the RMSE of the hard-
ware implementation was competitive against the software
implementations, sometimes even leading to better results
than its software counterpart.

Table 5 summarizes the design specification of our pro-
posed memristor-based memory-enhanced TDR and other
state-of-the-art reservoir computing designs, where works
[8] and [5] are related to the hardware implementations of
ESN, work [46] is the hardware implementation of LSM,
works [12] [11] [37] [36] focus on the hardware implementa-
tions of TDR. We compare the number of components used
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TABLE 3
Prediction performance comparison of different models

Datasets Nar.10 Nar.20 SantaA SantaD Hénon Map Average
(AvRan.∗ )

Non.
audio Tree DJI Arfima Average

(AvRan.)
Average
(AvRan.)

Type Short-memory Long-memory S&L
Software model

RNN [45] 0.0448 0.0667 0.0790 0.0398 0.5713 0.1603(5) 0.0277 0.2871 0.2605 1.1620 0.4343(8) 0.2821 (8)
LSTM [44] 0.0415 0.0506 0.0536 0.0676 0.2843 0.0995(3) 0.0393 0.2833 0.2492 1.1340 0.4265(7) 0.2448(7)

mRNN [20] 0.0219 0.0584 0.0277 0.0463 0.2357 0.0780(2) 0.0543 0.2818 0.2487 1.0880 0.4182(5) 0.2292(2)
mLSTM [20] 0.0506 0.0571 0.0353 0.0532 0.3746 0.1142(3) 0.0231 0.2859 0.2531 1.1490 0.4278(6) 0.2535(5)

ESN [43] 0.0733 0.0731 0.0553 0.0612 0.0365 0.0599(6) 0.0327 0.1357 0.2192 0.1077 0.1238(4) 0.0883(4)
Deep-esn [23] 0.0986 0.0937 0.1186 0.0753 0.2752 0.1323(8) 0.0565 0.1290 0.1165 0.0954 0.0993(2) 0.1176(6)

TDR [10] 0.0577 0.0693 0.0427 0.0785 0.0653 0.0627(6) 0.0296 0.1386 0.1291 0.1070 0.1011(2) 0.0797(3)
Ours 0.0186 0.0223 0.0246 0.0294 0.0042 0.0198(1) 0.0070 0.1158 0.1041 0.0866 0.0784(1) 0.0458(1)

Hardware reservoir
Zhong’s [36] 0.0980 0.0907 0.0741 0.0463 0.0192 - 0.0117 0.2762 0.2391 1.150 - -

Bai’s [11] 0.0683 - - - - - - - - - - -
Ours 0.0372 0.0463 0.0170 0.0237 0.0046 - 0.0097 0.1212 0.1096 0.0860 - -

* AvRan. represents the average value of the model’s ranking in different datasets, where the ranking for one dataset is recorded first and then
the average ranking in different datasets will be further given to indicate the average performance of the models.

TABLE 4
The results of Mann–Whitney U tests.

Method RNN LSTM mRNN mLSTM
P-value 0.0170 0.0136 0.0318 0.0211
Method ESN Deep-ESN TDR
P-value 0.0318 0.0067 0.0318

to construct a reservoir with the same function, where the
“same function” refers to the basic features of the reservoir.

We can see that TDR is more hardware friendly com-
pared with ESN models. We first compare our proposed
method against others by removing its enhanced memory.
We can see that ESN models have to use n neurons to
construct the reservoir, while TDR models can just use
one nonlinear delay node to construct one reservoir. The
relationship between the number of neurons (n in the figure)
and the number of Mosfets (#Mos in the Fig) is shown
in Fig. 12. Taking FPGA-based ESN [8] as an example,
37 Mosfets and 1 capacitor are required to construct one
neuron, and there may be more than 100 neurons used to
construct a reservoir in their work, so that 3700 Mosfets will
be existed in its circuit counterpart. However, TDR hard-
ware implementations can prevent this overhead, where the
number of Mosfets will remain unchanged with the increas-
ing neurons. As for CMOS-based TDR [11], 57 Mosfets and
3 capacitors are required to construct a reservoir, which
is more compact than the ESN reservoir hardware [8][5].
Moreover, as for the memristive TDR work, there will be
memristors or memristor-based elements to construct reser-
voir instead of relying on the Mosfets. In terms of power
consumption, the power consumption of CMOS-based TDR
[11] is 526µw, where the nonlinear node requires most of
the total power consumption. However, as for memristor-
based TDR, there is only a dynamic memristor constructing
the nonlinear node of TDR instead of CMOS circuits, so
that the power consumption of memristor-based TDR [37]
[36] is much lower than that of CMOS-based TDR. As
we can see, the basic constructs of our proposed method
are competitive, leading to the use of fewer and smaller
components than non-memristive reservoirs and offering
low power consumption.

