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Abstract. This study introduces a novel reservoir computing frame-
work featuring an evolvable topology, optimized for minimal clustering
degree and path length, which are key characteristics identified as bene-
ficial for reservoir performance. We implement this framework in mem-
ristive circuits, enabling dynamic on-chip adaptation and evolution of
the topology. We evaluate the efficacy of our memristive reservoir in a
wave generation task and two time series prediction tasks. Experimen-
tal results demonstrate that our approach not only outperforms existing
state-of-the-art methods in predictive performance but also reduces the
required circuit area compared to other hardware-based reservoir imple-
mentations. This enhancement in both efficiency and performance illus-
trates the potential of our approach for advancing neuromorphic com-
puting applications.

Keywords: Evolvable hardware · Neuromorphic computing · Reservior com-
puting · Memristors · Time series.

1 Introduction

Reservoir Computing (RC) [13] is a branch of recurrent neural networks designed
to address the computational and training limitations of traditional RNNs. It
utilizes a dynamic system called the reservoir for nonlinear processing of input
signals, projecting them into a higher-dimensional space. This nonlinear trans-
formation allows temporal features to be mapped onto reservoir states, which
are then processed by a trained linear readout layer. The reservoir’s key charac-
teristics include dependency on historical data to capture temporal relationships
and a fading memory property, ensuring state dependency on recent past inputs
[3]. RC has been implemented in various forms, including electronic, photonic,
and atomic switch-based systems [35, 28, 31, 26].

In the context of software RC, efforts have been directed towards enhancing
RC applications and refining existing methodologies [15]. Meanwhile, the hard-
ware realm, especially with memristor-based RC, has attracted a lot of interest
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due to the inherent benefits of memristors such as their non-volatility, energy
efficiency, and high integration density [38, 19, 25]. These attributes make mem-
ristors suitable for implementing RC systems, offering a fresh perspective on
reservoir design, especially considering their nonlinear dynamics and memory
capabilities.

Various RC algorithms have been realized in hardware, prominently featur-
ing Echo State Networks (ESN) [14] and Liquid State Machines (LSM) [22],
which are grounded in nonlinear function neurons and spiking neurons, respec-
tively. Specifically, FPGA-based implementations of ESN models, such as the
64-neuron model by Yi et al. [35] and the model for chaotic time series forecast-
ing by Alomar et al. [1], have demonstrated their efficacy in data recognition and
classification tasks. Likewise, LSM models have been successfully embedded in
FPGAs and VLSIs, with notable implementations including a 135-neuron FPGA
model for pattern recognition, achieving a high accuracy of 96.4% on the TI46
speech corpus [32], and larger LSM models with 200 [24] and 324 neurons [37]
for speech recognition.

Beyond neuron-based RC models, dynamic system-based RC models, par-
ticularly photonic reservoirs, have garnered interest for their high-speed pro-
cessing capabilities [2]. However, photonic reservoirs often require costly pe-
ripherals, such as digitizers and waveform generators [4]. As a cost-effective al-
ternative, electronic reservoirs utilizing traditional Complementary Metal Ox-
ide Semiconductor (CMOS) components, capacitors, and operational amplifiers
have been developed [2–4]. Memristive reservoirs present a compact and energy-
efficient alternative to CMOS systems, leveraging the nano-scale, low-power
characteristics of memristors [30, 31]. However, the static architectures of cur-
rent memristor-based reservoir computing (RC) systems limit their adaptability
to varying computational demands and operational changes [29, 16]. This un-
derscores the need for innovative, dynamically reconfigurable memristive RC
frameworks that can efficiently handle diverse tasks and adapt to changing com-
plexities, enhancing their versatility and functionality.

