
Noname manuscript No.
(will be inserted by the editor)

A Novel Tree-based Representation for
Evolving Analog Circuits and Its Application to
Memristor-Based Pulse Generation Circuit

Xinming Shi · Leandro L. Minku · Xin
Yao

the date of receipt and acceptance should be inserted later

Abstract When applying evolutionary algorithms to circuit design automa-
tion, circuit representation is the first consideration. There have been several
studies applying different circuit representations. However, they still have some
problems, such as lack of design ability, which means the diversity of evolved
circuits was limited by the circuit representation, and inefficient transforma-
tion from circuit representation into SPICE (Simulation Program with Inte-
grated Circuit Emphasis) netlist. In this paper, a novel tree-based circuit rep-
resentation for analog circuits is proposed, which is equipped with an intuitive
and three-terminal devices friendly mapping rule between circuit representa-
tion and SPICE netlist, as well as a suitable crossover operator. Based on the
proposed representation, a framework for automated analog circuit design us-
ing genetic programming is proposed to evolve both the circuit topology and
device values. Three benchmark circuits are applied to evaluate the proposed
approach, showing that the proposed method is feasible and evolves analog
circuits with better fitness and number of components while using less fit-
ness evaluations than existing approaches. Furthermore, considering physical
scalability limits of conventional circuit elements and the increased interest
in emerging technologies, a memristor-based pulse generation circuit is also
evolved based on the proposed method. The feasibility of the evolved circuits
is verified by circuit simulation successfully. The experiment results show that
the evolved memristive circuit is more compact and has better energy efficiency
compared with existing manually-designed circuits.

X. Shi and X. Yao (Corresponding author)
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Depart-
ment of Computer Science and Engineering, Southern University of Science and Technology
(SUSTech), Shenzhen, China, and School of Computer Science, University of Birmingham,
UK.
E-mail: xxs972@cs.bham.ac.uk and xiny@sustech.edu.cn

L. L. Minku
School of Computer Science, University of Birmingham, UK
E-mail: l.l.minku@cs.bham.ac.uk

2 Xinming Shi et al.

Keywords Automated analog circuit design · Memristor · Circuit represen-
tation · Genetic Programming · Evovlable Hardware

1 Introduction

Circuit design automation has attracted increasing attention, with analogue
circuit design being particularly challenging due to its complex topology and
parameter selection [1]. There have been several methodologies to study analog
circuit design automation, including methods that incorporate domain knowl-
edge [2], evolutionary algorithms [3] and simulated annealing [4]. Some of them
are based on domain knowledge and require significant expertise to be applied.
For example, Oliver et al. [2] proposed a constraint-driven method to imple-
ment the automatic design of analog circuits. However, this type of method
requires abundant knowledge of circuit design to be developed and limits the
range of exploring circuits.

Evolutionary algorithms have been widely applied to automated analog
circuit design, requiring neither design rules nor domain knowledge from ex-
perts [5]. For example, Kruiskamp et al. [6] proposed the prototype synthesis
tool DARWIN based on Genetic Algorithm (GA) to design the CMOS opamp.
Grammatical Evolution (GE) [7] and Genetic Programming (GP) [8] have also
been used successfully for the automated design of analog circuits. Some re-
searchers commented that GP makes it possible for generating topology of ana-
log circuits with arbitrary connections [9]. Several earlier studies proposed that
GP is likely the most successful evolutionary computation-based paradigm for
analog circuit synthesis [10], given its good diversity for automated analog
circuit design [11] [12]. Even in recent years, GP (and its variants) is still
considered as the successful evolutionary paradigm for analog circuit design
[13].

Circuit representation is the first consideration in automated circuit design.
It indicates how to encode a circuit. According to different data structures,
there are several types of circuit representations, such as string-based [14, 10],
tree-based [12, 15, 16] and graph-based circuit representations [17, 18]. How-
ever, there are also some limitations of these different types of circuit repre-
sentations. Gan et al. [17] suggested that a string-based representation [14] is
so complex that much computation time is taken during the decoding process.
The linear string-based representation has another limitation: it cannot sup-
port all possible circuit topologies [10]. In addition, some researchers [16] [9]
[17] proposed that the tree-based circuit representations also have some inad-
equacies, such as bloat size of the evolved design [15], limited application [12],
inefficient crossover operators and complex transformation into circuit netlists
[11]. As for graph-based circuit representation, designing good crossover oper-
ators is a challenging problem, as it may result in infeasible individuals during
the evolutionary processes [18].

Therefore, a new circuit representation for automated analog circuit de-
sign based on GP is proposed in this paper. The proposed representation has

Novel Tree-based Circuit Representation and its Memristive Application 3

the following characteristics. First, it makes the transformation between the
circuit representation and the circuit netlists more direct and efficient, which
is a desirable property for the evolution of circuits. Second, the proposed cir-
cuit representation can be applied in the circuits with either two-terminal or
three-terminal electrical elements. Finally, the novel tree-based circuit repre-
sentation has more suitable crossover operator compared with some existing
representations, potentially aiding the evolutionary process to obtain better
circuits.

Based on the proposed circuit representation, a suitable evolutionary ap-
proach based on GP is designed, which includes topology evolution and device
value optimization. We validate the proposed representation and its corre-
sponding GP based on three widely used benchmark circuits [13] [14] [19],
showing that the evolved results based on proposed method are better in terms
of the number of evaluations and circuit performance than those obtained by
existing methods [14] [19] [13]. The benefits of the characteristics of our pro-
posed circuit representation are also verified by comparison experiments.

In addition, we perform a case study of using the proposed approach
to evolve memristor-based circuits, which are particularly relevant nowadays
given the rapid development of emerging electronic devices, the wide applica-
tion prospects of memristors [20] and the increasing trend of researching neu-
romrophic computing [21] [22] [23]. Considering the dynamic characteristics
of memristors, there are two parts of challenges of designing memristor-based
circuit manually, which are how to tune into the specific memristance by con-
trol circuits or signals, and how to manipulate the state switching behaviors of
different memristors (from HRS/LRS to LRS/HRS), respectively. As for the
manual design, it is intensive and time-consuming for designers to manipu-
late these different characteristics of memristors during the designing process.
And some devices with bulk size, such as capacitors, even external fabricated
chips, are always selected to construct circuits [22] [24], incurring large size and
high power consumption of designed circuit system. Therefore, it is reasonable
to apply the evolutionary approach to manipulate different characteristics of
memristors and other devices to design memristor-based circuits pursuing the
functionality, energy efficiency, and compactness synchronously.

There are very few studies on automated design of memristor-based analog
circuits [25] [26]. Some of the existing work [25] is based on Koza’s tree repre-
sentation, which has the above mentioned limitations. Moreover, most existing
work focuses on synthesising memristive digital circuits [27] [28], particularly
logic circuits. There are very few works attempting to automatically design
analog memristive circuits as done in our paper. Our study shows that our
proposed method can successfully be applied to evolve emerging device-based
analog circuits, obtaining better results compared with the manual-design cir-
cuits for the similar purpose in terms of the number of components applied
and power consumption.

Overall, our key contributions are threefold:

4 Xinming Shi et al.

• A novel tree-based representation that can be transformed more directly
and efficiently to circuit netlists, and for which a suitable crossover operator
can be applied, better supporting automated circuit evolution.

• A GP framework that uses the proposed representation and can improve
the number of evaluations, fitness and hits over existing literature.

• A case study applying the proposed GP framework to analog memristive
circuit design, demonstrating that the proposed framework can lead to
more compact size and greater energy efficiency than existing manually
designed circuits.

The rest of the paper is structured as follows. Section 2 presents related
work. Section 3 introduces our proposed circuit representation in detail. Sec-
tion 4 explains the evolutionary design framework of analog circuits based on
GP proposed in this work. Section 5 focuses on the validation of our method,
where three benchmark circuits are applied and the comparisons with previous
works in the field are presented. Section 6 shows how the proposed method is
applied to generating a memristor-based pulse generation circuit, and presents
comparisons with manual-design circuits. The conclusion of our work is pre-
sented in Section 7.

2 Related work

2.1 Automated analog circuit design algorithms

The complex topology and a large number of component values for circuits
makes its automated analog design a challenge. Considering different strate-
gies to implement automated analog circuit design, researchers specified several
ways to tackle the challenge, including domain knowledge-based and evolution-
ary algorithm (EA)-based approaches [29]. Table 1 gives a brief comparison
of automated circuit design methodologies based on domain knowledge and
EA. As the name implies, knowledge-based methods rely on the knowledge

Table 1 Characteristics of automated circuit design methodologies based on domain knowl-
edge and EA [29].

Based Methods Structures Complexity Knowledge required

Knowledge Familiar Very high Very high
EA Unfamiliar Low Low

obtained from specific circuits or sub-circuits, thus the great human effort
and experience is highly required to extract the knowledge for each generated
structure one by one [29], which is unfriendly to inexperienced developers. In
addition, the computing complexity of some knowledge-based methods [30] is
high, as it needs to check if the automatically generated part is potentially

Novel Tree-based Circuit Representation and its Memristive Application 5

useful by circuit knowledge such as transmission parameters, incurring high
computing complexity.

Compared with knowledge-based methods, EA-based approaches are more
independent of human effort [29]. EA-based methods require less human ef-
fort, and the structure of evolved circuit is unfamiliar compared with that
of knowledge-based methods. Unfamiliar structures of circuit can enrich the
candidates of desired circuits, which may find better results among them than
that of familiar design. Based on various evolutionary algorithms, different
works of automated circuit design have been proposed [6] [8] [13] [31]. In [6],
Kruiskamp et. al. applied Genetic Algorithms (GA) to solve CMOS opamp
synthesis problem, where each individual in the population has a multi-gene
chromosome that can be converted into a corresponding circuit by decoding
it. Grimbleby [32] used GA for automated analogue network synthesis, where
GA was used to configure the circuit structure. However, component values
should be determined by subsequent numerical optimization.

Genetic programming (GP) has been widely used in automated circuit de-
sign and other fields like signal processing and system structure identification
[33]. Different from numerical optimization algorithms, GP can design complex
structures starting with programs or operations as genes and evolve to better
programs by using GA-liked operators like selection, mutation, and crossover.
In [11], Koza used GP to design eight different types of circuits automatically
with minimal problem-specific information, demonstrating the general appli-
cability of GP to solve the problem of automated synthesis of analog electrical
circuits. In recent years, GP (and its variants) is still considered as the evo-
lutionary paradigm with more successful results in the field of analog circuit
design [13].

