
Tree-based Genetic Programming for Evolutionary
Analog Circuit with Approximate Shapley Value

Xinming Shi1[0000−0002−2053−6924], Leandro L. Minku2[0000−0002−2639−0671], and
Xin Yao2,3[0000−0001−8837−4442]

1 School of Electronics, Electrical Engineering and Computer Science, Queen’s University
Belfast, UK

2 School of Computer Science, University of Birmingham, Birmingham, UK
3 School of Data Science, Lingnan University, Hong Kong SAR

x.shi@qub.ac.uk, l.l.minku@bham.ac.uk, xinyao@ln.edu.hk

Abstract. The automated design of analog circuits presents a significant chal-
lenge due to the complexity of circuit topology and parameter selection. Tradi-
tional evolutionary algorithms, such as Genetic Programming (GP), have shown
potential in this domain but are often hindered by inefficient search processes
and the large design space. Furthermore, fitness evaluation in the evolution-
ary design of circuits is often computationally very expensive. In this paper,
we introduce a novel evolutionary framework that leverages approximate Shap-
ley values to guide the optimization process in tree-based genetic programming
for analog circuit design. Our approach addresses the computational challenges
associated with computing Shapley values by introducing a two-stage evolu-
tionary framework that includes a Shapley Value Library (SVlib) and a KNN-
based prediction for efficient estimation of Shapley values. Our proposed work
not only enhances the search efficiency by focusing on the most beneficial sub-
circuits but also leads to more compact and efficient circuit designs. Further-
more, fitness evaluation in the evolutionary design of circuits is often computa-
tionally very expensive experiments, we verify that our framework accelerates
evolutionary convergence and outperforms traditional methods in terms of cir-
cuit optimization.

Keywords: Tree-based genetic programming · Evovlable hardware · Shapley
Value · KNN · Analog circuit design.

1 Introduction

The design of analog circuits is a critical yet challenging task in electronics, where
achieving optimal configurations is essential for performance and efficiency. Tradi-
tional methods often struggle with the complexity of analog circuit design [17], mak-
ing evolutionary algorithms, particularly Genetic Programming (GP) [13], a promising
alternative for automating this process. However, the efficiency of these algorithms is
hampered by the vast search space and the intricate interplay between circuit topology
and parameters.

In evolutionary analog circuit design, genetic operators like crossover and muta-
tion play a pivotal role, yet their efficacy is often constrained by the choice of circuit



2 X. Shi et al.

representation. Typically, these operators are applied to genes selected at random,
a strategy that can inadvertently discard valuable sub-circuits, thereby diminishing
search efficiency. Additionally, the evolution process might be plagued by the bloat
phenomenon [14], where circuits become unnecessarily large due to components that
contribute nothing to the overall functionality.

The crux of enhancing search efficiency lies in the ability to discern which parts of
a sub-circuit are truly instrumental in driving evolutionary progress. Current meth-
ods such as the Leave-One-Out (LOO) approach [7], while useful in other contexts, fall
short in circuit design as they fail to account for the intricate interdependencies among
circuit elements. Consequently, there is a pressing need for a more apt metric that can
accurately assess the significance of each gene within the circuit’s framework, thereby
refining the evolutionary process. In recent years, Shapley values, derived from coop-
erative game theory, have gained prominence as a robust tool for interpreting ma-
chine learning models, especially tree-based models. By attributing quantified contri-
butions to each feature, SHAP values offer a transparent and consistent approach to
model interpretation. Despite their theoretical appeal, the computation of SHAP val-
ues is notoriously resource-intensive, posing a significant challenge for large datasets
or complex models such as deep tree structures [26]. This issue is particularly acute
in evolutionary analog circuit design, where efficiently assessing the contribution of
circuit components is crucial for guiding the evolutionary process toward optimal de-
signs.

Motivated by the computational challenges associated with SHAP values and the
need for a more efficient method in the context of analog circuit design, we propose
an evolutionary framework that leverages approximate Shapley values to guide the
optimization process. Our approach aims to enhance the search efficiency and circuit
quality by retaining and exploiting beneficial sub-circuits, thereby addressing the lim-
itations of traditional genetic operators that often operate randomly and may discard
useful circuit components.

Our key contributions are as follows:

1. ShapleyValue LibraryCreation forCircuit Trees:Weestablish a novelmethod-
ology for the computation of Shapley values in circuit tree individuals, laying the
groundwork for a Shapley Value Library (SVlib). This library represents a com-
prehensive collection of real Shapley values for nodes in circuit trees, providing a
crucial reference for evolutionary operations.