Despite advances, the limitations of random reservoir generation have led to
the development of task-specific designs that often yield better outcomes [18].
This shift has fueled interest in evolutionary reservoirs, where studies focus on
optimizing configurations like node count, connectivity, and weight parameters
to enhance training effectiveness [5, 18, 6]. Evolutionary algorithms, including ge-
netic algorithms [36], Evolino [23], evolutionary strategy [33], and Particle Swarm
Optimization (PSO) [6], have proven effective, optimizing global parameters and
modifying network topology to improve reservoir performance [8].

Memristive reservoir computing provides an efficient method for adaptive
temporal data processing. Challenges in system design include scalability and
practical constraints. Previous efforts have primarily centered on software-based
or static solutions, with minimal focus on hardware-based, evolvable alternatives.
This paper introduces a novel on-chip framework utilizing memristors’ nonlinear
properties to dynamically evolve and optimize reservoir topology. This results in
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Fig. 1. Different Reservoir Topologies.

a reduced clustering degree and shorter average path lengths, enhancing com-
pactness. The key contributions of our work are outlined as follows:

1. We propose a novel reservoir approach with an evolvable topology that can
achieve small clustering degree and small average path length, which are
desirable properties for reservoirs according to previous studies.

2. We implement our proposed reservoir approach into the memristive cir-
cuits, enabling the on-chip evolution and dynamic adaptation of the reservoir
topology.

3. We evaluate the performance of the memristive reservoir circuit with an
evolvable topology on one wave generation task and two time series predic-
tion tasks. Our proposed approach outperforms the state-of-the-art methods
in terms of the predictive performance.

4. We compare our proposed memristive reservoir featuring an evolvable topol-
ogy with other hardware implementations of reservoirs. Our approach not
only achieves superior predictive performance but also requires a smaller
circuit area, distinguishing it from other implementations.

The rest of this paper is structured as follows. Section 2 proposes novel
reservoir computing system with an evolvable topology. Section 3 introduces
our proposed evolvable memristive reservoir circuits . Section 4 describes the
experiments for verifying our proposed novel reservoir computing system with
an evolvable topology. The conclusions of our work are presented in Section 5.

2 Novel Reservoir Computing System with Evolvable
Topology

In Section 2.1, we propose novel reservoir computing system with an evolvable
topology, including Cycle Random Reservoir (CNR) and the Random Cycle
with Random Direct Connections Reservoir (RCNDR). In Section 2.2 we further
compare different topologies of reservoir computing.

2.1 Cycle Random Reservoir and Random Cycle with Random
Direct Connections Reservoir

Based on the premise that reservoirs should ideally have a small clustering degree
for sparse connectivity and a small average path length to avoid overly cluttered
dynamic information flow through the nodes, as suggested by Jaeger et. al [15],
we propose the Cycle Random Reservoir (CNR) and the Random Cycle with
Random Direct Connections Reservoir (RCNDR) topologies.
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Cycle Random Reservoir (CNR) The CNR topology is motivated by the
need for a structured yet dynamic approach to information processing in reser-
voirs. It combines a regular cycle, which ensures a predictable and stable foun-
dation for signal propagation, with additional random connections that intro-
duce variability and increase the dynamical richness of the reservoir. This setup
maintains a low clustering degree, as most nodes only connect to their immedi-
ate neighbors in the cycle, with random connections preventing the formation
of densely interconnected clusters. Furthermore, the CNR topology ensures a
small average path length due to the cycle, but the random connections allow
for longer individual paths when needed. This design effectively balances the rep-
resentation of different dynamical timescales, allowing the reservoir to process a
wide range of patterns and signals with varying temporal characteristics.