The differences between GA and GP in terms of evolving analog circuit
mainly reflect on the representation. Specifically, GA employs string-based
representations of binary or float value to the evolution [34] [35]. String is an
efficient structure of value optimization, therefore, some GA studies only pro-
vide the solutions to the devices value with the already known circuit topology
[6] [32]. Different from these GA studies, GP approaches can generate the cir-
cuit netlists for evolution, which contain both of the circuit device value and
circuit topology. Using GA, some researchers encode the sequence of the string
as the circuit topology and its string value encoded as the device parameter,
which incurs the limited circuit diversity [10] and complex procedure of de-
coding to its phenotype [17]. Different from these GA studies, in GP studies,
the unbalanced tree structure of function nodes encodes the relative positions
of devices and the terminal nodes further encode the specific positions for the
circuit netlists. Therefore, it allows greater circuit diversity and more efficient
decoding procedure to phenotype.

6 Xinming Shi et al.

2.2 Circuit representation

Circuit representation is indispensable for automated analog circuit design, as
it allows an evolutionary algorithm to alter the circuit topology and parameters
by making use of genetic operators. According to different data structures,
there are several types of circuit representation:

1. String-based circuit representation: Mattiussi et al. proposed the Ana-
log Genetic Encoding (AGE) approach based on string representation to
synthesize analog circuits [14]. Each gene of AGE’s genome denotes a de-
vice, in which two regions are included for denoting each terminal and
parameters of the device. Connection of these devices is determined by
a device interaction map. Final circuit is constructed by connecting all
devices step-by-step according to the device interaction map. The exper-
imental results show that AGE can synthesize analog electrical circuits.
However, this representation is so complex that much computation time is
taken during decoding process [17].
The linear representation proposed by Jason in 1999 [10] is also based
on string structure. It can encode the circuit construction operations into
opcodes, such as x-move-to-new, x-cast-to-previous and x-cast-to-ground, x-
cast-to-input and x-cast-to-output. Here, x-move-to-new represents adding
a device x to the active node and generating a newly active node; x-cast-
to-previous represents inserting a device x between the active node and
the circuit under construction; x-cast-to-ground represents casting a device
x between the active node and ground; x-cast-to-input represents casting
a device x between the active node and input; and x-cast-to-output rep-
resents casting a device x between the active node and output. However,
this representation cannot support all possible circuit topologies, being of
limited applicability [10]. Specifically, the circuit construction are guided
by above-mentioned five basic instructions, and the circuit evolution only
happened between the active node of constructed part and new devices, by
which some of the connections cannot be established.

2. Tree-based circuit representation: Koza and his collaborators [8] have
done several studies on automated synthesis of analog circuits by means of
tree-based GP. Sripramong et al. [36] improved on Koza’s work by using
the same tree-based circuit representation, but with a recursive analysis
to verify circuit correctness. In [37], individuals were also represented by
Koza’s tree-based representation, where non-leaf nodes represent circuit
components or connection ways, and leaf nodes are defined as terminal
nodes or constants. However, Koza’s tree-based representation is prone to a
phenomenon named bloat, which refers to circuits often growing excessively
large [15], which may lead to high cost in terms of larger circuit area and
power consumption.
In 2006, Chang et al. [12] proposed a novel tree-based representation for
synthesizing RLC circuit. However, this representation has been criticized
for lack of design ability [16] and can only be applied in the two-pole

Novel Tree-based Circuit Representation and its Memristive Application 7

electrical elements [9]. As the length of the tree is dynamic, the potential
of bloat still exists.

3. Graph-based circuit representation: Graphs are attractive representa-
tions for circuits as they are compact and intuitive for representing circuits
[38]. An Evolutionary Graph Generation (EGG) system was proposed to
synthesise digital circuits [39] [40]. This EGG system was also applied to
synthesise analog circuits [41]. In EGG, nodes represent device or I/O pin,
edges represent connection between devices and I/O pins, thus individuals
are represented as graph. However, the validity of individuals cannot be
guaranteed during evolution, because the main genetic operators such as
crossover and mutation may break the rationality behind the individual
circuit [17].
Gan et al. [17] used graph representation to automatically synthesize pas-
sive analog filters. The circuit topologies can be modified by six types
of mutation operations. Combined with clone selection algorithm, compo-
nents parameters could be synthesized simultaneously [17]. However, only
the mutation operations were employed to modify the individuals. The
operation of crossover was ignored in this work, which may limit to ob-
tain better results. Some researchers also proposed that the node incidence
matrix relates the vertices to the edges of a graph, possessing structural
properties that are not, generally, preserved after subjected to a crossover
operation. This will result in invalid individuals in evolutionary processes
[18]. And as for some graph representation based on adjacency matrix, they
are unable to represent three terminal elements [17].
As for graph structure to represent analog circuits, there might be a number
of no connections among the circuit devices, which potentially incurs waste
of storage resources. Moreover, the graphs are not hierarchical structures.
Therefore, it is difficult to use them as structures that support modular-
ity, where we can easily identify different sub-components of the circuit.
This means that it would be difficult to design a crossover operator that
does not break the circuit based on graph representation. The trees, on
the other hand, are hierarchical structures. Each sub-tree can represent a
different sub-component of the graph. This kind of structure lends itself to
crossover operators that would not produce infeasible circuits, such as the
ones proposed in this paper.
Graph-based CGP has also been applied for evolving analog circuits [42],
where they have applied a modified circuit representation. This modified
circuit representation has their limitations. First, the circuit device values
are evolved based on a look-up table, which is discrete. Moreover, decoding
procedures contain 3 stages, being complex. And also decoding constraints
are designed for Mosfets, not being compatible with two-terminal devices
like resistor and memristor.

In addition, dealing with infeasible circuits is also an important part of
circuit representation. The feasible circuit individuals should follow some rules
based on circuit theory, such as avoiding short-circuit and open-circuit. There

8 Xinming Shi et al.

are several approaches of dealing with circuit feasibility, such as discarding
infeasible circuit individuals [9], accepting infeasible circuit individuals with
penalty [17], and repairing infeasible circuit individuals [43, 14, 10]. Rojec et
al. [9] applied the discarding strategy, where only the individuals that pass
the connection detection can be evaluated, the other individuals left in the
population are discarded. However, this may limit the diversity of the initial
population. Gan et al. [17] applied the penalty strategy, where the individuals
that have no connection with at least one of the accessible nodes are accepted
but penalized. Several studies applied repairing strategies. There are three
types strategies of repairing strategies: (1) deleting the dangling terminals in
the infeasible circuits [43, 44]; (2) connecting the dangling terminals to the
existing circuit nodes [10]; and (3) , inserting the dangling terminals into a
resistor with large value to make the circuit simulation valid [14].

2.3 Automated memristor-based circuit design

Memristor is the fourth basic element in electronic circuit besides resistor,
capacitor and inductor. The ability of memristors to act as thresholded elec-
trically tuneable, multilevel, non-volatile resistive loads, combined with their
inherently scaling-friendly and low power [45] [46] has rendered them a highly
promising candidate for use in future electronics applications. There are two
main problems of designing memristor-based circuits, which are how to tune
into the specific analog memristance by control circuits or signals, and how
to manipulate the state switching behaviors of memristors (from HRS/LRS
to LRS/HRS), respectively. As for the former problem, some researchers have
designed the memristance tuning analog circuits to control the memristance
variation [47]. As for the latter problem, researchers have applied the state
switching behaviors with different rates to implement different functions like
neuronal exponential spike generation [23] and logic circuits [24].

At present, most of memristor-based circuits are designed manually. How-
ever, manual design of memristor-based circuits is a time-consuming task,
because the target functions, size and power consumption need to be taken
into consideration at the same time during the design process. Moreover,
designing multi-memristor combinations with different connections is also a
difficult problem for its complex dynamic electronic characteristics. There-
fore, it is valuable to apply evolutionary approaches to automatically gen-
erate memristor-based circuits. However, there are few studies related to the
memristor-based automated circuit design. Some researchers have applied evo-
lutionary approaches to synthesize memristor-based digital circuits, particu-
larly logic circuits [27] [28]. There are two works focusing on analog circuits
[25, 26]. They are based on the traditional Koza’s tree representation, which
suffer from the problems of that representation mentioned in Section 2.2.

Novel Tree-based Circuit Representation and its Memristive Application 9

3 A novel tree-based circuit representation

Ideally, both of the circuit topology evolution and device value optimization
should be considered in analog circuit design automation, avoiding the need for
expensive human design knowledge. In this section, we propose a novel tree-
based circuit representation for evolving analog circuits that can be used to
evolve both the circuit topology and device values. The details of representing
analog circuits (Section 3.1), structural plausibility check to make sure each
generated circuit tree is corresponding to a valid circuit (Section 3.2), and
the advantages of the proposed tree-based representation (Section 3.3) will be
introduced.

3.1 Circuit representation and netlist transformation

The circuit representation is based on a multi-tree. We define the non-leaf node
as function node and leaf node as terminal node (see right part of Fig. 1).

A function node (Fig. 2(a)) consists of two parts, the first part is a device
type depending on the circuits to be implemented, for example, in a simple
RC filter circuit, the device type of a function node will be R (resistor) or C
(capacitor). The second part is the value tree representing the value of the
circuit device in the form of a binary tree, as shown in the example provided
in Fig. 3. Every value-based device will have its corresponding value tree. For
devices that do not require a value, the value tree is null.

A single terminal node (Fig. 2(b)) refers to the position of one device port
in the circuit netlist, which is represented by an integer number. According
to the number of device ports, each function node has a defined arity (i.e.,
number of child nodes). For example, memristor, a two-port device, can be
represented by an arity-2 node in the circuit representation. Similarly, MOS-
FET, a three-port device, can be represented by an arity-3 node in the circuit
representation. Therefore, the circuit connection of a device in the circuit
netlist can be determined by assigning the position numbers of each port.

