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ABSTRACT
Evolutionary analog circuit design is a challenging task due to the
large search space incurred by the circuit topology and device val-
ues. Applying genetic operators on randomly selected genes may
make it difficult to identify which part of sub-circuit is beneficial
to the evolution and even destroy useful sub-circuits, potentially
incurring stagnation of the evolutionary process and bloat on the
evolved circuits. In this paper, we propose a tree-based approach
called Shapley Circuit Tree that incorporates Shapley values for
quantifying the contribution of each function node of the circuit
tree to the performance of the whole tree, to guide the evolution-
ary process. Our experiments on three benchmarks show that the
proposed approach is able to evolve analog circuits with smaller
area while converging faster than existing approaches.
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1 INTRODUCTION
Evolutionary circuit design has been attracting increasing attention,
with analog circuit design being particularly challenging due to
its complex topology and parameter selection [6]. To better evolve
analog circuits in terms of the circuit size and search efficiency, two
key factors are taken into account when designing an evolutionary
method: circuit representation and genetic operators.

The hierarchical feature of tree representation was shown to be
desirable for encoding analog circuits, since it naturally matches
the hierarchy of function modules, e.g., sub-circuits in a circuit
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[10]. Genetic operators such as crossover and mutation are usually
representation-dependent and are commonly applied to random
genes [5]. However, randomly choosing genes to go through genetic
operations may limit the search efficiency by loosing potentially
useful sub-circuits. Moreover, due to the presence of devices with
zero contribution, the bloat issue may occur, increasing the size of
evolved circuit. If it was possible to identify which part of sub-circuit
is beneficial to the evolution, the search efficiency could potentially
be improved by using this knowledge to guide the optimisation
process. Leave-one-out (LOO) [2] is an existing value evaluation
approach that evaluates the contribution of each gene to the whole
chromosome. However, it is not suitable for circuit design, because
it would ignore the dependencies between devices/sub-circuits in
the circuit. Therefore, a more suitable measure to evaluate the
contribution of each gene in the circuit representation is desirable.

In this work, we propose a novel evolutionary framework that
guides the optimisation process based on Shapley values as mea-
sures to identify which parts of the circuit are most beneficial
when using a tree hierarcy circuit representation, leading to better
evolved circuits. Shapley values can be understood as the weighted
marginal contributions of each player to potential teams of players
in cooperative game theory and economics [9] [8]. To the best of
our knowledge, our proposed approach is the first algorithm that
can compute the Shapley values for circuit devices or blocks.

Our key contributions are as follows:

(1) We propose an approach to evaluate the importance of the
nodes in a circuit tree based on Shapley values.

(2) We develop a two-stage evolutionary framework based on
the Shapley tree evaluation to guide the evolution of analog
circuits towards more promising regions of the search space.

(3) We experimentally verify that our proposed approach can
provide both faster evolutionary convergence and more par-
simonious circuits.

2 SHAPLEY VALUE-BASED CIRCUIT
EVOLUTION

2.1 Shapley-based tree and subtree evaluation
Consider the circuit tree representation proposed in our previous
work [10]. For a tree 𝑇 containing a function node set 𝑁𝐹 , in order
to identify the contribution of each function node 𝑛𝑜𝑑𝑒𝑖 ∈ 𝑁𝐹 to
the overall performance 𝑉 (𝑇 ) in a circuit-plausible way, we need
a suitable measurement method. This measurement denoted as
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𝑢 should satisfy the following properties, where 𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (·) is a
function converting a node to its sub-tree:

(1) Zero contribution: In the circuit evolution, one decision to
make is how to handle circuit devices/sub-circuits that have
no contribution. Therefore, the measure 𝑢 should be capable
of identifying these devices/subcircuits. If 𝑛𝑜𝑑𝑒𝑖 ∈ 𝑁𝐹 has
no effect on performance when combined with any other
𝑛𝑜𝑑𝑒 𝑗 , it should be assigned a zero value. More precisely, for
∀𝑛𝑜𝑑𝑒 𝑗 ∈ 𝑁 \𝑛𝑜𝑑𝑒𝑖 , if𝑉 (𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒𝑖 )∪𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒 𝑗 ))
= 𝑉 (𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒 𝑗 )), 𝑢𝑖 = 0;