In the CNR, the adjacency matrix W consists of two parts: the cyclic com-
ponent Wcycle and the random component Wrandom. The CNR adjacency matrix
can be formulated as:

Wcycle(i, j) =

{
1 if j = (i mod N) + 1,

0 otherwise
(1)

Wrandom(i, j) =

{
1 with probability p,

0 otherwise
(2)

The overall adjacency matrix W for CNR is then given by:

W = Wcycle +Wrandom. (3)

Random Cycle with Random Direct Connections Reservoir (RCNDR)
Building upon the CNR, the RCNDR topology further refines the reservoir’s ca-
pacity to handle complex temporal patterns by introducing non-random direct
connections. These direct connections act as shortcuts within the circular struc-
ture, reducing the average path length between distant nodes. This feature is
particularly beneficial for capturing long-term dependencies in time series data
or for tasks requiring the integration of information over extended periods. The
direct connections are chosen strategically rather than randomly to optimize
the reservoir’s performance for specific tasks, allowing the RCNDR to maintain
sparse connectivity while enhancing computational power and flexibility.

For the RCNDR, the adjacency matrix W also includes an additional com-
ponent for the non-random direct connections Wdirect:

Wdirect(i, j) =


1 if a direct connection

exists between neurons i and j,

0 otherwise

(4)

Thus, the overall adjacency matrix W for RCNDR is given by:

W = Wcycle +Wrandom +Wdirect. (5)
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Table 1. Comparison of different reservoir topologies based on their degrees of local
clustering and average path length.

Topology Random [13] CRJ[21] SCR [20] CNDR RCNDR

Degree of local clustering Small High Small High Small
Average path length Small Small High Small Small

Circuit vality NO Yes Yes Yes Yes

Each element of Wrandom and Wdirect may be scaled or drawn from a distri-
bution to encode specific dynamics into the reservoir.

2.2 Reservoir Topology Comparison

According to work [15], the local clustering coefficient is a measure of the degree
of interconnection between nodes in a reservoir. A low local clustering coefficient
means that the nodes in the reservoir are sparser, which may be beneficial to
avoid the information flow being too cluttered in the reservoir. The average
path length is a measure of the average distance between any two nodes in the
reservoir. A small average path length means that information propagation in the
reservoir is faster and more efficient, since only a few steps are required to reach
any two nodes. However, a large average path length means that information
propagation in the reservoir is slower and less efficient, as many steps are required
to reach any two nodes. In addition, the average path length is also related
to the dynamic time scale in the reservoir, that is, how long the nodes in the
reservoir can maintain memory. A small average path length, while having longer
individual paths, enables the reservoir to represent multiple dynamic time scales,
thereby improving the reservoir’s memory capabilities.

Fig. 1 visualizes different reservoir topologies of reservoir. Table 1 presents
comparison of reservoir topologies, which reveals the network characteristics.
The random topology exhibits both a low local clustering coefficient and a small
average path length, forming an efficient yet sparse network that excels in infor-
mation distribution. However, due to its random topology, there will be the hang
terminals in their circuit implementations, which lacks of the circuit validity.

3 Evolvable Memristive Reservoir Circuit

In this work, we apply a memristor model that is similar with the one applied
in work [29], which has non-volatile memory that regulates the flow of electrical
current in a circuit and can remember the amount of charge that has previously
flowed through it. This memristive behavior is determined by the memristance
of the device, which changes according to the history of applied voltage and
current.

Table 2 outlines the essential parameters defining the SPICE model of a mem-
ristor, a component known for its ability to retain a state of resistance based on
the history of voltage and current passed through it. The low and high resistance
states, denoted by Ron and Roff, respectively, establish the operational bounds
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Table 2. Parameters of the memristor model and their values used in the experiments.

Parameter Description Value

Ron Low resistance state 100Ω
Roff High resistance state 10kΩ
xini Initial memristance state ‘ra’ (variable)
uv Ion mobility parameter 1× 10−14/stime
p Power coefficient in window function 1
D Thickness of the memristive material 10 nm

of the memristor, allowing it to switch between conductive and non-conductive
modes. The initial state xini sets the starting resistance level, pivotal for the
device’s memory aspect. The ion mobility parameter uv is critical for dictat-
ing the rate at which the resistance state can change, reflective of the physical
properties of the memristive material. The power coefficient p influences the
nonlinearity of the memristance change, while the thickness D of the memristive
material directly affects the device’s scaling and resistive properties. Together,
these parameters are integral to modeling the dynamic behavior of memristors
in computational circuits, capturing their unique capability to integrate memory
and processing in a single element.