In order to enhance the flexibility of circuit representation, the devices with
polarity correspond to different function nodes. For instance, the memristor
and its equivalent memristor with reversed polarity in Fig. 5(a) are represented
by two different function nodes. Similarly, the PMOS with original definition
and its five types of equivalent PMOS with different port definitions are also
represented by fix different function nodes. In this way, the circuits with any-
connection can be implemented.

During the process of converting the tree-based circuit representation into
the circuit netlists, each function node needs to be specified a netlist posi-
tion number. Therefore, a hierarchical relationship between parent node and
child node is defined. The terminals of the parent node are formed by the left
terminals of its child nodes, which allows for the representation to be circuit-
intuitive. Fig. 1 shows an example of how to convert the devices in a tree-
based circuit representation into their corresponding circuit position numbers.

10 Xinming Shi et al.

Fig. 1 A circuit example represented by proposed method.

Fig. 2 Diagram of function node and terminal node.

Fig. 3 An example of value tree.

In Fig. 1, PMOS2 is the parent node of R, NMOS, and Mem. According to
the hierarchical relationship between parent node and child node, Terminal1
of PMOS2 will be 3, which is the same as Terminal1 of R; Terminal2 of
PMOS2 will be 1, which is the same as Terminal1 of NMOS; and Terminal3
of PMOS2 will be 2, which is the same as Terminal1 of Mem. In this way,
all the function nodes will be assigned corresponding terminal nodes, enabling
the construction of a circuit netlist further.

In Koza’s tree-based structure [8], both of the circuit constructing opera-
tions and the circuit devices are function nodes. However, the circuit construct-
ing operations such as series, parallel and flip will use many nodes within a
tree, which may cause some undesirable scenarios where a complex tree with

Novel Tree-based Circuit Representation and its Memristive Application 11

Fig. 4 Diagram of equivalent devices with different terminal definitions. (a) Memristor and
its equivalent device with reversed polarity (b) PMOS and its five types of equivalent device.

plenty of circuit constructing operations and fewer circuit components can only
represent a simple circuit. These undesirable scenarios can be prevented in our
representation, by using different function nodes of a tree to represent circuit
components and use the topology of a tree to represent the circuit connection.
Therefore, we can use a simpler tree to represent the same circuit compared
with Koza’s tree. Fig. 5 gives an example of encoding a given circuit by Koza’s
and our method. We can see that many circuit construction operation nodes
are used by Koza’s method to construct the circuit, such as S (series), F (flip)
and E (end). As for our proposed method, only the circuit devices and their
netlist positions are necessary to construct the circuit, which is therefore more
compact than Koza’s tree.

Besides the above tree structure representing the circuit topology, the value
tree, which is embedded in the related function nodes, is designed to represent
the device value. In the value tree, the arithmetic operators are regarded as
function nodes, and the terminal nodes are float numbers from -1 to 1. The
equation to calculate the value of a tree is:

V aluedevice = A× (10V aluetree), (1)

where A is the fitting parameter that is capable of scaling the obtained value
into the reasonable range of corresponding devices, and V aluetree can be calcu-
lated by the arithmetic operators and float numbers in the value tree. Taking
Fig. 3 as an example and assuming A = 105, the V aluetree of a resistor is
calculated as:

V aluedevice = 105 × (10((−0.2∗0.8)+0.5)+(0.7−(−0.3))). (2)

12 Xinming Shi et al.

Fig. 5 An example of encoding a same circuit by Koza’s and our method.

The value tree allows the approach to optimise by shuffling around arith-
metic operations from a small and tractable set, as opposed to randomly having
to “mutate” values directly. This can protect those “good” arithmetic oper-
ations that are beneficial for the evolution, generating better value gradually
during the evolution.

3.2 Three types of structure check

We want to prevent the bloat problem [48] of tree structure and the invalid
circuits that will cause simulation failure, therefore, three types of structure
check are applied in this work. In order to check if a circuit is feasible, the
usage count of different terminal nodes is an important indicator. Algorithm 1
gives how to count the terminal nodes of a tree, where the post-fix traversing
is applied to each parent node. When the current traversed parent node is
the terminal node, the current parent node will be added to the terminal set
(Ln 2-3 in Algorithm 1). When the current traversed parent node is the func-
tion node, every child nodes of this parent node will be traversed. The value
embedded on the terminal node will be stored in portList. The counts of each
element in portList will be updated to terminal count (Ln 8-9 in Algorithm 1).
Three types of structure check are introduced accordingly.

First, our representation considers that there is a predefined embryo circuit
representing the initial circuit configuration of the to-be evolved circuit. The
embryo circuit design is generally simple, which could be specified depending
on different circuit requirements [11, 13, 14]. The common embryo circuit in-
cludes voltage sources, ground, and load resistor. This part of circuit will not
be evolved, i.e., will remain fixed during the evolutionary process. However,
the way with which the to-be evolved circuit will be connected with the embryo
will be determined by the evolutionary process. Therefore, the external nodes

Novel Tree-based Circuit Representation and its Memristive Application 13

of embryo circuit are defined as necessary nodes. And we define the unneces-
sary nodes from two perspectives, which are node counts and node function.
Specifically, if a node that has been assigned over twice or does not belong
to the embryo circuit will be regarded as unnecessary node. The first step is
that the external terminals of the embryo circuit (necessary nodes) should be
checked if they are all assigned to the tree terminal node by the evolutionary
process. If they are not, the unconnected terminal of embryo circuit will be
isolated, incurring invalid circuits during the evolution. Such infeasible indi-
viduals are repaired by replacing a random unnecessary node by the isolated
necessary node. The step 1 in the Fig. 6 gives an example of the first structure
check. Nodes 0, 1, 2, 3 indicates the embryo nodes that must be assigned in
the tree necessarily. However, as we can see that the node 1 has not existed
in the tree. Therefore, the unnecessary nodes, which are 5, 7, 9, 6, 8, 15, 12, one
of them will be selected randomly and replace it by node 1. In this way, all
the external terminals of the embryo circuit will be connected to the evolved
circuit.

Second, in our circuit representation, the terminal nodes represent the port
position directly. Therefore, we need to make sure the devices are connected
to each other composing a complete circuitry and preventing the problem
of hang terminals, i.e., isolated terminals of devices that are not connected to
the evolved circuit. In particular, for this problem not to happen, one terminal
node should always be assigned at least twice in a single tree. Therefore, we
have to make sure that the random-generated terminal nodes of the tree-based
circuit representation appear in the tree at least twice. The step 2 in the Fig. 6
shows an example of the second structure check works. Nodes 4, 11, 10, 13, 14
are dangling terminals without the connections with other nodes. The last
node 13 will be fixed firstly, where a random node from unnecessary nodes and
embryo nodes will substitute the node 13. Then, the neighboring two nodes
will be set as the same. As shown in Fig. 6, 4, 11, 10, 13, 14 are changed to
4, 4, 10, 10, 8, respectively. By the tree structure check, all the embryo nodes
could be connected into the evolved circuit and there will be no dangling
terminals existed in the evolved circuit.

Algorithm 1 Pseudo code of nodes count function update terminal()

1: def update terminal(parent : Node):
2: if parent.type == ‘terminal’ then
3: terminal set.append(parent)
4: else
5: if parent.type == ‘function’ then
6: for node in parent.childList do
7: update terminal(node, Calparent)
8: for port in node.portList do
9: terminal count[port]+ = 1
10: end for
11: end for
12: end if
13: end if

14 Xinming Shi et al.

Fig. 6 Diagram of tree structure check.

Third, some researchers asserted that the restriction of tree depth or the
number of nodes can ameliorate the bloat problem of tree [9]. The third type
of structure check is to apply a max depth limit for the tree. Therefore, the
depth of a tree will be limited in the range between minimum and maximum.
After generating a new tree, the tree depth will be checked and the part that
exceeds the max depth will be replaced by its left terminal node.

3.3 Advantages of our proposed tree-based representation

The advantages of our proposed tree-based representation are as follows:

• Efficient transformation into circuit netlists
In Koza’s tree representation [19], function nodes contain both of the cir-
cuit construction operations, such as parallel (P) or series (S) operations,
and device types, such as resistor (R) or capacitor (C), which leads to
complex tree structures. Compared with Koza’s tree representation, the
function nodes of our proposed tree-based representation only contain cir-
cuit devices manipulating different ways of connections between function
nodes and terminal nodes (port position) to represent circuits, which leads
to more compact tree structure. We only consider the two-terminal and
three-terminal devices are applied in this work. The same height H for
both of our proposed tree-based representation and Koza’s tree are given

Novel Tree-based Circuit Representation and its Memristive Application 15

for the analysis. When the circuit devices are all the two-terminal devices,

there will be 2H−2
2 devices, and when the circuit devices are all the three-

terminal devices, there will be 3H−3
6 devices. Therefore, the number of

circuit elements that our proposed tree can represent will be in the range

of
(

2H−2
2 , 3H−3

6

)
. However, as the function nodes of Koza’s tree not only

contain the device types but also the circuit construction operations, the
number of the circuit elements that Koza’s tree can represent will be in

the range of
(
λ× 2H−2

2 , λ× 3H−3
6

)
, where λ is a constant indicating the

proportion of the number of device types to all the number of function
nodes. Theoretically, λ could be 1, indicating the function nodes are all
the circuit elements. Actually when λ = 1, there will be only one device
in the circuit generated by Koza’s method, which is unlikely to perform
the desired function of the circuit. Therefore, λ ∈ (0, 1). As a results, our
proposed tree-based representation is more compact, which means it can
represent more devices in a circuit with the same tree height. More compact
tree structures make transformation into netlists more efficient.
In addition, the form of “Device–circuit position” of our proposed repre-
sentation also leads to more efficient transformation into netlists. Specif-
ically, the executable circuit netlist could be transformed from the form
of “Device–circuit position” of our proposed representation directly by
the post-order traversing. However, Koza’s tree-based representation [11]
has tree structures based on the form of “Circuit construction operations–
devices”, which require extra steps to be executed in addition to travers-
ing the whole tree in order to assign the corresponding terminal position
to circuit devices for constructing or updating the circuit netlist. There-
fore, considering the more compact tree structure and the direct form
of “Device–circuit position”, our proposed tree-based representation can
make the transformation into circuit netlist more efficient.

• Support for both of two-terminal and three-terminal devices
As mentioned in Section 3.1, the proposed representation can be used both
with two-port (resistor or capacitor) and three-port (transistor) electrical
devices. Different from topology-restricted methods [12], the proposed cir-
cuit representation can be applied in both of two-port and three-port based
topologies. Therefore, the proposed method has a wider application range
of circuit design.