In addition, our proposed method is the only one that
can adapt memory enhancement. To realize this enhanced
memory of TDR, MDE was introduced, composed of 1
memristor, 8 Mosfets, 0 capacitor, and 2.98 µw power for
one MDE. The average power of one MDE is computed as
2.89µw considering two working phases of MDE (config-
uration and operation). The number of MDEs applied for
enhancing the memory of MTDR was 20. Therefore, there
will be 2.89µw×20 = 57.8µw for enhancing the memory by
higher-order delay unit. After introducing the higher-order
delay unit for MTDR, the overall power is still less than that
of a memristive TDR work proposed by Moon et. al[37]. The
other two memristor-based TDRs [37] [36] only contain one
memristor to construct their reservoirs, which is very cir-
cuit compact and energy-efficient. The power consumption
of our memory-enhanced approach is higher than that of
the non-memory-enhanced approach from [36]. However,
the easiest reservoir architecture [36] also limits the mem-
ory ability for predicting long-term dependency tasks (see
the hardware reservoir comparisons in Table 3), since the
current reservoir states only come from the neighbouring
dependency without the history and longer-term memory
dependency. Our proposed memristive TDR expands the
delay into higher order. For the sake of this expanded
structure, as shown in Table 3, our proposed memristive
memory-enhanced TDR outperforms other hardware imple-
mentations of reservoir on both of the short-term and long-
term memory datasets. The gains in prediction performance
of our approach against this approach are large, as shown in
Table 5. Therefore, when opting for one of these approaches,
there is a trade-off between prediction performance and
power consumption.

6 CONCLUSION

We proposed an adaptive memory-enhanced TDR for time
series prediction and its memristive implementation. In
terms of the prediction performance and circuit perfor-
mance, our proposed method and its memristive implemen-
tation outperformed prior models and hardware reservoirs
across the long (short) memory datasets. By making use of
an adaptive higher-order delay unit, the memory of TDR
can be enhanced and the enhanced degree for each layer can
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TABLE 5

Comparison of different hardware reservoirs

Methods Implement. Constructing a reservoir
with same func. (no enhanced memory)

Constructing a
memory-enhanced reservoir

#Mem∗ #Mos #Cap Power Realized? Method
FPGA-based ESN [8] FPGA 0 37n∗ n - No -

Mosfet crossbar-based ESN [5] PCB 0 16n 0 - No -
CMOS-based LSM [46] IC 0 24n 3n - No -
BBD-based TDR [12] PCB 0 128 1 - No -

CMOS-based TDR [11] IC 0 57 3 526µw No -
Memristor-based TDR [37] IC 1 0 0 300µw No -

Memristor-based TDR with mask [36] IC 1 0 0 50µw No -
Memristor-based memory-enhanced TDR

(Ours) IC 1 0 0 50µw Yes Introducing MDEs
( Power=57.8µw)

* n represents the number of neurons existing in a reservoir. In order to construct a reservoir for ESN or LSM, n always starts from 5.
The memory enhancement of our proposed method was removed in the columns corresponding to no enhanced memory.

* #Mem, #Mos and #Cap refer to the number of memoristor, Mosfets and capacitors. Work haven’t provide the power consumption
marked as -.
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Fig. 12. The relationship between the number of neuron and the number
of Mosfets.

be optimized adaptively according to different given tasks
using PSO. As shown experimentally, with this design our
proposed adaptive memory-enhanced TDR obtained better
predictive performance on both short-term and long-term
memory datasets.

Making full use of the potential of hardware-friendly
feature of TDR, the memristive implementation of proposed
adaptive memory-enhanced TDR was also presented in
this paper. In this implementation, a dynamic memirstor is
used as a nonlinear node, and the memristor-based delay
element is used to construct the adaptive higher-order delay
unit, which expands the memory capacity of the hardware
reservoir unlike other prior works. By virtue of nano-
size and low energy efficiency of memristor, the proposed
memristive implementation also shows its superiority on
the circuit area and power consumption compared with
traditional device-based reservoirs. Future work will focus
on improving the model’s predictive performance and the
hardware implementation of the memristive output layer
to achieve a fully analog memristive TDR with adaptive
enhanced memory.
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