3.1 Memristive Reservoir Model

We apply the schematic of a memristive network introduced in Tanaka et al. [29]
as our basic memristive RC frameowrk. The network receives an input series
x, which undergoes a masking operation that serves dual purposes. Primarily,
this masking distributes the singular time series data across the entire neural
array, essentially performing a dimensional expansion of the input. Secondly, it
normalizes the input data by ensuring that time series with a non-zero mean are
transformed to have a zero mean, a feature that proves beneficial in simplifying
the ridge regression model by obviating the need for an intercept. In the context
of physical reservoir computing, as introduced in prior studies [7, 29], the role
of the input mask layer is realized through pre-processing and is not subjected
to training. This approach is retained in our proposed model where the input
pre-processing remains fixed throughout the computation process.

The input to the reservoir x(t) ∈ R1×n is accompanied by a teaching signal
y(t) ∈ R1×n for training. The reservoir state h(t) ∈ R1×N is used to generate
the output ŷ ∈ R1×n via the output matrix Wout ∈ RN×n, calculated as ŷ :=
h(t) ·Wout.

The goal of training is to adjust Wout to minimize the error between ŷ and
y(t), with an L2 regularization to mitigate overfitting, expressed as [20]:

Wout := argmin
W∈RN×n

(
T∗∑
t=1

||ŷ(t)− y(t)||2 + λ||W ||2
)
, (6)

where λ ≥ 0 is a regularization hyperparameter. Using ridge regression, Wout

is derived from:
Wout = (HTH + λIN )−1HTy. (7)
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Fig. 2. Circuit Schematic of Programmable Memristive Unit (PMU) and its equivalent
circuits.

In the equation, H represents the feature matrix used to compute output weights
Wout in ridge regression. This approach uses the unique dynamics of memristors,
which convert the input signal into a high-dimensional space. The outputs, pro-
cessed by Wout, utilize the memristor currents, effectively merging memristive
properties with linear readout for complex computations.

3.2 Memristor-based Reservoir Circuit

In this work, we employ the Programmable Memristive Unit (PMU) designed
by Yang et al. [34] to develop an adaptable memristive network for Reservoir
Computing (RC). The PMU’s structure, which allows synchronized memristance
adjustments, is ideal for creating a dynamic memristive reservoir. As depicted
in Fig. 2, the PMU consists of four transistors—two PMOS (T1 and T2) and
two NMOS (T3 and T4), coupled with a single memristor. The input (Vin) and
control (Vc) signals, the latter switching between ‘logic 0’ (0V) and ‘logic 1’ (5V),
regulate the memristor’s current flow. With no input (Vin = 0), the memristor’s
state is preserved. Conversely, an active Vin combined with a high Vc enables
current to flow from terminal a to b via T1 and T3, increasing memristance. A
low Vc reverses this flow, reducing memristance as current moves from b to a.

By varying Vc’s pulse widths and voltage states, we can tailor current flow
and memristance levels. This capability allows us to connect multiple PMUs into
complex networks with varied topologies, forming evolvable memristive reser-
voirs. These reservoirs are dynamically tunable for specific tasks, enhancing the
flexibility and efficiency of the RC framework and opening new possibilities for
advanced computational architectures.

3.3 Evolution of Memristive Reservoir Circuit

Circuit Representation In Section 3.1, we outline the reservoir computing
system structure, comprising an input layer, a reservoir, and an output layer.
The reservoir topology uses a binary adjacency matrix Wbool, with reservoir and
output weights stored in Wres and Wout. Our algorithm evolves Wbool and Wres,
while Wout is optimized offline using ridge regression (Equation (7)).