• Suitable and efficient crossover operators for circuit evolution
Some researchers proposed that it is challenging to design crossover oper-
ators for graph-based circuit representation due to its close-loop structure
[38]. Thus, only the point mutation operations are applied in some work
[17]. Compared with graph-based representations, the proposed circuit rep-
resentation lends itself better to crossover operators, which may help the
evolutionary process to find better circuits. The sub-circuits of a circuit can
be represented by the branches of the tree directly in our proposed repre-
sentation, facilitating the design of suitable crossover operators for circuit
evolution. However, in Koza’s tree representation [11], the sub-circuits of

16 Xinming Shi et al.

the whole circuit are represented not only by their corresponding branches
but also by the function nodes in the parent level of the branches, which
may lead to inefficient crossover operations. The crossover operator adopted
with our representation is explained in Section 4.3.

4 Evolutionary design of analog circuits based on GP

In this section, we will introduce a GP-based circuit evolutionary algorithm
based on the proposed circuit representation. The schematic flow of the algo-
rithm is given in Fig. 7, which explains how the circuit topology (Section 4.3)
and device value (Section 4.4) are evolved.

4.1 Overall flowchart

As shown in Fig. 7, a GP algorithm for evolving analog circuits contains the
following steps:

Step 1: Parameter settings – a series of parameters is set, such as pop-
ulation size N , tournament size T , max iterations M , max depth of tree H,
topology crossover rate Pcross, mutation rate Pmutate and value crossover rate
Pvaluecross.
Step 2: Population initialization – According to the parameters set in
Step 1, the population is initialized. The details of population initialization in
our proposed GP design are introduced in Section 4.2.
Step 3: Fitness evaluation – Each individual is assigned a fitness value by
the proposed fitness function. The specified fitness functions for different tasks
are proposed in Section 5.
Step 4: Elitism strategy – The fourth step is to employ the elitism strategy.
All the individuals in the population are sorted by their fitness value and the
one with the best fitness is reserved.
Step 5: Topology crossover – The next step is topology crossover. Two par-
ents are selected by n-tournament selection to go through topology crossover
with probability Pcross. One child is generated as a result of the crossover op-
eration, and will survive to the next generation. Moreover, the generated child
will replace the parent 2 to execute value crossover operation with parent1.
The detail of the topology crossover is explained in Section 4.3.
Step 6: Value crossover – The next step is value crossover. Two parents
are selected by n-tournament selection. Two function nodes will be selected
from the parents respectively and go through value crossover with probability
Pvaluecross. The resulting child node of the value crossover will be taken as the
corresponding function node of Parent 1, replacing Parent 1’s previous func-
tion node. This crossover operator is introduced specifically in Section 4.4.
Step 7: Mutation – The last step is mutation. One of two mutation op-
erations (delete or add) is randomly selected with equal probability to being

Novel Tree-based Circuit Representation and its Memristive Application 17

executed on the i-th individual. The mutation operators are introduced in
Section 3.1.

Fig. 7 Flowchart of GP algorithm for evolving analog circuits.

4.2 Population initialization

Population initialization defines how the individuals in the initial population
are generated and how to ensure that their structure is valid. Each tree indi-

18 Xinming Shi et al.

vidual is generated by the grow method [49], which means that the distances
between each leaf nodes and the root node are not the same.

The three types of structure check mentioned in Section 3.2 are applied to
prevent invalid circuits.

4.3 Circuit topology evolution

Based on the proposed circuit representation, circuit topology evolution is
implemented by executing the operations of topology crossover and mutation.
Fig. 8 shows an example of topology crossover operation based on the proposed
circuit representation. The crossover operation is executed among non-leaf
nodes. As shown in Fig. 8, two parents are selected among T individuals by
n-tournament strategy. A node of the first parent and a node of the second
parent are randomly selected, e.g., terminal node 2 and node C1 in Fig. 8 and
node C1 of Parent 2 is also randomly selected. Then the sub-tree rooted at the
selected node from the second parent is used to replace the sub-tree rooted
at the selected node from the first parent to generate a child, which will be
added into the population.

Fig. 9 shows an example of mutation operation that explains how the
mutation operation is executed based on proposed circuit representation. Two
types of mutation operations are applied in this work, which are delete and
add, respectively. As for the delete operator, a subtree is randomly selected to
be deleted and the left-most terminal node of this sub-tree is used to replace
it. As for the add operator, a terminal node from the current tree is selected
uniformly at random, and then a randomly generated sub-tree with a feasible
depth is created to replace the selected terminal node. “Feasible depth” here
means that its depth must be between the minimum and maximum depth
parameter of the algorithm. This is implemented by the three types of structure
checks introduced in Section 3.2. The upper part of Fig. 9 shows an example
of delete operation, in which the function node R1 is randomly selected to be
deleted and its left terminal node 3 will substitute the node R1 itself. The
bottom part of Fig. 9 shows an example of add operation, in which a random
terminal node 1 is substituted by a newly generated sub-tree.

4.4 Device value optimization

Besides the circuit topology, the device values of the circuits also need to
be determined automatically for the circuit design. In this work, the device
value is represented by the value trees (proposed in Section 3.1), which are
embedded in the corresponding function nodes. The device value is evolved by
the operation of value crossover alongside the evolution of the circuit topology
as outlined in the flowchart from Fig. 7. The value crossover operation can
only be executed to two function nodes of the same type of device. Here, the
“same type” refers to the same device type of function nodes. For example,

Novel Tree-based Circuit Representation and its Memristive Application 19

Fig. 8 An example of topology crossover
operation.

Fig. 9 An example of mutation operation.

Fig. 10 An example of value crossover
for a resistor.

Table 2 GP-based Circuit Evolu-
tionary Algorithm Parameters

Parameters Value

fitness Depends on cases
P 100

Representation Proposed method
M 800

Pcross 0.8
Pvaluecross 0.2
Pmutate 0.2

Parent selection Tournament(T=20)

the value of a resistor could only go through value crossover with the value of
another node that also represents a resistor. Similarly, a node representing a
capacitor cannot go through value crossover with another node representing a
resistor.

Fig. 10 shows the detail that how the value crossover works. R1 is a ran-
domly selected function node in the i-th individual. R2 is a randomly selected
function node of Parent 1 (which was selected by tournament selection) among
the function nodes of the same type as R1. If no function node of the same
type exists, then another function node could be selected until there is the
one with the same type. Assume that both nodes correspond to a resistor.
Their corresponding value trees go through crossover as follows. A sub-tree
is randomly selected for each of the two value trees. The sub-tree from the
value tree of R2 then replaces the sub-tree from the value tree of R1. In this
example, after the value crossover is applied, the value tree of R1 changes from
169.8KΩ to 70.8KΩ according to Eq. 1.

As mentioned above, evolutionary design of analog circuit contains both of
circuit topology evolution and device value optimization, which allows for the
diversity of evolved circuits and better evolution results. The specific genetic
operators (crossover and mutation) are proposed for the circuit topology evo-

20 Xinming Shi et al.

lution and device value optimization. The sub-circuits of a whole circuit can
be represented by the branches of a tree. Therefore, the crossover operation
executed on the tree stands for the exchanging between sub-circuits. This is
an advantage over graph-based representations, for which suitable crossover
operators are difficult to design. Mutation operations include delete and add,
which can increase and reduce the depth of a tree, allowing for increasing the
diversity of circuit topology.

5 Experimental studies

We implemented our GP in Python. We also use Python to generate netlists.
The implementations will be made available as open source in GitHub 1. The
performance of the evolved circuits is evaluated in simulation using NGSPICE
[50], which is based on Spice3 [51].

Three benchmark circuits are chosen to evaluate the proposed approach,
namely voltage reference circuit, temperature sensor circuit, and Gaussian
function generator, respectively. These benchmark circuits are widely applied
to evaluate the automated circuit design methods [19] [14] [13]. In this section,
we show how our proposed method can be applied to evolve these three bench-
mark circuits and compare the results with existing approaches. The circuit
evaluation of all the compared work are carried on the NGSPICE. In order to
make a fair comparison, all the fitness values are computed by the same fitness
function proposed in [19], and will be explained in Section 5.1. Moreover, the
related parameters are listed in Table 2.

5.1 Experimental setup

5.1.1 Experimental setup for voltage reference circuit

The first experiment is to evolve a voltage reference circuit, which is to produce
a fixed output voltage Vout = 2V on the load resistor when the input voltage
varies within the interval 4V ≤ Vi ≤ 6V and the circuit temperature varies
within the interval 0◦C ≤ T≤ 100◦C. All the candidate circuits are simulated
with DC sweep, where the intervals of the input voltage DC sweep are 0.1V
and the intervals of the temperature sweep are 25◦C. Therefore, there will be
21 discrete values of input voltage and 5 discrete values of temperature, giving
a total of 105 measured points for the DC sweep simulation.

• Embryo Circuit: The embryo circuit of voltage reference circuit is shown in
Fig. 11. There are three accessible nodes, which is one power supply (with
a 1KΩ input resistor), one output load resistor (10KΩ), and ground. The
part marked by the dashed line will be further evolved.

1 https://github.com/embeddedsky/EvoCkt.git

Novel Tree-based Circuit Representation and its Memristive Application 21

Fig. 11 The diagram of embryo circuit for voltage reference circuit. Where Rin = 1KΩ,
load resistor RL = 10KΩ, and the output voltage Vout will be measured to be evaluated.

• Fitness Function: Under the different circuit temperatures Ti, each mea-
sured output voltage point Vouti,j has its corresponding target value V

∗
outi,j ,

where i denotes the i-th circuit temperature, and j denotes the sampled
points of output voltage. The fitness function is defined as the following
equation [19]:

fitness = −
∑
i,j

εij , (3)

where εij is :

εij =

(
Vouti,j − V ∗

outi,j

)2
, if |Vouti,j − V ∗

outi,j | ≥ 0.01V

0, if |Vouti,j − V ∗
outi,j | < 0.01V.

(4)

• Device Set: The devices used for evolving the voltage reference circuit are
the same as those used by the baseline approaches, namely NPN (BC846B),
PNP (BC856B) bipolar junction transistor, and resistors.