(2) Symmetry: In the circuit evolution, there are some circuit
devices/subcircuits that generate the same change in the
performance. These could be referred to as symmetric ele-
ments. The measure should be capable of identifying these
devices/subcircuits. If 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒 𝑗 always generate the
same change in the performance when combined with any
other 𝑛𝑜𝑑𝑒𝑘 , then 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒 𝑗 should be assigned the
same value by symmetry. More precisely, for 𝑛𝑜𝑑𝑒𝑖 , 𝑛𝑜𝑑𝑒 𝑗
and ∀𝑛𝑜𝑑𝑒𝑘 ∈ 𝑁𝐹 \

{
𝑛𝑜𝑑𝑒𝑖 , 𝑛𝑜𝑑𝑒 𝑗

}
, if

𝑉 (𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒𝑘 )∪𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒𝑖 )) = 𝑉 (𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒𝑘 )∪
𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑛𝑜𝑑𝑒 𝑗 )), 𝑢𝑖 = 𝑢 𝑗 ;

(3) Additivity: To evaluate the contribution of a subcircuit,
we need to be able to define its contribution as the sum
of the separate contributions of each of its devices. More
precisely, for a function node subset 𝑆 , if the overall fitness
𝑉 (𝑆𝑢𝑏𝑇𝑟𝑒𝑒 (𝑆)) is the sum of each separate performance
𝑉 (𝑛𝑜𝑑𝑒𝑖 ), 𝑛𝑜𝑑𝑒𝑖 ∈ 𝑆 , the value 𝑢𝑆 should be the sum of its
value for each 𝑛𝑜𝑑𝑒𝑖 ∈ 𝑆 :

𝑢𝑆 =

|𝑆 |∑︁
𝑖=1

𝑢𝑛𝑜𝑑𝑒𝑖 . (1)

The Shapley formula shown in Eq. 2 uniquely satisfies all these
properties:

𝑢𝑛𝑜𝑑𝑒𝑖 =

1
|𝑁𝐹 |

∑
𝑆⊆𝑁𝐹 \{𝑖 }

(
𝑉 (𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑆∪𝑛𝑜𝑑𝑒𝑖 ) −𝑉 (𝑆𝑢𝑏𝑇𝑟𝑒𝑒𝑆 )

)
/
(
|𝑁𝐹 | − 1
|𝑆 |

)
(2)

We write 𝑉 (𝑆) to denote the performance of subtree 𝑆 . In our
context,𝑢𝑛𝑜𝑑𝑒𝑖 is the Shapley value representing the contribution of
the subtree rooted by 𝑛𝑜𝑑𝑒𝑖 . The Shapley formula in Eq. 2 uniquely
provides an equitable assignment of values to nodes. Computing
Shapley, however, requires computing all the possible marginal
contributions which is exponentially large in the node number.
Here, we introduce a truncated Monte Carlo Shapley [3] for circum-
venting this problem. First, we sample a random permutation of
function nodes and generate the sub-tree set 𝜋 . Then, we scan the
permutation from the first to the last element and calculate the mar-
ginal contribution of each element. The scan process is truncated
when the fitness𝑉𝑖 of subtree 𝑖 is within a pre-defined performance
tolerance of the overall fitness 𝑉 (𝑇 ) and sets the marginal contri-
bution to zero for the rest of the elements in this permutation. By
repeating this same procedure multiple times until a convergence
criterion is met, the final result gives an unbiased estimate of the

Shapley value. The pseudo code for the truncatedMonte Carlo Shap-
ley value procedure for a circuit tree is given in Algorithm 1. The
convergence criterion is set as the maximum number of iterations.

Algorithm 1 Pseudocode of Truncated Monte Carlo Shapley of a
circuit tree
1: def 𝑠ℎ𝑎𝑝𝑙𝑒𝑦_𝑣𝑎𝑙𝑢𝑒 (𝑇 : 𝑡𝑟𝑒𝑒):
2: 𝑁𝐹 ← function node set of 𝑇
3: Initialize 𝑣𝑖 = 0 for 𝑖 = 1, ..., |𝑁𝐹 |
4: while Convergence criteria not met do do
5: 𝑡 ← 𝑡 + 1
6: 𝜋 : Random permutation of sub-trees with function 𝑛𝑜𝑑𝑒 ∈