Our memristor-based model uses conductance changes in memristors to rep-
resent node states, adjusted through control voltage Vc pulse widths (Figure 2).
Instead of directly evolving weights, we modify Vc pulse widths to control mem-
ristor currents and dynamically adjust system behavior.
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Algorithm 1 Pseudo Code for Reservoir Evolution

1: Initialize parameters: crossover and mutation rates Pc, Pm, generation g
2: Define tournament size num Tour, and reservoir size range num ini node to

num max node
3: Initialize population p with genomes defining Wbool, Wres

4: for each generation g do
5: for each genome in p do
6: circuit netlist← phenotype(genome)
7: res out← NGSPICE(circuit netlist)
8: if res out ̸= 0 then
9: Calculate Wout via ridge regression
10: ŷ← res out×Wout

11: f ← 100−A
√〈
∥ŷ− y∥2

〉
12: end if
13: end for
14: champion← clone of genome with the best fitness
15: p[0]← champion
16: for each genome in p[1 : N) do
17: Remove a fraction ε of the smallest positive weights
18: Every e generations, refresh the connection
19: Else, adjust connections randomly
20: Perform selection, crossover, and mutation operations
21: end for
22: Update all genomes based on fitness, crossover and mutation
23: end for
24: return optimized Wbool, Wres, Wout.

Table 3 shows the genome of our memristive circuit, with the evolutionary
algorithm adjusting both topology (Wbool, ‘0’ for no connection, ‘1’ for a con-
nection) and pulse widths (Wres), where relevant entries correspond to active
connections limited to pulse widths between [0, 0.5]. Figure 3 illustrates the ini-
tialization process for configurations. The architecture includes Wbool and Wres

as N ×N matrices, with Wout as an N ×M matrix connecting reservoir nodes
to output neurons.

Circuit Evolution Algorithm To implement our model in hardware, we need
to avoid hang terminals of nodes in the circuit, which are parts of the circuit
that are disconnected from the rest. These can occur if the reservoir is initialized
randomly. We prefer reservoirs with low clustering degree (sparse reservoirs) [15],
which can facilitate the information flow among the reservoir nodes. Thus, we
apply our proposed CNDR and RCNDR to generate the initial reservoirs.

Algorithm 1 outlines our evolutionary process. It begins with population ini-
tialization (‘num Pop’), followed by translating each genome into a circuit netlist.
Circuit performance is evaluated via NGSPICE simulations, and fitness scores
are recorded. The best genome is preserved as the champion gene. Adaptive scal-
ability adjustments involve selectively removing weaker connections based on a
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Table 3. Circuit representation of proposed memristor-based RC

Gene Matrix Meaning Size Determination Method

W i,j
bool Reservoir topology N ×N Evolution

W i,j
res Configuration signal N ×N Evolution

W i,j
out Output weights N ×M Offline training

N indicates the reservoir size, and M represents the output
dimension.
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Fig. 3. Initialization example of CNDR and RCNDR.

threshold ε, depicted in Figure 4. Every 20 generations, removed connections are
reinstated; otherwise, an equivalent number of new connections are added. The
process also includes a crossover of selected parent genomes and the introduction
of random mutations. After iterating through all generations, the algorithm out-
puts the optimized boolean and reservoir weight matrices (Wbool and Wres), and
the output weight matrix (Wout), yielding the evolved solution for the reservoir
computing system.

Figure 5 depicts six mutation operations: Weight Mutation, Add Node, Delete
Node, Internal Connection Mutation, and Input and GND Mutation. In Weight
Mutation, for values in Wres where Wbool is nonzero, there is a probability Pm