• Circuit Quality Measurement: “Hit” is applied in this work to measure the
evolved circuit quality, which has been widely used in previous work [19]
[14] [13]. “Hit” refers to the situation where the absolute difference between
the measured point of output voltage and its target value (error) is less
than or equal to 0.02V . Therefore, the proportion of the number of “Hit”
to the total number of measured points indicates the quality of the evolved
circuit.

5.1.2 Experimental setup for temperature sensor circuit

The second evaluation task is to evolve a temperature sensor circuit, of which
output voltage is varying with the different circuit temperatures. The variation
range of temperature is 0◦C ≤ T≤ 100◦C, and the variation range of output
voltage is 0V ≤ Vi ≤ 6V . All of the candidate circuits will be simulated
with temperature sweep. The sample step of temperature is 5◦C, giving 21
measured points for the sweep simulation.

• Embryo Circuit: The embryo circuit for evolving temperature sensor circuit
is shown in Fig. 12. There are four accessible nodes, where one is the
positive voltage supply (Vin1 with a series resistor R1), one is the negative

22 Xinming Shi et al.

voltage supply (Vin2 with a series resistor R2), one is the output terminal
(load resistor RL), and final one is ground. The part marked by the dashed
line is to-be evolved circuit.

Fig. 12 The diagram of embryo circuit for temperature sensor circuit. Where Vin1 = 15V ,
Vin2 = 5V , R1 = 1KΩ, R2 = 1KΩ, load resistor RL = 10KΩ, and the output voltage Vout

will be measured to be evaluated.

• Fitness Function: At the different circuit temperatures Ti, the output volt-
age Vout is different, which will be measured to be evaluated. The i-th
target value of output voltage is linear-related to the circuit temperature
Ti, which is defined as V ∗

outi = ηTi. η is a constant representing the lin-
ear relation between circuit temperature and output voltage. The fitness
function is defined as following [19]:

fitness = −
∑
i

(Vouti − V ∗
outi)

2
. (5)

• Device Set: The devices applied to evolving temperature sensor circuit are
the same as those used for evolving voltage reference circuit mentioned in
Section 5.1.1.

• Circuit Quality Measurement: Different from voltage reference circuit, the
standard of “Hit” for temperature sensor circuit is that the absolute differ-
ence between the measured output voltage and target (error) is less than
or equal to 0.1V , which is the same as the one has been set in [13]. The
rate of “Hit” will indicate the evolved circuit quality.

5.1.3 Experimental setup for Gaussian function generator

The final task is to evolve a Gaussian function generator, of which output
current is a Gaussian function of input voltage. All of the candidate circuits
will be simulated with DC sweep, where the variation range of input voltage
is 2V ≤ Vin1 ≤ 3V . The target output current is the Gaussian function with a
peak value Imax

out = 80nA in correspondence of Vin1 = 2.5V and sweep step is
10mV , which provides a total of 101 measured points for DC sweep simulation.

• Embryo Circuit: The embryo circuit for evolving Gaussian function gener-
ator is shown in Fig. 13 There are four accessible nodes, where one is the

Novel Tree-based Circuit Representation and its Memristive Application 23

variable voltage supply (Vin1 with series resistor R1), one is the fixed volt-
age supply (Vin2), one is the output terminal (with another voltage supply
VL), and the final one is ground. The part marked by the dashed line will
be further evolved.

Fig. 13 The diagram of embryo circuit for Gaussian function generator. Where 2V ≤
Vin1 ≤ 3V , Vin2 = 5V , R1 = 1Ω, and VL = 2.5V . Iout will be measured to be evaluated.

• Fitness Function: During the circuit evolution, the output current will be
measured to be evaluated. There will be the different target values of output
current corresponding to the different input voltage Vin1. Therefore, the
fitness function is defined as follows [19]:

fitness = −1014 ∗
∑
i

(Iouti − I∗outi)
2
. (6)

where Iouti is the measured current and I∗outi is the corresponding target
value. The value −1014 is a factor to normalize the square of the error, since
the unit of swept current is nano-level, and the square of the differences
between target current and measured current will be much smaller.

• Device Set: MOSFETs are applied to evolving Gaussian function generator
and resistors are also necessary for Gaussian function generator. The type
and model of the devices used in this work are the same as the baseline
approaches [14] and [13].

• Circuit Quality Measurement: As for the Gaussian function generator,
there is also minor change for the standard of “Hit”. The absolute dif-
ference between measured current Iouti and target value I∗outi (error) is
less than or equal to 5nA, a “Hit” will be scored. The circuit quality mea-
surement applied in this work is the same as the one used in [13].

5.2 Experiment results

Based on the experimental setup mentioned above, this section gives the vali-
dation results of the proposed method. The fitness evaluation results for three
benchmark circuits, the benefits of the proposed crossover operators and struc-
ture check, evolved circuits and result comparisons with existing literature will
be introduced in following Section 5.2.1, Section 5.2.2, Section 5.2.3 and Sec-
tion 5.2.4, respectively.

24 Xinming Shi et al.

Table 3 Results for the experiments with different the number of evaluations

Tasks Evaluations BF* MBF±std

2×104 -0.0228 -0.8141±1.0961
Voltage reference 5×104 -0.0081 -0.2594±0.7815

8×104 -0.0070 -0.0319±0.0231
2×104 -0.0093 -0.1941±0.2058

Temperature sensor 5×104 -0.0089 -0.0502±0.0480
8×104 -0.0084 -0.0233±0.0232
2×104 -0.0158 -0.2865±0.2472

Gaussian function 5×104 -0.0074 -0.1104±0.0944
8×104 -0.0063 -0.0883±0.0862

* Fitness is with negative sign, so the best fitness (BF) is to max-
imize the negative fitness value.

5.2.1 Fitness evaluation results

This section gives the fitness evaluation results for each benchmark circuit.
Several metrics are used for a statistical evaluation of the proposed method,
such as BF and MBF, which have been widely used to measure the performance
of evolutionary algorithms [52, 13]. BF defines the best fitness obtained in 20
runs and MBF is the acronym of Mean Best Fitness, which is the average
value of the best fitness obtained in each run. Table 3 shows the results for the
experiments with different number of evaluations. As Table 3 shows, with the
increase of the number of fitness evaluations from 2×104 to 8×104, BF and
MBF are more closing to 0, as expected. The average fitness and error curves
for 20 runs of the experiments of each benchmark circuit will be given in the
appendix.

5.2.2 Validating the benefits of our proposed tree-Based crossover operators
and feasibility checks

As explained in Section 3.3, our tree-based representation lends itself to a
suitable crossover operator. In particular, our topology crossover stands for
exchanging sub-circuits between individuals. This may lead to better fitness
than algorithmic designs that do not make use of crossover, being an ad-
vantage over algorithm designs such as graph-based designs. Therefore, we
evaluate whether the introduction of our crossover operators is helpful to im-
prove fitness. Fig. 14 (a) shows the fitness across generations when applying
and when not applying the crossover operators. We can see that the evolution
with crossover operators leads to better fitness results than the one without
crossover operators, confirming the benefits of our tree-based representation,
which lends itself to the adoption of crossover operators.

In addition, the effectiveness of the structure check proposed in Section 3.2
is verified by executing the experiments without the structure check, where
the infeasible individuals are given a penalty instead of applying the proposed

Novel Tree-based Circuit Representation and its Memristive Application 25

Fig. 14 (a) The average fitness comparisons with crossover and without crossover operation
for different benchmark circuits. (b) Fitness distribution without structure check for different
benchmark circuit.

structure check to revise them. Several approaches in the literature are based
on penalties, such as Gan’s work [17]. As Fig. 14 (b) shows, there are a lot
of infeasible individuals (fitness = −100) in the population, which may limit
the diversity of the population incurring worse fitness.

5.2.3 Evolved circuits

Besides the analysis of the evaluation fitness, the evolved results also play
an important part for verifying the proposed algorithm. Fig. 15 shows the
diagram of measured output of the best evolved voltage reference circuit (red
lines) and its ideal output (green line), and Fig. 16 gives its circuit scheme.
Correspondingly, Figs. 17 to 20 show the output voltage of temperature sensor
and Gaussian generator circuits, as well their circuit schemes, respectively.
According to the Fig. 15 to Fig. 20, we can see that the evolved circuits do
not have infeasible structures and can be simulated successfully. Moreover, the
output signals of evolved circuits follows the target outputs well.

5.2.4 Comparison with existing approaches

To further validate the proposed method, this section compares its results with
those of the previous approaches, which are shown in Table 4. The data shown
in the last column of the Table 4 are the average results for 20 runs of the
proposed method. As mentioned in [14], despite the differences in the number
of runs in other’s work, it is useful to consider side by side the results obtained
with those methods.

As for the results of evolving voltage reference circuit, the proposed method
produces better fitness (0.0233) with less number of evaluations (8 × 104),

26 Xinming Shi et al.

Fig. 15 The diagram of measured output of the best evolved voltage reference circuit (red
lines) and its ideal output (green line).

Fig. 16 The best evolved results of voltage reference circuit.

where the fitness of other work are 6.6 (Koza’s [19]), 2.64 (Mattiusssi’s [14])
and 0.112 (Federico’s [13]), respectively. It is worth to note that the fitness
of proposed work is much better than that of Koza’s [19] although the two
methods are all based on tree structure. This highlights the advantage of our
proposed tree representation. Hit rate of the proposed method is greater than
the work presented by Koza [19] and Federico [13]. Moreover, our evolved
voltage reference circuit has fewer components than all others.

In the case of temperature sensor circuit, the fitness produced by Federico’s
method is slightly better than the one produced by our method, but using
about two orders of magnitude more circuit evaluations. Moreover, the result
temperature sensor circuit evolved by our method contains the least number
of components compared with all other methods.

In the case of Gaussian function generator, the proposed method also can
produce better fitness (0.0319) with less number of evaluations (8 × 104). In
addition, the hit rate of proposed method is higher than other methods. And
also the evolved results of temperature sensor circuit have fewer components,
which is more compact than the left three. And the hit rate of proposed method

Novel Tree-based Circuit Representation and its Memristive Application 27

Fig. 17 The diagram of measured output (red line with circle) of the best evolved temper-
ature sensor circuit and its reference target (green line with triangle).