𝑁𝐹 as root
7: 𝑉 𝑡

0 ← 𝑉 (∅)
8: for 𝑗 ∈ {1, ..., |𝑁𝐹 |} do
9: if

���𝑉 (𝑇 ) −𝑉 𝑡
𝑗−1

��� < Performance Tolerance then
10: 𝑉 𝑡

𝑗
= 𝑉 𝑡

𝑗−1
11: else
12: 𝑉 𝑡

𝑗
= 𝑉

({
𝜋𝑡1 ∪ ... ∪ 𝜋𝑡

𝑗

})
13: end if
14: 𝑢𝜋𝑡

𝑗
← 𝑡−1

𝑡 𝑢𝜋𝑡−1
𝑗
+ 1

𝑡 (𝑉
𝑡
𝑗
−𝑉 𝑡

𝑗−1)
15: end for
16: end while
17: Return 𝑣𝑖

The calculation process of 𝑉 (𝑠) is described in the following,
where we consider two scenarios: the subtree 𝜋 𝑗 has the overlapped
nodes with the subtrees 𝜋𝑖 ∈ 𝜋, 𝑖 < 𝑗 , which means they are
connected in their corresponding circuit counterpart; (2) the subtree
𝜋 𝑗 has no the overlapped nodes with the subtrees 𝜋𝑖 ∈ 𝜋, 𝑖 <

𝑗 , which means they have no connection in their corresponding
circuit counterpart. Their corresponding evaluation strategies are
proposed as follows:
• The subtree 𝜋 𝑗 has the overlapped nodes with the sub-
trees 𝜋𝑖 ∈ 𝜋, 𝑖 < 𝑗 : For 𝜋 = {𝜋 𝑗 } ( 𝑗 = 1, ..., 𝑛), the perfor-
mance of {𝜋1 ∪ ... ∪ 𝜋 𝑗 } can be calculated by:

𝑉 ({𝜋1 ∪ ... ∪ 𝜋 𝑗 }) = 𝑓 (𝑉𝑜𝑙𝐻𝑞 ( {𝜋1∪...∪𝜋 𝑗 }) ,𝑉𝑜𝑙𝑇𝑎𝑟𝑔𝑒𝑡 )
−𝑓 (𝑉𝑜𝑙𝐻1 ( {𝜋1∪...∪𝜋 𝑗 }) ,𝑉𝑜𝑙𝑇𝑎𝑟𝑔𝑒𝑡 ), 𝑗 = 1, ..., 𝑛,

(3)
where 𝑓 (·) is the fitness function, 𝑉𝑜𝑙 indicates the voltage
of one circuit node. Here we use voltage as the circuit mea-
surement. And 𝑉𝑜𝑙𝑇𝑎𝑟𝑔𝑒𝑡 denotes the target voltage of the
evolutionary circuit design. Based on the circuit tree formula-
tion in our previous work [10],𝐻𝑞 ({𝜋1∪ ...∪𝜋 𝑗 }) represents
the last terminal node of a function node, where 𝑞 is the last
terminal of a function node. We usually apply this node as
the output terminal of subtree 𝜋 𝑗 . 𝐻1 ({𝜋1 ∪ ... ∪ 𝜋 𝑗 }) repre-
sents the first terminal node of a function node. We usually
apply this node as the input terminal of subtree 𝜋 𝑗 . There-
fore, the first term on the right side of equal sign indicates
the differences between the voltage on the input terminal
of 𝜋 and the target voltage, and the second term on the
right side of equal sign indicates the differences between the
voltage on the output terminal of 𝜋 and the target voltage.
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The difference of these two terms represents how much this
sub-circuit decoded by 𝜋 contributes towards achieving the
target voltage.
• The subtree 𝜋 𝑗 has no overlapped nodes with the sub-
trees 𝜋𝑖 ∈ 𝜋, 𝑖 < 𝑗 : For 𝜋 = {𝜋 𝑗 } ( 𝑗 = 1, ..., 𝑛), if the circuit
counterpart of 𝜋 𝑗 is not connected with that of {𝜋1 ∪ ... ∪
𝜋 𝑗−1}, its performance can be calculated by:

