
Explaining Memristive Reservoir Computing Through Evolving
Feature Attribution

Xinming Shi, Zilu Wang
Southern University of Science and Technology, China

University of Birmingham, UK
xxs972@student.bham.ac.uk

Southern University of Science and Technology, China
wangzl@sustech.edu.cn

Leandro L. Minku∗ and Xin Yao∗
University of Birmingham, UK

l.l.minku@bham.ac.uk
Southern University of Science and Technology, China

University of Birmingham, UK
xiny@sustech.edu.cn

ABSTRACT
Memristive Reservoir Computing (MRC) is a promising computing
architecture for time series tasks, but lacks explainability, leading
to unreliable predictions. To address this issue, we propose an evo-
lutionary framework to explain the time series predictions of MRC
systems. Our proposed approach attributes the feature importance
of the time series via an evolutionary approach to explain the predic-
tions. Our experiments show that our approach successfully identi-
fied the most influential factors, demonstrating the effectiveness of
our design and its superiority in terms of explanation compared to
state-of-the-art methods.
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1 INTRODUCTION
Reservoir computing (RC) is a popular, accurate, and biologically
plausible paradigm in Recurrent Neural Network (RNN) modeling.
Its development is an active research area, with new architectures
improving its performance. RC is not limited to software imple-
mentation, with hardware implementations also being explored to
improve power consumption [3].

Memristor is resistance-changeable, non-volatile, power-efficient
and high-density [7, 8], thus memristor-based RC has attracted a
large number of researchers [5]. For instance, some researchers
followed the straightforward method of implementing RNN-based
reservoirs by using both neuron and synapse circuits, so thatmemristor-
based Echo State Network (ESN) [13] and Liquid State Machine
(LSM) [15] could be realized.
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However, the lack of model explainability in existing Memristive
Reservoir Computing (MRC) systems poses a significant challenge
in properly explaining the decision-making, thereby rendering this
neuromorphic computing architecture unaccountable, untrustwor-
thy, and hard to understand and verify. The “black box” nature of
reservoirs presents a significant challenge for the development and
understanding of these computing systems, particularly in the con-
text of physical reservoirs. This lack of transparency in the internal
workings of the model hinders the deeper understanding of how
the reservoir is able to achieve its learning task, thereby limiting
the potential for further advancement and optimization of it.

In this work, we propose a new evolutionary framework for
explaining the time series predictions of MRC using feature attribu-
tion explanation. Extensive experimental studies have been carried
out to verify that our proposed approach can explain the MRC, and
obtain superior results compared to state-of-the-art approaches in
terms of explainability and circuit performance.

2 PROPOSED FAE FRAMEWORK FOR MRC
2.1 Feature Attribution by Dynamic Mask
We propose a novel approach for dynamically obscuring irrelevant
features within input data by utilizing a dynamicmasking technique
as follows. Amask associatedwith an input sequence z ∈ R𝑇 ∗×𝑛 and
a MRC system 𝑓 : z → y𝑇

∗+1 is a matrixM ∈ [0, 1]𝑇 ∗×𝑛 of the same
dimension as the input sequence.𝑇 ∗ is the length of the time series,
and 𝑛 is the dimension of the time series. Each element𝑚𝑡,𝑖 ∈ M
represents the importance of feature 𝑖 at time 𝑡 for MRC system 𝑓

to produce the prediction y = 𝑓 (x), i.e., the mask coefficients𝑚𝑡,𝑖

represent the saliency of the features. We define a dynamic mask
as a linear perturbation operator Π𝑀 : R𝑇

∗×𝑛 → R𝑇 ∗×𝑛 associated
with a mask M ∈ [0, 1]𝑇 ∗×𝑛 , that acts on the inputs time series:

[ΠM (z)] = 𝜋 (z,𝑚𝑡,𝑖 ; 𝑡, 𝑖). (1)

Taking the advantage of the dynamic nature of the data into ac-
count, a dynamic mask is applied to involve the perturbation with
neighboring history, which can be described as follows:

𝜋 (z,𝑚𝑖,𝑡 , ; 𝑡, 𝑖) =𝑚𝑡,𝑖 · 𝑧𝑡,𝑖 + (1 −𝑚𝑡,𝑖 ) · 𝜇𝑡,𝑖 , (2)

where 𝜋 can be interpreted as a fading operation applied to the
moving average perturbation 𝜇𝑡,𝑖 that is based on neighboring
history:

𝜇𝑡,𝑖 =
1

1 +𝑊

𝑡∑︁
𝑗=𝑡−𝑊

B 𝑗𝑧𝑡,𝑖 , (3)
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Figure 1: Overall framework of explainable MRC by an evo-
lutionary algorithm.

where𝑊 is the window size that controls how the moving window
depends on neighboring times. B is the backshift operator, defined
as B 𝑗 z = z𝑡− 𝑗,𝑖 for 𝑗 ≥ 0 .