Fig. 18 The best evolved results of temperature sensor circuit.

is also competitive with other works. The circuit evolved by our proposed
method is more compact than the one proposed by Matthiussi [14].

As it can be seen in the above-mentioned experiment results, the feasibil-
ity of our proposed approach has been verified considering the evolved circuit
performance and the fitness comparisons with previous work. In addition, our
method usually improves the fitness results while using less number of evalu-
ations, achieves a competitive hit rate, and usually uses fewer components to
construct the circuits.

As for the manual design of the benchmark circuits, engineers have pro-
posed different ways to construct these circuits, while the strong experience
and circuit knowledge are highly required. Some classic manual-designed cir-
cuits for benchmark circuits are applied to compare with those of our approach
evolved. Paul et. al [53] proposed a voltage reference circuit, which is composed
of 15 BJTs, 13 resistors and 1 capacitor. Meijer et. al [54] proposed a tem-
perature sensor, which is composed of 8 BJTs, 7 diodes, 2 capacitors and
6 resistors. Popa [55] proposed a Gaussian function generator that consists

28 Xinming Shi et al.

Fig. 19 The diagram of measured output (red line with circle) of the best evolved Gaussian
function generator and its reference target (green line with triangle).

Fig. 20 The best evolved results of Gaussian function generator.

of 30 Mosfets. The comparison with manual-designed circuits is listed in Ta-
ble 5. Compared with these manual designs, our proposed method provides
an automated design tool for designing the analog circuits without the high
requirement of circuit experience and knowledge, and the evolved circuits are
human-competitive, which not only can realize their corresponding functions
but also have compact size.

We have also inferred that why our proposed method outperformed other’s
work is fused by two parts. Firstly, sub-circuits of a whole circuit could be
represented by the branches of a tree directly, therefore, the crossover operation
executed on the tree stands for the exchanging between sub-circuits, which is
beneficial for the evolution process as shown in Section 5.2.2. In Koza’s tree

Novel Tree-based Circuit Representation and its Memristive Application 29

Table 4 Comparisons with previous work for the three benchmark circuits

Parameters Koza’s [19] Matthiussi’s [14] Federico’s [13] Ours

Vol. reference
Absolute value of fitness 6.6 2.64 0.112 0.0233

Evaluations 5.12× 107 5.6× 106 1.86× 106 8×104

Hits/max 89.9/105 98.1/105 70.7/105 94/105
Components 67 70.2 32 15
Tem. sensor

Absolute value of fitness 26.4 1.13 0.065 0.0883
Evaluations 1.6× 107 6.5× 106 6.14× 106 8×104

Hits/max 16/21 20.3/21 19.9/21 19.1/21
Components 54 27.8 33 21

Gau. function
Absolute value of fitness 0.094 0.3 0.036 0.0319

Evaluations 2.3× 107 4.3× 106 6.23× 106 8×104

Hits/max 101/101 98.3/101 85.0/101 99.6/101
Components 14 36 28 30

Table 5 Comparisons with manual-designed circuits

Work Implementation #components

Vol. reference
ours BJT+resistor 15

Manual design[53] BJT+resistor+capacitor 29

Tem. sensor
ours BJT+resistor 21

Manual design [54] BJT+resistor+diode 23

Gau. function
ours MOSFET+resistor 30

Manual design [55] MOSFET 30

[11], the sub-circuits are determined by not only the corresponding branches
but also the other function nodes located in its parent’s node level. As a result,
their crossover operations between the branches may miss the corresponding
function nodes in its parent’s node level, which will be disruptive to evolution
process. Secondly, because of three types of structure check for circuit, each
circuit individual decoded by our tree-based representation could be simulated
and evaluated, preventing the problem of infeasible chromosomes in Federico’s
approach [13]. In Federico’s work [13], the circuit individual that cannot be
simulated could be still generated, though they will are strongly penalized. As
shown in Section 5.2.2, the structural checks adopted by our approach are more
efficient than the use of a penalty. In addition, according to circuit simulation
results, our evolved circuits can ensure the circuit feasibility successfully.

6 Evolving a memristor-based pulse generation circuit

With the rapid development of microelectronics and semiconductor technol-
ogy, Moore’s Law is breaking down. Device size and power consumption have
become critical for developing electronic technologies. Therefore, memristor
research has been widely spread in the field of electronic technology for its
nano-size and energy efficiency [56]. In addition, memristors also have non-

30 Xinming Shi et al.

volatility and resistance variability [46], which can potentially be useful for
many applications such as neuromorphic computing, storage and logic com-
putation.

Most neuromorphic circuits are based on spike or pulse, having similarities
with the neural system [23]. Therefore, it is necessary for researchers to study
the circuit counterpart of pulse generators in order to adopt neuromorphic
computing. For realizing pulse generation circuits in neuromorphic computing,
some researchers relied on external chips to generate pulse [22] [24]. However,
this leads to bulk control or auxiliary circuits. Moreover, applying external
chips as pulse generation circuits also has the problem of inefficient resource
utilization of chips. Therefore, some researchers have made attempts to design
the in-chip pulse generation circuits with traditional analog devices to prevent
using external chips [57] [58]. However, based on the experience of circuit
designers, some of these circuits contain capacitors, which will occupy most
of area of the pulse generation circuits [59]. Besides, the circuits contain large
number of traditional devices such as MOSFETs, which may also lead to large
size and high power consumption.

Therefore, it is desirable to use memristors themselves to construct pulse
generation for neuromorphic computing, due to their nano-size, energy effi-
ciency and dynamic behavior. However, due to the complex dynamic behav-
iors of memristors and comprehensive circuit requirements for neuromorphic
computing, it is time-consuming for designers to design a memristor-based
pulse generation circuit with high quality. Therefore, it is valuable to apply
our proposed method to evolve a memristor-based pulse generation circuit.

In this section, the proposed method will be applied to evolving a memristor-
based pulse generation circuit and compared against similar purpose circuits
designed manually [22] [24] [57] [58] [60].

6.1 Experimental setup

6.1.1 Memristor model

In order to evolve a memristor-based pulse generation circuit, the selection of
memristor models is the first consideration. Since the invention of HP TiO2

memristor [56], some research groups pay their attention to modelling memris-
tor dynamic behaviors into formulas [61] [62]. HP model is a classic memristor
device model introduced by Strukov et. al [56], where a time-domain differ-
ential equation was proposed to describe the physical behavior of linear ion
drift in a memristor [63]. Therefore, in this work, Hewlett-Packard (HP) TiO2

memristor model is adopted for the concept verification in our design and
simulation.

Since the invention of HP TiO2 memristor [56], some research groups pay
their attention to modelling memristor dynamic behaviors into formulas. Volt
ampere characteristics of memristor can be described by the following algebraic

Novel Tree-based Circuit Representation and its Memristive Application 31

equation [56]:

v(t) = [Ron
w(t)

D
+Roff (1−

w(t)

D
)]i(t), (7)

where D denotes the total length of memristor; Ron and Roff represent the
resistances of oxygen vacancy and oxygen-deficient vacancy parts of memris-
tor, respectively; w(t) is the oxygen vacancy part; and dv(t) and i(t) are the
voltage applied on memristor and the current flowing across the memristor,
respectively.

The state variable of memristor changes with the applied external signal,
which can be described by the following differential equation:

dx(t)

dt
=

µv

D2
i(t)f(x(t)), (8)

where µv is the dopant mobility of the material and x(t), which is regarded as
the state variable of memristor, is the proportion of the length of the oxygen
vacancy part w(t) and total length of memristor D. f(x(t)) is a window func-
tion to get over the boundary effect of memristor [64], which can be described
as follows:

f(x(t)) = 1− (2x(t)− 1)2p, (9)

where p ∈ Z+ is a parameter of controlling the non-linear degree of the window
function.

6.1.2 Circuit configuration and evolutionary algorithm

In order to evolve the pulse generation circuit, a proper embryo circuit should
be predefined. As shown in Fig. 21, five circuit components are predefined
in the netlist, which are input source Vin, pull-up voltage Vcc, pull-off volt-
age −Vcc, ground port and the load Rload, respectively. And their position
information (0, 1, 2, 3 ,4) will be added into the terminal node set in advance.

Fig. 21 Schematic diagram and netlist of embryo circuit for evolving memristor-based pulse
generation circuit.

Besides setting up the embryo circuit, the following items also need to be
set up:

32 Xinming Shi et al.

Table 6 Circuit evolutionary algorithm pa-
rameter setting

Parameters Value

Number of generations 1000
Population size 100
Crossover rate 0.6
Mutation rate 0.2

Value crossover rate 0.6
Tree depth 4-7

Tournament size 20

Table 7 Results for evolving memristor-
based pulse generation circuits with dif-
ferent the number of evaluations

#Evaluations BF∗ MBF±std

2×104 -16.84 -37.32±16.54
4×104 -12.45 -31.28±19.02
6×104 -11.46 -22.01±12.23
8×104 -10.69 -15.02±4.54
10×105 -10.47 -12.91±2.10

* Fitness is with negative sign, therefore,
the best fitness (BF) is to maximize the
negative fitness value.

• Input and target output: Similar with the neuronal dynamic behaviors, the
output pulse of pulse generator can be triggered by accumulated potential.
Therefore, the accumulated potential will be set as the input of the evolved
circuit. For simplification, the saw-tooth wave with 2V amplitude and 1ns
period will be used as input in this work. The square pulse is the most
commonly generated by pulse generation circuits, and will thus be set as
the target output, of which the amplitude is 2V and period is 1 ns.

• Set of Devices: To our best knowledge, there is no pulse generation circuit
that is only composed of memristors, even in the logical circuit content
[65]. Memristors and MOSFET are commonly used for constructing pulse
generation circuits [60] [66]. Therefore, in our design, in order to manipu-
late the dynamic switching behaviors of memristor sufficiently, MOSFET,
resistors, and memristors are added into the devices set.

• Simulation Options: Combined with the rate of state switching of memris-
tor, the simulation time is set as 10ns. To trade off the execution time and
sample accuracy, the number of sample points of the target output of the
circuit is set as 1000. We need the variation of output with time; therefore,
the simulation type is the transient analysis.