of mutating each to a new value, uniformly selected from the allowable range.
In the Add Node operation, the Wbool matrix is expanded to include a new node
in a random position into the ring structure. This ensures that each new node
connects to the subsequent one, with the final node linking back to the first. The
Delete Node operation randomly removes a node, following a procedure similar
to Add Node. For Internal Connection Mutation, a new connection between two
previously unconnected nodes within the reservoir is randomly established if
possible. The potential new connections (zero elements in the Wbool matrix,
excluding self-connections) are counted, and one is randomly selected to set its
corresponding Wbool value to 1, thereby creating the connection. In the Input
and GND Mutation, the grounding of an input node is altered. For that, a
random index from the in gnd array, which stores indices of nodes that are
either grounded or connected to an input, is selected. A new node, not already
in the in gnd array, is chosen to be grounded, replacing the currently grounded
node at the selected index.
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Fig. 4. Adaptive scalability adjustment to reservoir connection. (1) Identifying the
connection with lowest weights. (2) Removing those connections. (3) Adding random
connection with the same number of removed one.
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the left part represents the individual before mutation, and right part represents the
individual after mutation, where the red parts indicate the mutation parts, more detail
could be found in Section 3.3.

4 Experimental Studies

The experimental studies are introduced in this section, where Section 4.1 de-
scribes the tasks and Section 4.2 presents the experimental results, including
ablation experiments, comparisons with SOTA models and other hardware im-
plementation of reservoirs, respectively. The number of hidden neurons of RNN,
ESN and LSTM is set as 100, which is the same as our proposed approach.

4.1 Task Description

In order to verify the feasibility of proposed approach, three tasks are executed,
including one wave generation task and two prediction tasks.

Wave Generation Task Memristors have been utilized as individual compo-
nents or in network configurations for wave generation, as highlighted by Sillin
et al. [27]. Furthermore, wave generation tasks are often employed to assess
the practicality of hardware-based reservoir computing, a concept explored by
Tanaka et al. [30]. In our experiments, the wave generation setup, depicted in
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Fig. 6. The embryo circuits created for wave generation (a) and prediction task (b).

Figure 6 (a), involves inputting a 1 kHz, 5V sine wave into the reservoir. The
desired outputs from the reservoir computing system include a square wave, a
triangular wave, and a sine wave, all at 1 kHz with an amplitude of 1 mV, and
an additional sine wave at 2 kHz with an amplitude of 1 mV.

Nonlinear Dynamic System Prediction Task We use the nonlinear au-
toregressive moving average (NARMA) systems of order 10 to test our method,
which is the same as the one used in [26] We train on the first 1000 points of
a NARMA sequence and test on the next 1000 points. We discard the first 200
points of both sequences as the washout period.

Nonlinear Audio Prediction Task In the field of audio prediction, the ob-
jective is to predict future audio samples based on a specified history horizon.
Such techniques are vital in scenarios like audio restoration, where segments of
audio are missing, or when dealing with impulsive noise. Researchers, including
Greaves et al., have observed that long-term memory is significantly pronounced
in music [10]. The dataset used in this study, sourced from Holzmann et al.,
comprises a brief recording from a Jazz quartet [12]. The dataset is divided into
a training set, which includes the first 2000 data points, and a test set, com-
prising the subsequent 2000 points. The initial 200 data points are utilized as a
washout period to stabilize the system before actual training begins.

4.2 Experiment Results

Ablation Experiment In this section, we test the impact of various operations
within our proposed algorithm. Table 4 provides a comparison of our method
when excluding Crossover, Mutation operation, and its different mutation oper-
ators within CNDR and RCNDR configurations across three tasks, using RMSE
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Table 4. Results (RMSE) of ablation experiment

Tasks All Equipped No Crossover No All Mutation No Add No Delete No Step No Input/GND No Weight

CNDR

Wave Generation 0.0164 0.1672 0.2883 0.1125 0.0384 0.1344 0.0217 0.0929

Nonlinear Dynamic System 0.0553 0.0671 0.1932 0.0564 0.0681 0.0692 0.0598 0.0701

Nonlinear Audio Prediction 0.1104 0.1238 0.2156 0.1144 0.1237 0.2092 0.1139 0.1324