2. Two-Stage Evolutionary Framework with Accelerated Computation: We
introduce a two-stage evolutionary framework that leverages the SVlib. The first
stage involves the creation of this library by calculating the real Shapley values
of nodes in circuit tree individuals. In the second stage, we utilize KNN-based
prediction to rapidly estimate the Shapley values of nodes in new individuals. This
accelerated computation significantly enhances the efficiency of the evolutionary
process.

3. Guided Evolution of Circuit Trees Using Approximated Shapley Values:
Within our evolutionary framework, we employ the predicted Shapley values to
guide the crossover and mutation processes. This approach ensures that evolu-



Tree-based Genetic Programming for Circuit with Approximate Shapley Value 3

tionary operations are informed by a node’s importance, directing the evolution
of analog circuits towards more promising regions of the search space.

4. Experimental Studies to Show Enhanced Evolutionary Efficiency and Cir-
cuit Optimization: Experiments shows that our approach accelerates evolution-
ary convergence and produces more efficient circuit designs. This verifies the ef-
fectiveness of integrating Shapley value computation with tree-based genetic pro-
gramming in circuit evolution.

The rest of this paper is structured as follows. Section 2 introduces the related
work. Section 3 proposes a novel genetic programming approach for evolving ana-
log circuits. Section 4 describes the experimental studies for verifying our proposed
method. The conclusions of our work are presented in Section 5.

2 Related Work

2.1 Preliminary Knowledge of Shapley Value

In Cooperative Game Theory (CGT) [3], a set ofN players are interconnected through
a score function V : 2N → R, where V (S) represents the performance of the model
after setting the elements in N \ S to zero. To distribute the collective reward among
the players equitably, the Shapley value [25] is introduced. It quantifies the contribu-
tion of player i to the coalition by defining the marginal contribution∆V (i, S) as the
additional value generated by including i in S:

∆V (i, S) = V (S ∪ i)− V (S) (1)

The Shapley value is essentially the average of the marginal contributions across all
possible subsets of players, considering the permutations where a particular ordering
of S immediately precedes player i:

ui =
1

|N |
∑

S⊆N\i

∆V (i, S)(|N |−1
|S|

) (2)

This formulation accounts for interactions between players, capturing scenarioswhere
the performance improvement is contingent on the presence or absence of specific
players.

Shapley values have found applications beyond traditional game theory, such as in
feature attributions for machine learning models, where they offer insights consistent
with human intuition [19]. They have also been used to evaluate the importance of
training samples [12, 8] and to assess the contribution of individual elements within
a model, such as neurons in a neural network [28]. These applications underscore the
versatility and relevance of Shapley values in various domains.

2.2 Evolutionary Design of Analog Circuits

In the realm of automated circuit design, evolutionary algorithms have emerged as a
powerful tool, with a plethora of approaches being explored [16, 13, 4, 10]. One notable



4 X. Shi et al.

example is the work of Kruiskamp et al. [15], who leveraged Genetic Algorithms (GA)
to tackle the synthesis of CMOS operational amplifiers (opamps). In their approach,
each individual in the population represented a potential circuit design encoded as a
multi-gene chromosome, which could be decoded into an actual circuit. In a different
way, Grimbleby et al. [9] utilized GA for the automated synthesis of analog networks,
focusing on configuring the circuit structure. However, this approach necessitated nu-
merical optimization to ascertain the values of the circuit components, adding a layer
of complexity to the design process.

Moreover, approaches based on Genetic Programming (GP) have shown the ability
to evolve circuit netlists that encompass both topology and device values, offering
a more integrated solution. While some researchers have used GA to encode circuit
topology and parameter values as strings, this often results in limited circuit diversity
and a cumbersome decoding process [18, 6]. In contrast, GP-based methods enable a
richer variety of circuit designs and a more streamlined decoding process, making
them a promising avenue for advancing the field of analog circuit design.

2.3 Knowledge-driven Evolutionary Operators

In standard Genetic Programming (GP), crossover and mutation operators play a cru-
cial role in generating offspring. However, the random selection of genes for these
evolutionary operations may hinder search efficiency by overlooking potentially valu-
able sub-circuits [11]. Additionally, the presence of devices with zero contribution can
lead to bloat, resulting in larger evolved circuits [11]. To overcome these limitations,
researchers have explored more sophisticated approaches that incorporate semantic
information to enhance the exploration of the search space [5, 21, 24]. For instance,
Beadle et al. [2] utilized semantic information to guide GP crossover in Boolean prob-
lem domains, while Krawiec et al. [15] defined the semantics of an individual as a
vector of outputs for corresponding input fitness cases. Nguyen et al. [23] proposed
a semantic crossover approach for real-value domains. However, these advanced op-
erations are tailored for Boolean or real-value problem domains and are not directly
applicable to analog circuit design, where circuit validity is a crucial consideration
[30].