Besides the circuit configuration, parameters of the algorithms were chosen
based on preliminary experiments, and are listed in Table 6. Besides, the fitness
function of evolving the memristor-based pulse generation circuit is defined as
follows:

fitness = −100 ∗
∑

i |Vouti − V ∗
outi|

N
, (10)

where N is the total number of sampled points, which is set as 1000; Vouti is
the i-th sampled point of output voltage and V ∗

outi is its corresponding target
value.

6.2 Experiment results

The results for the experiments with different number of evaluations are shown
in Table 7. As it shown in Table 7, the BF (Best fitness for one run) and

Novel Tree-based Circuit Representation and its Memristive Application 33

Table 8 Area and Value Range of the Devices

Devices Memristor MOSFET* Resistor

Area 9nm2 0.6075µm2 2025nm2

Value range OFF or ON / 200-200K

* The area of one MOSFET is calculated by Eq. 13.

Table 9 Comparisons of the Evolved Memristive Pulse Generation Circuit and Other Works

Works External chip? Realizing method #Transistors #Capacitors Area Energy/pulse

[22] YES 555 timer 25 2 9mm2 240nJ
[24] YES 555 timer 25 2 9mm2 240nJ
[57] NO Transistor+Capacitor 19 3 18340µm2 4500nJ
[58] NO Transistor+Capacitor 20 1 1705µm2 2.85nJ
[60] NO Transistor+Memristor 16 1 23.24µm2 125nJ
[66] NO Transistor+Memristor 25 0 46.37µm2 -
Ours NO Transistor+Memristor 10 0 6.08µm2 1.53nJ

Fig. 22 Saw-tooth wave input and the cir-
cuit simulation results of the best evolved
circuit. (a) Saw-tooth wave input. (b) Tar-
get voltage

Fig. 23 The best evolved results of voltage
reference circuit.

MBF (Mean Best Fitness) across the 20 runs improve with the increase of the
evaluations. Fig. 24 in the appendix shows the average fitness and error curves
for 20 runs of the experiments.

Fig. 22 shows the input, output and target voltage of the evolved memristor-
based pulse generation circuit. As we can see, under the triangle input voltage,
the evolved circuit can generate a regular pulse, which is highly matched to the
target curve. In order to qualify the output performance of the evolved pulse
generation circuit, mean-square error (MSE), which has been widely applied
for evaluating the differences between the actual and target output of circuit

34 Xinming Shi et al.

[67], is applied for measuring the quality of the circuit output in this work.

MSE =
1

N

N∑
i=1

(V ∗
outi − Vouti)

2
, (11)

where V ∗
outi, Vouti are target voltage value, actual output voltage value for a

given data point i, respectively. N is the number of sampled points of the
output voltage. MSE of the result shown in Fig. 22 is 0.15, which meets the
requirement of the circuit with similar purpose proposed in [22]. Fig. 23 shows
the evolved memristor-based pulse generation circuit, including the evolved
resistance of the resistors contained in the circuit. The circuit contains 8 mem-
ristors, 6 resistors and 10 transistors. The initial state of all the memristors in
the evolved circuit is OFF.

Table 9 gives the comparisons of the evolved circuit and other manual
design circuits with similar purpose. To validate the proposed approach, we
compare the works from different perspectives, which are the usage of external
chip, the ways of realizing, the number of transistors and capacitors, area
and energy. According to Wu et al. [68], the energy dissipation per pulse can
be defined as the differences between the input power consumption PIN and
output power consumption POUT during the duration of one pulse, where PIN

and POUT can be calculated by the following equation:

P =

∫ T

0

|V (t) · I(t)|dt. (12)

Where V (t) and I(t) are the voltage and current at the sampled points.
In addition, the area of the single MOSFET can be calculated by the

following equations:

AREAMOS = W × L× k. (13)

where W and L refer to the width and length of the channel, and k is a factor
showing how much bigger a transistor is than its channel area. As for the area
of one HP memristor, it is set as 9 nm2, as proposed in previous work [69]
[70]. Considering the compatibility of memristor and MOSFET, 45nm CMOS
technology is applied in this work for MOSFET and resistor. The area of one
resistor is set as 2025nm2 (45nm×45nm). The area of one MOSFET is set as
0.6075µm2(450nm × 450nm × 3). Our current estimation of power and area
of circuits may not be accurate and could be improved in future work. Table 8
shows the area and device value range of the devices to be used in evolving
circuits. The initial states (ON or OFF) of different memristors and the specific
value of different resistors will be determined by the proposed algorithm.

As shown in Table 9, some researchers applied an external chip to generate
pulse, 555 timer, which contains 25 transistors and 2 capacitors, leading to
large circuit area and power consumption [22] and [24]. Petit et al. used 19
transistors and 3 capacitors to implement the pulse generation, which occupies
18340µm2 circuit area and generates 4500nJ energy for one pulse [57]. In the
work of Wijekoon et al. [71], 20 transistors and 1 capacitor were applied to

Novel Tree-based Circuit Representation and its Memristive Application 35

design the circuit for generating pulse, of which area is 1705µm2 and energy
dissipated per pulse is 2.85nJ .

Compared with the work of [22] and [24], our evolutionary approach pre-
vents applying the external chips as pulse generator, which solves the problems
of bulk auxiliary circuits and inefficient resource utilization of chips. Com-
pared with the manual design circuits proposed by [57] and [71], the evolved
memristor-based pulse generation circuit is equipped with fewer transistors
(0 capacitor), lower energy consumption, and more compact design, which is
better for neuromorphic computing. The work proposed in [60] and [66] also
applied memristors to implement pulse generation. As for work [60], additional
16 transistors and 1 capacitor were used. As for work [66], 25 MOSFETS are
applied extra besides the memristors, which were more than the ones evolved
by our proposed method (10 transistors and 0 capacitor).

7 Conclusion

In this paper, a novel tree-based circuit representation is proposed. Its advan-
tages over existing work include:

– It is a more compact representation that can be more efficiently mapped
to circuit netlists, thanks to its “Device-circuit position” form of the tree.

– It lends itself to the adoption of crossover operators, whose behaviour cor-
responds to that of exchanging well defined sub-circuits between individu-
als. This is mainly an advantage over graph-based representation [17], but,
together with the other evolutionary operators, it also helps the GP to
achieve better fitness and Hits than existing work, including existing work
based on Koza’s tree representation [11].

– It supports three-port devices, which is an advantage over previous work
with topology-restricted representation [12].

– It prevents the problem of infeasible chromosomes by adopting three types
of structure check, which is an an advantage over the fitness penalized-
based method [13].

Manipulating memristors is very difficult in practice as the components
are frequently unstable on many levels, such as static variation and retention
problem. Our work made the primary attempt to apply an ideal HP memristor
model and MOSFET to construct a memristor-based pulse generation circuit
achieving the corresponding basic function. The feasibility of our evolved cir-
cuits is verified by the circuit simulations, indicating that they are feasible
to be implemented with real physical memristors. For potential future work,
the proposed approach can be adopted for evolving circuits with more realis-
tic memristor models. Moreover, the scalability of our approach could also be
improved further. We will investigate new approaches that can evolve much
larger and more complex circuits. The evolved circuits could also be imple-
mented using real physical hardware, to further validate them.

36 Xinming Shi et al.

Acknowledgements

This work was supported by Guangdong Provincial Key Laboratory (Grant
No. 2020B121201001), the Program for Guangdong Introducing Innovative
and Enterpreneurial Teams (Grant No. 2017ZT07X386), Shenzhen Science and
Technology Program (Grant No. KQTD2016112514355531), and the Research
Institute of Trustworthy Autonomous Systems (RITAS).

Appendix

The average fitness for 20 runs of the experiments (voltage reference circuit, temperature
sensor circuit, Gaussian function generator and memristor-based pulse generation circuit)
are shown in Fig. 24. As we can see from the figure, the fitness curve presents the typical
fitness improvement behaviour of evolutionary algorithms, where the blue shadow indicates
the standard error.

Fig. 24 The average fitness for 20 runs of the experiment on different tasks.

Novel Tree-based Circuit Representation and its Memristive Application 37

References

1. Liu, B., Wang, Y., Yu, Z., Liu, L., Li, M., Wang, Z., Lu, J., Fernández, F.V.: Analog
circuit optimization system based on hybrid evolutionary algorithms. Integration 42(2),
137–148 (2009)

2. Mitea, O., Meissner, M., Hedrich, L., Jores, P.: Automated constraint-driven topology
synthesis for analog circuits. In: Proc. DATE 2001, pp. 1–4 (Grenoble, 2011)

3. Das, A., Vemuri, R.: An automated passive analog circuit synthesis framework using
genetic algorithms. In: Proc. IEEE ISVLSI 2007, pp. 145–152 (Porto Alegre, 2007)

4. Ochotta, E.S., Rutenbar, R.A., Carley, L.R.: Synthesis of high-performance analog cir-
cuits in astrx/oblx. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(3),
273–294 (1996)

5. Yao, X., Higuchi, T.: Promises and challenges of evolvable hardware. IEEE Trans. Sys.,
Man, Cybern., C, Appl. Rev. 29(1), 87–97 (1999)

6. Kruiskamp, W., Leenaerts, D.: Darwin: Cmos opamp synthesis by means of a genetic
algorithm. In: Proc. 32nd DAC 1995, pp. 433–438 (San Francisco, 1995)

7. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–
358 (2001)

8. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A.: Use of automatically defined
functions and architecture-altering operations in automated circuit synthesis with ge-
netic programming. In: Proc. 1st Annual Conference on Genetic Programming, pp.
132–140 (Stanford, 1996)

9. Rojec, Ž., Bűrmen, Á., Fajfar, I.: Analog circuit topology synthesis by means of evolu-
tionary computation. Eng. Appl. Artif. Intel. 80, 48–65 (2019)

10. Lohn, J.D., Colombano, S.P.: A circuit representation technique for automated circuit
design. IEEE Trans. Evol. Comput. 3(3), 205–219 (1999)

11. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated synthesis of
analog electrical circuits by means of genetic programming. IEEE Trans. Evol. Comput.
1(2), 109–128 (1997)

12. Chang, S.J., Hou, H.S., Su, Y.K.: Automated passive filter synthesis using a novel tree
representation and genetic programming. IEEE Trans. Evol. Comput. 10(1), 93–100
(2006)

13. Castejón, F., Carmona, E.J.: Automatic design of analog electronic circuits using gram-
matical evolution. Appl. Soft Comput. 62, 1003–1018 (2018)