RCNDR

Wave Generation 0.0127 0.1321 0.2539 0.1044 0.0284 0.0965 0.0209 0.0913

Nonlinear Dynamic System 0.0369 0.0653 0.1436 0.0983 0.0548 0.0591 0.0471 0.0683

Nonlinear Audio Prediction 0.1028 0.1139 0.2045 0.1023 0.1123 0.1987 0.1102 0.1301

as the metric. A lower RMSE indicates better performance, while an increase in
RMSE points to a decline in performance. The All Equipped condition consis-
tently recorded the lowest RMSE values, signifying optimal performance with all
features intact. The removal of specific features, particularly No All Mutation,
led to significant increases in RMSE, highlighting the critical role of mutation
operations in our proposed approach. Similarly, the removal of Crossover (No
Crossover) and Internal Connection Mutation(No Step) resulted in substantial
RMSE increases, underlining their importance in achieving effective results. RC-
NDR configuration often showed lower RMSE than CNDR, suggesting its greater
efficacy or robustness for the tasks tested. This study underscores the vital con-
tributions of mutation, crossover, and specific operational steps in maintaining
RMSE and improving performance in complex computational tasks. Overall, the
absence of crossover or mutation operations results in a decrease in the RSME
of our algorithm.

Comparisons with SOTA Models With the objective of evaluating the pre-
dictive performance of the proposed approach, we conduct comparisons with
several existing software baseline models and memristive reservoir circuits. The
software basline models include RNN [9], ESN [13], and LSTM [11], and these
memristive reservoir circuits have different topologies, including random, cy-
cle, cycle with jump (CRJ), CNDR and RCNDR evolved by our proposed ap-
proach. Their regression performance comparisons are shown in Table 5. The re-
sults demonstrate that traditional software baselines perform well in tasks with
temporal dependencies, such as LSTM in nonlinear audio tasks. Our proposed
method CNDR and RCNDR display competitive, and in some cases superior,
performance in waveform generation and nonlinear system tasks, highlighting
the potential and efficiency of memristor technology in practical applications.

Comparisons with Other Types of Hardware Implementations of Reser-
voir Table 6 presents the comparisons of various hardware-based reservoirs. It
is observed that both ESN and LSM models require n neurons to build the
reservoir, with each neuron necessitating multiple Mosfets to replicate nonlinear
interactions between the input and output signals. Traditional FPGA and PCB
implementations, such as those by Yi et al. and Kume et al., rely heavily on a
large number of MosFets and capacitors, leading to complex, power-intensive,
and bulky circuits. As reported by Yi et al. [35], constructing a single neuron
requires 37 Mosfets and 1 capacitor. Their setup involves over 60 neurons for the
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Table 5. Results (RMSE) of SOTA model comparisons

Models Wav. Gen. Non. Sys. Non. Aud.

Software baselines

RNN [9] 0.0158 0.0448 0.0277
ESN [13] 0.0351 0.0773 0.1321
LSTM [11] 0.0129 0.0415 0.0393

Memristive reservoir circuits

Random - - -
Cycle [26] 0.4772 0.1943 0.1569
CRJ [26] 0.3551 0.1387 0.1498

Ours-CNDR 0.0164 0.0553 0.1104
Ours-RCNDR 0.0127 0.0369 0.1028

Table 6. Comparison of different hardware reservoirs

Method Implementation #Memristors #MosFets #Capacitors

FPGA-based ESN [35] FPGA 0 37 1
Mosfet Crossbar-based ESN [17] PCB 0 16 0
CMOS-based LSM [22] IC 0 24 3

Our Method IC 1 4 0

Components are listed per neuron. n indicates the number of neurons in the reservoir.

reservoir, amounting to a total of 2368 Mosfets and 64 capacitors. In contrast,
our method, which utilizes memristors and manipulates current signals, employs
merely 4 Mosfets and 1 memristor to achieve similar nonlinear dynamics. This
significantly reduces the complexity of the circuit, enhancing scalability. Lever-
aging the diverse nonlinear behaviors offered by RMUs allows our approach to
efficiently realize reservoir computing with only 30 nodes, thus presenting a more
efficient and logical alternative compared to prior works [35, 17, 22].