𝑉 ({𝜋1 ∪ ... ∪ 𝜋 𝑗 }) =
𝑚𝑎𝑥 (𝑉 ({𝜋1 ∪ ... ∪ 𝜋 𝑗−1}),𝑉 (𝜋 𝑗 )),

𝑗 = 2, ..., 𝑛.
(4)

Combined with Algorithm 1, under the calculation scheme
of the𝑚𝑎𝑥 function in Eq. 4, the subtree 𝜋 𝑗 which cannot
bring performance improvement compared with the subtrees
{𝜋𝑖 , 𝑖 < 𝑗}, will get 𝑉𝑗 − 𝑉𝑗−1 = 0. So, the increment of 𝑢 𝑗
will be zero, which means the contribution of 𝜋 𝑗 is also zero.

2.2 Shapley-based genetic programming
The overall flowchart of evolving analog circuits is shown in Fig. 1.
The first step (parameter settings) sets the population size 𝑁 , tour-
nament size 𝑇 , max iterations 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, shapley iterations
𝑆ℎ𝑎𝑝𝑙𝑒𝑦_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, max depth of tree 𝐷 , topology crossover rate
𝑃𝑐𝑟𝑜𝑠𝑠 , mutation rate 𝑃𝑚𝑢𝑡𝑎𝑡𝑒 and value crossover rate 𝑃𝑣𝑎𝑙𝑢𝑒𝑐𝑟𝑜𝑠𝑠 .
The population is initialized based on the tree hierarchy representa-
tion. Then, the initialized tree individuals are transformed into the
circuit netlist, based on which the circuit is simulated. The fitness
of each individual in the population is then evaluated based on the
results of circuit simulation. According to the elitism strategy, the
individual with the best fitness is saved in 𝑃𝑛𝑒𝑤 [0].

After that, the evolution has two possible stages. If the number of
iterations is within a threshold 𝑆ℎ𝑎𝑝𝑙𝑒𝑦_𝑖𝑡𝑒𝑟 , the first evolutionary
stage is triggered (orange box). To stimulate diversity, this stage
applies genetic operators (topology crossover, value crossover, and
mutation) to random nodes as in previous work [10]. If the number
of iterations is above 𝑆ℎ𝑎𝑝𝑙𝑒𝑦_𝑖𝑡𝑒𝑟 , the second evolutionary stage
is triggered (green box). During this stage, the Shapely-oriented
crossover and mutation operations are applied. As for the Shapely-
oriented crossover, the subtrees rooted by the function node with
the best Shapley value in Parent 2 will be taken the crossover with
the subtree rooted by the function node with the worst Shapley
value in Parent 1, and their resulting child tree will be added to the
next generation. As for the Shapely-oriented mutation operators,
the function node with the worst Shapley value will be taken either
the delete or add mutation operation. Therefore, this stage adopts
Shapley-guided genetic operators to guide the evolutionary process
towards more promising regions of the search space.

Both in the first and second stages, two parents are selected by
n-tournament selection to go through topology crossover [10] with
probability 𝑃𝑐𝑟𝑜𝑠𝑠 . And by the probability 𝑃𝑣𝑎𝑙𝑢𝑒𝑐𝑟𝑜𝑠𝑠 , the individu-
als will taken the value crossover operation [10], where it can only
be executed to two function nodes of the same type of device.

3 EXPERIMENTS
The population size denoted as 𝑝𝑜𝑝𝑆 𝑖𝑧𝑒 setting as 100, 𝑠ℎ𝑎𝑝𝑙𝑒𝑦𝑖𝑡𝑒𝑟
denotes the generations that will enter the stage of Shapley-oriented
circuit evolution, which is set as 250, and the maximum iterations is
set as 500. The rate of mutation, crossover and value crossover are

Start
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Figure 1: Overall flowchart of evolving analog circuits.

set as 0.2, 0.8, 0.2, respectively. 10 runs are applied for the average
results. These parameter values were adjusted experimentally from
preliminary runs.

3.1 Shapley tree-based circuit evolution leads to
faster convergence

The proposed method is evaluated on three benchmarks, namely
voltage reference circuit, temperature sensor circuit, and Gaussian
function generator. These benchmark circuits are widely applied to
evaluate the evolutionary analog circuit design [1, 4, 7].