14. Mattiussi, C., Floreano, D.: Analog genetic encoding for the evolution of circuits and
networks. IEEE Trans. Evol. Comput. 11(5), 596–607 (2007)

15. Das, A., Vemuri, R.: A graph grammar based approach to automated multi-objective
analog circuit design. In: Proc. DATE 2009, pp. 700–705 (Nice, 2009)

16. He, J., Liu, M., Chen, Y.: A novel real-coded scheme for evolutionary analog circuit
synthesis. In: Proc. ISA 2009, pp. 1–4 (Wuhan, 2009)

17. Gan, Z., Yang, Z., Shang, T., Yu, T., Jiang, M.: Automated synthesis of passive analog
filters using graph representation. Expert Syst. Appl. 37(3), 1887–1898 (2010)

18. Mesquita, A., Salazar, F.A., Canazio, P.P.: Chromosome representation through adja-
cency matrix in evolutionary circuits synthesis. In: Proc. the NASA/DoD Conference
on Evolvable Hardware, pp. 102–109 (2002)

19. Koza, J.R., Andre, D., Keane, M.A., Bennett III, F.H.: Genetic programming III: Dar-
winian invention and problem solving, vol. 3. Morgan Kaufmann (1999)

20. Krestinskaya, O., James, A.P., Chua, L.O.: Neuromemristive circuits for edge comput-
ing: A review. IEEE Trans. Neural Netw. Learn. Syst. (2019)

21. Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E., Rose, G.S.,
Plank, J.S.: A survey of neuromorphic computing and neural networks in hardware.
arXiv preprint arXiv:1705.06963 (2017)

22. Shi, X., Zeng, Z., Yang, L., Huang, Y.: Memristor-based circuit design for neuron with
homeostatic plasticity. IEEE Trans. Emerg. Top. Comput. Intel. 2(5), 359–370 (2018)

23. Zhao, L., Hong, Q., Wang, X.: Novel designs of spiking neuron circuit and stdp learning
circuit based on memristor. Neurocomputing 314, 207–214 (2018)

38 Xinming Shi et al.

24. Wang, Z., Wang, X.: A novel memristor-based circuit implementation of full-function
pavlov associative memory accorded with biological feature. IEEE Trans. Circuits Syst.
I, Reg. Papers 65(7), 2210–2220 (2017)

25. Sinha, A., Kulkarni, M.S., Teuscher, C.: Evolving nanoscale associative memories with
memristors. In: Proc. IEEE NANO 2001, pp. 860–864 (Portland, 2011)

26. Kulkarni, M.S., Teuscher, C.: Memristor-based reservoir computing. In: Proc. IEEE
NANOARCH 2012, pp. 226–232 (Amsterdam, 2012)

27. Gharpinde, R., Thangkhiew, P.L., Datta, K., Sengupta, I.: A scalable in-memory logic
synthesis approach using memristor crossbar. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 26(2), 355–366 (2017)

28. Wang, H.P., Lin, C.C., Wu, C.C., Chen, Y.C., Wang, C.Y.: On synthesizing memristor-
based logic circuits with minimal operational pulses. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 26(12), 2842–2852 (2018)

29. Sorkhabi, S.E., Zhang, L.: Automated topology synthesis of analog and rf integrated
circuits: A survey. Integration 56, 128–138 (2017)

30. Klumperink, E.A., Bruccoleri, F., Nauta, B.: Finding all elementary circuits exploiting
transconductance. IEEE trans. Circuits Syst. II, Analog Digit. Signal Process. 48(11),
1039–1053 (2001)

31. He, J., Yin, J.: Evolutionary design model of passive filter circuit for practical applica-
tion. Genetic Programming and Evolvable Machines 21(4), 571–604 (2020)

32. Grimbleby, J.B.: Automatic analogue network synthesis using genetic algorithms. In:
Proc. GALESIA 1995, pp. 53–58 (Sheffield, 1995)

33. Manazir, A., Raza, K.: Recent developments in cartesian genetic programming and its
variants. ACM Computing Surv. 51(6), 1–29 (2019)

34. Woodward, J.R.: Ga or gp? that is not the question. In: The 2003 Congress on Evolu-
tionary Computation, 2003. CEC’03., vol. 2, pp. 1056–1063. IEEE (2003)

35. Koza, J.R.: Survey of genetic algorithms and genetic programming. In: Wescon confer-
ence record, pp. 589–594. WESTERN PERIODICALS COMPANY (1995)

36. Sripramong, T., Toumazou, C.: The invention of cmos amplifiers using genetic program-
ming and current-flow analysis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
21(11), 1237–1252 (2002)

37. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic programming. Springer
(1998)

38. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic
programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

39. Chen, D., Aoki, T., Homma, N., Terasaki, T., Higuchi, T.: Graph-based evolutionary
design of arithmetic circuits. IEEE Trans. Evol. Comput. 6(1), 86–100 (2002)

40. Aoki, T., Homma, N., Higuchi, T.: Evolutionary synthesis of arithmetic circuit struc-
tures. Artif. Intell. Rev. 20(3-4), 199–232 (2003)

41. Natsui, M., Homma, N., Aoki, T., Higuchi, T.: Topology-oriented design of analog cir-
cuits based on evolutionary graph generation. In: Proc. PPSN, pp. 342–351 (Birming-
ham, 2004)

42. Walker, J.A., Hilder, J.A., Tyrrell, A.M.: Evolving variability-tolerant cmos designs. In:
International Conference on Evolvable Systems, pp. 308–319. Springer (2008)

43. Koza, J.R., et al.: Genetic programming II, vol. 17. MIT press Cambridge (1994)
44. Wang, F., Li, Y., Li, L., Li, K.: Automated analog circuit design using two-layer genetic

programming. Applied mathematics and computation 185(2), 1087–1097 (2007)
45. Torrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S.: Sub-nanosecond

switching of a tantalum oxide memristor. Nanotechnology 22(48), 485203 (2011)
46. Gupta, I., Serb, A., Khiat, A., Zeitler, R., Vassanelli, S., Prodromakis, T.: Real-time en-

coding and compression of neuronal spikes by metal-oxide memristors. Nature Commun.
7(1), 1–9 (2016)

47. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc.
IEEE 100(6), 2061–2070 (2011)

48. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a
review of past and current bloat theories. Genet. Program. Evol. M. 10(2), 141–179
(2009)

Novel Tree-based Circuit Representation and its Memristive Application 39

49. O’Neill, M.: Riccardo poli, william b. langdon, nicholas f. mcphee: a field guide to genetic
programming (2009)

50. Vogt, H., Hendrix, M., Nenzi, P.: Ngspice user’s manual version 31 (describes ngspice
release version) (2019)

51. Nagel, L., Pederson, D.O.: Spice (simulation program with integrated circuit emphasis)
(1973)

52. Eiben, A.E., Smith, J.E., et al.: Introduction to evolutionary computing, vol. 53.
Springer (2003)

53. Brokaw, A.P.: A simple three-terminal ic bandgap reference. IEEE Journal of Solid-
State Circuits 9(6), 388–393 (1974)

54. Meijer, G.C.: Thermal sensors based on transistors. Sensors and Actuators 10(1-2),
103–125 (1986)

55. Popa, C.: Low-voltage improved accuracy gaussian function generator with fourth-order
approximation. Microelectronics Journal 43(8), 515–520 (2012)

56. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453(7191), 80–83 (2008)

57. Bofill-i Petit, A., Murray, A.F.: Synchrony detection and amplification by silicon neurons
with stdp synapses. IEEE Trans. Neural Networ. 15(5), 1296–1304 (2004)

58. Indiveri, G.: A low-power adaptive integrate-and-fire neuron circuit. In: Proc. IEEE
ISCAS 2003., vol. 4, pp. IV–IV (Bangkok, 2003)

59. Cruz-Albrecht, J.M., Yung, M.W., Srinivasa, N.: Energy-efficient neuron, synapse and
stdp integrated circuits. IEEE Trans. Biomed. Circuits Syst. 6(3), 246–256 (2012)

60. Zohora, F.T., Debnath, S., Rashid, A.H.u.: Memristor-cmos hybrid implementation of
leaky integrate and fire neuron model. In: 2019 International Conference on Electrical,
Computer and Communication Engineering (ECCE), pp. 1–5. IEEE (2019)

61. Vourkas, I., Batsos, A., Sirakoulis, G.C.: Spice modeling of nonlinear memristive behav-
ior. Int. J. Circuit Theory Appl., 43(5), 553–565 (2015)

62. Batas, D., Fiedler, H.: A memristor spice implementation and a new approach for mag-
netic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255
(2010)

63. Li, B., Shi, G.: A native spice implementation of memristor models for simulation of neu-
romorphic analog signal processing circuits. ACM Transactions on Design Automation
of Electronic Systems (TODAES) 27(1), 1–24 (2021)

64. Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits.
Eur. J. Phys. 30(4), 661 (2009)

65. Zheng, J., Zeng, Z., Zhu, Y.: Memristor-based nonvolatile synchronous flip-flop cir-
cuits. In: 2017 seventh international conference on information science and technology
(ICIST), pp. 504–508. IEEE (2017)

66. Wang, Z., Wang, X., Lu, Z., Wu, W., Zeng, Z.: The design of memristive circuit for af-
fective multi-associative learning. IEEE transactions on biomedical circuits and systems
14(2), 173–185 (2020)

67. Azghadi, M.R., Linares-Barranco, B., Abbott, D., Leong, P.H.: A hybrid cmos-
memristor neuromorphic synapse. IEEE Trans. Biomed. Circuits Syst. 11(2), 434–445
(2016)

68. Wu, C., Kim, T.W., Choi, H.Y., Strukov, D.B., Yang, J.J.: Flexible three-dimensional
artificial synapse networks with correlated learning and trainable memory capability.
Nature Commun. 8(1), 1–9 (2017)

69. Keshmiri, V.: A study of the memristor models and applications (2014)
70. WILLIAMS, R.: Finding the missing memristor. http://www. casttv. http://wn.

com/Calit2ube (2010)
71. Wijekoon, J.H., Dudek, P.: Compact silicon neuron circuit with spiking and bursting

behaviour. Neural Netw. 21(2-3), 524–534 (2008)