2.2 Framework of Explainable MRC Using
Evolutionary Algorithm

To assign a saliency score to each component of the input time
series z, we design an evolutionary framework of explainable MRC
able to evolve M, as shown in Figure 1. The evaluation component
perturbs the input time series z using the maskM via a perturbation
operator Π, generating a perturbed signal x, which is fed into the
MRC system to produce a perturbed prediction 𝑓 (x). The difference
between the original prediction 𝑓 (z) and the perturbed prediction
𝑓 (x) is used by the evolutionary algorithm to adapt the saliency
scores contained in mask𝑀 .

2.2.1 Evolutionary Flowchart. To initialise the population with
𝑛𝑢𝑚_𝑃𝑜𝑝 individuals, each corresponding to a maskM, we adopt a
sparse initialization method that ensures the input feature’s parsi-
mony. Each element𝑚𝑡,𝑖 in the mask is represented by the memris-
tor’s conductance in the memristive dynamic mask, with a valid
range of [0, 1]. Additionally, each individual is associated with a bi-
nary matrix𝑊𝑏𝑜𝑜𝑙 ∈ R𝑇

∗×𝑛 , which is initialised as an Erdös–Rényi
random graph with binary values. The probability of𝑊 𝑡,𝑖

𝑏𝑜𝑜𝑙
= 1 is

given by 𝑝 (𝑊 𝑡,𝑖

𝑏𝑜𝑜𝑙
) = 𝜀 (𝑇 +𝑛)

𝑇 ·𝑛 , where 𝜀 ∈ R+ controls the sparsity
level. If𝑊 𝑡,𝑖

𝑏𝑜𝑜𝑙
= 1, the corresponding element 𝑚𝑡, 𝑖 in the same

position is initialised with a value randomly selected from [0, 1]. If
𝑊 𝑡,𝑖𝑏𝑜𝑜𝑙 = 0, the corresponding element𝑚𝑡, 𝑖 is initialised as zero.
The next step is the evaluation. Specifically, the dynamic maskM is
employed to generate a perturbed version of the input signal. This
perturbed input sequence is then inputted into the MRC system
to produce a perturbed prediction, denoted as 𝑓 (x). The difference
between the original prediction, 𝑓 (z), and the perturbed prediction,
𝑓 (x), is utilized to construct the fitness as follows:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 =

√︃〈
∥ 𝑓 (z) − 𝑓 (x)∥2

〉
. (4)

Elitism is applied by saving the best individual for the next
generation. Next, parents are selected via 𝑛𝑢𝑚_𝑇𝑜𝑢𝑟 tournament
selection and undergomutation and crossover with probabilities 𝑃𝑚
and 𝑃𝑐 (see Sections 2.2.2 and 2.2.3). The best individuals among the
parent and offspring are selected to survive for the next generation,
and this process is repeated for 𝑛𝑢𝑚_𝐺𝑒𝑛 generations.

2.2.2 Crossover. A parent individual could be regarded as the prod-
uct of each element𝑚𝑡,𝑖 ∈ M with the elements in the correspond-
ing positions of matrix𝑊 𝑡,𝑖

𝑏𝑜𝑜𝑙
. Given parents M1 and M2, the mask

value of offspring’s reservoir is determined as follows [1]:

𝑚𝑡,𝑖 =



𝑚1
𝑡,𝑖+𝑚2

𝑡,𝑖

2 if𝑚1
𝑡,𝑖
,𝑚2

𝑡,𝑖
≠ 0 and 𝑟𝑎𝑛𝑑𝑜𝑚 < 0.5,

𝑚1
𝑡,𝑖

if𝑚1
𝑡,𝑖
,𝑚2

𝑡,𝑖
≠ 0 and 0.5 ≤ 𝑟𝑎𝑛𝑑𝑜𝑚 < 0.75,

𝑚2
𝑡,𝑖

if𝑚1
𝑡,𝑖
,𝑚2

𝑡,𝑖
≠ 0 and 0.75 ≤ 𝑟𝑎𝑛𝑑𝑜𝑚 < 1.0,

𝑚1
𝑡,𝑖

if𝑚2
𝑡,𝑖
,= 0 and𝑚1

𝑡,𝑖
≠ 0,

𝑚2
𝑡,𝑖

if𝑚1
𝑡,𝑖
,= 0 and𝑚2

𝑡,𝑖
≠ 0,

0 if𝑚1
𝑡,𝑖
,𝑚2

𝑡,𝑖
= 0.

(5)
A corresponding matrix𝑊𝑏𝑜𝑜𝑙 is created for each offspring based

on which of the offspring elements inM are zero or non-zero.