We perform an ablation study of Shapley circuit tree method on
the stage 2 of the evolution. Specifically, the Shapley circuit tree
method on the stage 2 is ablated, remaining the same as stage 1.
Fig. 2 (top row) shows the fitness comparisons with and without
Shapley on stage 2 (the approaches are equivalent during stage
1). According to the fitness comparisons, after 250 generations of
stage 2, the fitness based on the evolution with Shapley values can
converge to better values faster than the one without Shapley. The
absolute best fitness (|𝐵𝐹 |) and the average best fitness (|𝑀𝐵𝐹 |) for
different tasks with and without Shapley are given in Table 1. As
we can see, within Max_iter.=500, the evolution with Shapley can
obtain better fitness compared with the one without Shapley. Com-
bined with stimulating the diversity during the first stage evolution,
the Shapley-oriented evolution will guide the genetic operations
towards more promising search space, which may accelerate the
process of pursuing the better individual.
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Figure 2: Average fitness results and circuit area comparison
with (red solid line) and without (blue dashed line) Shapley.

Table 1: Comparisonswith previouswork for the three bench-
mark circuits

Parameters [4] [7] Pre-250 Gen.
(Without Shap.)

Post-250 Gen.
(With Shap.)

Reference voltage
Evaluations 5.12 × 107 5.6 × 106 2.5 × 104 5×104

|𝑀𝐵𝐹 | 6.6 2.64 0.112 0.0054
#Components 67 70.2 32 15

Area - - 293.31𝜇2𝑚 240.27𝜇2𝑚
Temp. sensor
Evaluations 1.6 × 107 6.5 × 106 2.5 × 104 5×104

|𝑀𝐵𝐹 | 26.4 1.13 0.065 0.0519
#Components 54 27.8 22 19

Area - - 329.24𝜇2𝑚 307.78𝜇2𝑚
Gau. function
Evaluations 2.3 × 107 4.3 × 106 2.5 × 104 5×104

|𝑀𝐵𝐹 | 0.094 0.3 0.036 0.0147
#Components 14 36 24 25

Area - - 14.98𝜇2𝑚 15.01𝜇2𝑚

Moreover, we also compared with our proposed method with
other previous evolutionary analog circuit design work [4, 7] on
three benchmarks, where the comparisons are shown in Table 1. In
terms of the fitness results and the number of evaluations, our pro-
posed work achieves better fitness with less number of evaluations.

3.2 Shapley tree-based circuit evolution leads to
more compact circuits

Besides the fitness results during the evolution, we are also con-
cerned with the size of the evolved circuits. To analyze if our
Shapley-oriented stage is beneficial to evolve more parsimonious
circuits, we also monitor the circuit area of the individual with the
best fitness in each generation. As we can see from Table 1, the
circuit area of the circuit evolved with the Shapley-oriented stage is
smaller than that of without Shapley-oriented stage. The visualized
curve of the circuit area changed during the evolution is shown
in Fig. 2 (bottom row). We take the voltage reference circuit as an
example. As for the evolved results with Shapley-oriented stage,
during the generations from 250 to 350, the fitness is increasing
while its corresponding circuit area has no obvious increase, and
during the generation from 350 to 500, even if the fitness has not
witnessed an obvious increase, the area still did not increase, which

is different from the blue dash line. For the evolved results with-
out the Shapley-oriented stage, although the fitness is increasing
gradually during the generation from 250 to 500, the corresponding
area is growing dramatically.

The circuit area is also compared with that of the previous evo-
lutionary circuit design work [4] [7], which is shown in Table 1.
Although previous work did not give the circuit area of their evolved
circuits, the number of components they have applied is accessi-
ble. Except for the Gaussian generator task, our work outperforms
the existing works over other two benchmarks in terms of the the
number of components.

4 CONCLUSION
In this work, we proposed a novel evolutionary framework to evolve
analog circuits. The framework introduces a new strategy based
on Shapley values to identify the contribution of each function
node in a circuit-plausible way and guide the evolutionary process
towards more promising regions of the search space. Experiments
based on three benchmarks verified that our proposed framework
outperformed existing evolutionary circuit designs in terms of both
fitness and circuit area.

In the future, the scalability of our approach could be improved
further to evolve much larger and more complex problems. As for
the perspective of memristive applications, more practical factors
of evolving memristive circuits will be considered in the future.
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