5 Conclusion

Our study demonstrates the feasibility and benefits of using an evolvable topol-
ogy in memristive reservoir computing systems. The proposed framework not
only boosts computational performance, achieving higher predictive performance
across tasks compared to current methods, but also reduces circuit area, en-
hancing practicality in resource-limited settings. These results underscore the
potential of evolvable topologies to improve the efficiency and adaptability of
neuromorphic computing, leading to more compact and effective hardware solu-
tions for real-world applications.

In future work, we will extend our evaluations to a broader range of tasks to
deepen our comparisons with methods like LSTM and improve robustness. We’ll
provide detailed assessments of metrics like RMSE, accuracy, and parameter
counts. Additionally, we’ll explore the trade-offs associated with our model’s
complexity and performance, particularly in scalability and robustness for larger
networks. We also plan to include additional established state-of-the-art methods
in our comparisons to enhance the validation of our findings.
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based stochastic echo state networks for time-series forecasting. Comput. Intell.
Neurosci. 2016 (2016)

2. Amil, P., Cabeza, C., Marti, A.C.: Exact discrete-time implementation of the
mackey–glass delayed model. IEEE Trans. Circuits Syst. II, Exp. Brief 62(7), 681–
685 (2015)

3. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S.,
Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using
a single dynamical node as complex system. Nature Commu. 2(1), 1–6 (2011)

4. Bai, K., Yi, Y.: Dfr: An energy-efficient analog delay feedback reservoir comput-
ing system for brain-inspired computing. ACM J. Emerg. Technol. Comput. Syst.
14(4), 1–22 (2018)

5. Bala, A., Ismail, I., Ibrahim, R., Sait, S.M.: Applications of metaheuristics in reser-
voir computing techniques: a review. IEEE Access 6, 58012–58029 (2018)

6. Chouikhi, N., Ammar, B., Rokbani, N., Alimi, A.M.: Pso-based analysis of echo
state network parameters for time series forecasting. Appl. Soft Comput. 55, 211–
225 (2017)

7. Duport, F., Akrout, A., Smerieri, A., Haelterman, M., Massar, S.: Analog input
layer for optical reservoir computers. arXiv preprint arXiv:1406.3238 (2014)

8. Ferreira, A.A., Ludermir, T.B., De Aquino, R.R.: An approach to reservoir com-
puting design and training. Expert Syst. Appl. 40(10), 4172–4182 (2013)

9. Giles, C.L., Kuhn, G.M., Williams, R.J.: Dynamic recurrent neural networks: The-
ory and applications. IEEE Trans. Neural Netw. 5(2), 153–156 (1994)

10. Greaves-Tunnell, A., Harchaoui, Z.: A statistical investigation of long memory in
language and music. In: Proc. 36th Int. Conf.Mach. Learn. pp. 2394–2403 (Long
Beach, California, USA, 2019)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Holzmann, G.: Reservoir computing: a powerful black-box framework for nonlinear
audio processing. In: Proc. 12th Int. Conf. Digit. Audio Eff. (DAFx) (Como, Italy,
2009)

13. Jaeger, H.: The “echo state” approach to analysing and training recurrent neu-
ral networks-with an erratum note. German Nat. Res. Cntr. Inf. Technol., GMD
Report 148(34), 13 (2001)

14. Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)

15. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and sav-
ing energy in wireless communication. Science 304(5667), 78–80 (2004)

16. Kulkarni, M.S., Teuscher, C.: Memristor-based reservoir computing. In: Proc.
IEEE/ACM Int. Symp. Nano. Archit. (NANOARCH). pp. 226–232. IEEE (2012)

17. Kume, Y., Bian, S., Sato, T.: A tuning-free hardware reservoir based on mosfet
crossbar array for practical echo state network implementation. In: Proc. Asia
South-Pacific Design Automat. Conf. (ASP-DAC). pp. 458–463. IEEE (2020)
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