2.2.3 Mutation. When an individual is to go through mutation
given the probability of mutation 𝑃𝑚 , one of twomutation operators
is chosen to be applied uniformly at random:

Boolean mutation: In terms of the binary value in the Boolean
matrix𝑊𝑏𝑜𝑜𝑙 , each of them has the probability 𝑃𝑚𝑏 to be flipped
to its opposite value. If the current value𝑊 𝑡,𝑖

𝑏𝑜𝑜𝑙
is 1, then it will

mutated as 0 and its corresponding 𝑚𝑡,𝑖 in the mask 𝑀 will be
mutated into 0 also. If the current value𝑊 𝑡,𝑖

𝑏𝑜𝑜𝑙
is 0, then then it

will mutated as 1 and its corresponding𝑚𝑡,𝑖 in the mask𝑀 will be
mutated into a uniformly random value in the range of [0, 1].

Value mutation: For the values in𝑚𝑡,𝑖 corresponding to the
position where𝑊𝑏𝑜𝑜𝑙 is not zero, there will be the probability 𝑃𝑚𝑚

to mutate them to a new value taken uniformly at random within
the allowable range [0, 1].

3 EXPERIMENT
In this section, the experiment will be introduced. The MRC is sim-
ulated in NGSPICE, and the evolutionary approach is implemented
in Python, where the detailed implementation could be found in
github 1. To assess the accuracy of features identified as salient by

1https://github.com/embeddedsky/ExplainableMRC.git

https://github.com/embeddedsky/ExplainableMRC.git
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Figure 2: The circuit setting to the black-box MRC system.

the proposed and existing XAI approaches, we employ the area
under the precision curve (AUP) as a metric, with higher values
indicating superior performance. To evaluate the proportion of
salient features that have been correctly identified, we utilize the
area under the recall curve (AUR), with higher values indicating
better performance. Let Q = (𝑞𝑡,𝑖 ) ∈ [0, 1]𝑇 ∗×𝑛 be a matrix repre-
senting the ground truth significance of the inputs contained in
z ∈ R𝑇 ∗×𝑛 , where 𝑞𝑡,𝑖 = 1 indicates that the feature 𝑧𝑡,𝑖 is deemed
salient and 𝑞𝑡,𝑖 = 0 otherwise. The mask𝑀 = (𝑚𝑡,𝑖 ) ∈ [0, 1]𝑇 ∗×𝑛 is
obtained through our explanation method. We consider that there
is a detection threshold 𝜏 ∈ (0, 1) to determine the salience of the
feature 𝑧𝑡,𝑖 based on the corresponding value of𝑚𝑡,𝑖 . This allows
us to convert the mask into an estimator Q̂(𝜏) = (𝑞𝑡,𝑖 (𝜏)) for Q
through the following equation [2]:

𝑞𝑡,𝑖 =

{
1 if𝑚𝑡,𝑖 ≥ 𝜏

0 else (6)

Let𝐴 denote the sets of truly salient indices and𝐴 the set of indexes
selected by the saliency method, described as follows:

𝐴 = {(𝑡, 𝑖) ∈ [1 : 𝑇 ∗] × [1 : 𝑛] |𝑞𝑡,𝑖 = 1} (7)
𝐴(𝜏) = {(𝑡, 𝑖) ∈ [1 : 𝑇 ∗] × [1 : 𝑛] |𝑞𝑡,𝑖 = 1}. (8)

Based on these, the precision and recall curves are defined as:

𝑃 : (0, 1) → [0, 1] : 𝜏 ↦→ 𝐴 ∩𝐴(𝜏)
𝐴(𝜏)

(9)

𝑅 : (0, 1) → [0, 1] : 𝜏 ↦→ 𝐴 ∩𝐴(𝜏)
𝐴(𝜏) (10)

The AUP and AUR scores are the area under these curves [2]:

𝐴𝑈𝑃 =

∫ 1

0
𝑃 (𝜏)𝑑𝜏 (11)

𝐴𝑈𝑅 =

∫ 1

0
𝑅(𝜏)𝑑𝜏 (12)

The black-box MRC system was evaluated with either the sig-
nals from the memristive dynamic mask or the original signals, as
shown in Figure 2. Our method’s parameter setting was as follows:
𝑛𝑢𝑚_𝐺𝑒𝑛 = 200,𝑛𝑢𝑚_𝑃𝑜𝑝 = 40,𝑛𝑢𝑚_𝑇𝑜𝑢𝑟 = 3, 𝑃𝑚 = 0.8, 𝑃𝑐 = 0.5,
𝑃𝑚𝑚 = 0.8, 𝑃𝑚𝑏 = 0.8. The dynamic mask had a sparsity of 𝜀 = 0.2
and a window size of𝑊 = 8. We set the hyperparameters of exist-
ing XAI approaches to the same values as in their corresponding
papers [6, 9, 12] since we used the same dataset. Table 1 lists the
key hyperparameters and experimental results for all methods due
to space constraints. To verify our proposed method, the following
research questions will be investigated.

3.1 How well can the proposed approach
explain the results compared with existing
state-of-the-art explanation approaches?

We compared our proposed method with several popular XAI ap-
proaches, including FIT [12], IG [10], FO [11], DeepLIFT [9], and
LIME [6], by assessing the importance of each feature at each time
step using these methods. Since the existing XAI benchmark ap-
proaches are not compatible with MRC systems, therefore, in order
ensure a fair comparison, all the benchmarks and our proposed
approach are applied on a compatible and same “black box" model,
which is a RNN that is also based on the recurrent connections. The
setting of black box RNN is the same as work [14].

Experiments on a state dataset with known ground truth feature
saliency are used for the comparisons. A 2-state hidden Markov
model (HMM) was used to generate the data with 𝑇 ∗ = 200 time
steps, which is the same as [2, 6, 12]. 1000 time series data points
were used, out of which 800 were utilized for training and 200 for
testing. Table 1 shows the average experimental results on the state
dataset based on 10 runs. We can see that our method outperformed
the other benchmarks according to AUP, while obtaining the second
best AUR. IG got the highest AUR, which indicates that it identifies
more salient features. However, this was at the cost of a much
lower AUP, showing that this method considers too many non-
salient features as being salient. Even though our method obtained
an AUR that is 0.09 smaller than IG, it obtained an AUP that is
0.18 larger. We also visualize the feature importance identified by
various methods in Figure 3. We can clearly see that our proposed
method Figure 3 (b) is capable of generating a feature importance
map that more accurately reflects the true saliency of the inputs.
Our method particularly stands out due to its ability to effectively
distinguish salient inputs from others through the utilization of
high contrast.

3.2 How well can the proposed approach
explain the predictions of MRC system for
time series prediction and recognition tasks?

Our proposed approach is applied to seven time series tasks, in-
cluding Narma10/20, Santa Fe Laser data, Tree Ring, DJI, ARFIMA
series, and Dynamic Gesture Recognition [7]. Due to the lack of
ground truth salience, AUP and AUR cannot be used. Instead, we
qualitatively analyze salience based on knowledge of the long- or
short-term memory of each time series. Our proposed FAE method
is the only one that can explain MRC systems. Figure 4 visualizes
the dynamic masks for each task, with blue indicating the most
influential feature and yellow indicating less importance. Narma
10 and 20 show input feature influence on recent time steps, while
DJI, ARF, and Tree exhibit influence on more distant steps. Santa
A displays a periodic pattern, while Dynamic Gesture Recognition
shows salience in both distant and recent steps.

Based on the autocorrelation analysis in [14], our datasets can
be categorized as short-term memory (Narma 10, Narma 20, Santa
A) or long-term memory (DJI, ARF, Tree, DGR). Figure 4 confirms
this memory behavior, with Narma 10 relying on the most recent
10 steps and Narma 20 extending to 20 steps. Santa A exhibits
periodic feature importance, aligning with the physical properties
of the laser it represents [4]. DJI, ARF, and Tree display long-term
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Table 1: Parameter setting and results for RQ1.

AUP AUR
IG [10] 0.58 ±0.01 0.77 ± 0.01
FIT [12] 0.43± 0.01 0.53± 0.02

DEEPLIFT [9] 0.64± 0.00 0.41±0.00
LIME [6] 0.46± 0.01 0.52 ± 0.01
FO [11] 0.63 ± 0.01 0.46± 0.02
Ours 0.76 ±0.01 0.68 ± 0.00
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Figure 3: The feature importance masks produced by various
methods. (a) True salient feature; (b) Our proposed method;
(c) FIT; (d) DEEPLIFT; (e) LIME; (f) FO.
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Figure 4: The visualization of the evolved dynamic mask for
different time series tasks.

memory, while DGR shows a mix of long-term and recent time step
influence, indicating distinguishable gestures in recent data.

4 CONCLUSION
In this work, we proposed an evolutionary framework to explain
MRC system. Our approach attributes the feature importance of the
time series through an evolutionary process, resulting in a more
reliable decision-making process for the MRC system. Our experi-
mental results demonstrate the superiority of our approach in terms

of explanation, outperforming state-of-the-art methods. In the fu-
ture, we will further implement the explainable MRC into hardware.
Additionally, we plan to explore the explainability of other memris-
tive computing models, beyond MRC systems, to further advance
our understanding of these systems.
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