In the context of evolutionary analog circuit design, it is essential to account for
the dependencies among sub-circuits and assign appropriate importance measures.
Moreover, the concept of equivalent circuits, which refers to circuits with identical
input-output characteristics as the original circuit [1], should be integrated into the
design process. While there has been an attempt to evaluate the importance of sub-
circuits using the LOO strategy [11], this approach neglects the dependencies among
different sub-circuits/devices and their combinations, and it has been limited to digital
circuits. Analogue circuits handle continuous signals, while digital circuits use binary
signals. To the best of our knowledge, there is no existing work in evolutionary analog
circuit design that comprehensively addresses these two perspectives. As discussed in
Section 2.1, the Shapley value offers a promising solution for measuring the impor-
tance of sub-circuits/devices while considering their dependencies.



Tree-based Genetic Programming for Circuit with Approximate Shapley Value 5

3 Our Method

We introduce a novel genetic programming approach for evolving analog circuits, uti-
lizing an approximated Shapley Value for enhanced efficiency.

The algorithm commences with a population of circuit trees, a Shapley Value Li-
brary, and an archive for individual records. It operates in two stages: initially, it cal-
culates real Shapley values for nodes in each circuit tree, updating the library and
archive. Beyond a certain threshold, it employs KNN to predict Shapley values using
historical data, guiding the genetic operations of crossover and mutation. This pro-
cess iterates until a set number of iterations are reached, yielding a refined population
of circuit trees. This method innovatively integrates Shapley values into circuit evo-
lution, streamlining the search process and improving design outcomes. The specific
description of our proposed approach is presented as Algorithm 1.

In this section, we introduce the overarching goal of the algorithm: to efficiently
compute the Shapley values of nodes within circuit tree individuals, which represent
potential solutions to a given circuit design problem. The initialization process is cru-
cial as it sets up the initial population of circuit tree individuals, denoted as Pt Each
individual is a tree-like structure where nodes represent different circuit components,
and the connections between nodes define the circuit’s topology.

Additionally, the Shapley Value Library (SVlib) is established. This library is a vi-
tal component of the algorithm, as it stores the Shapley values of nodes, providing a
measure of their importance or contribution to the overall performance of the circuit.
An archive is also set up to store individuals alongside their computed Shapley values,
creating a historical record that will be instrumental in predictive modeling during
later stages of the algorithm.

3.1 Tree-based Hierarchical Circuit Encoding Method

In evolutionary analog circuit design, it is crucial to consider both the evolution of
circuit topology and the optimization of device values. Our approach represents cir-
cuits using a multi-tree structure, T , where the set of all nodes in the tree is denoted
as MT . The internal nodes, or function nodes, are represented by the set NF . Each
function node consists of two parts: the device type and a value tree. The value tree
is a binary tree that represents the numeric value of the circuit device, with internal
nodes for arithmetic operations and leaf nodes for numeric values. For devices that do
not require a value, the value tree is null.

The leaf nodes, or terminal nodes, are denoted by the set NT . Each terminal node
represents the position of one device port in the circuit netlist. The arity of a function
node, which is the number of child nodes, is determined by the number of device ports.
We defineChk(nodei) as the k-th child of function node nodei. To enhance flexibility
in circuit representation, devices with polarity are represented by different function
nodes, allowing for any-connection circuits.

To transform the tree-based circuit representation into circuit netlists, each func-
tion node is assigned a netlist position number, determined by the left-most terminal
nodes corresponding to all its children. For example, consider a circuit with function
nodes MOS, R, C , and Mem, and terminal nodes {1, 2, 3, 4, 5, 6}. The hierarchy



6 X. Shi et al.

Fig. 1. (a) An example of tree encoding method for a circuit. (b) Equivalent sub-circuit during
Shaley value calculation.

formed by these nodes defines the circuit connection, with the position of each node
given by a function U(H(nodei)), where H(nodei) is defined based on whether the
node is a terminal or function node.

To ensure circuit feasibility, three strategies are applied: avoiding dangling termi-
nals in the embryo circuit, preventing dangling terminals in the evolved circuit, and
restricting tree depth. An embryo circuit is a basic initial circuit that needs to be con-
nected to the evolved circuit to form a complete circuit loop. The evolved circuit must
ensure that each terminal node is used at least twice to prevent dangling terminals.
Finally, a maximum depth limit is imposed on the tree to prevent tree bloat, with any
nodes exceeding this limit replaced by their left terminal node. More details of tree-
based hierarchy circuit encoding and decoding methods could be found in work [27].

3.2 Shapley Value-based Evaluation of Sub-circuits to Guide Genetic
Operators

In order to evaluate the contribution of the function node to the whole circuit tree
representation, several desirable proprieties to evaluate the circuit device should be
taken into the consideration. We list these properties below:

– Zero contribution: One decision to make is how to handle circuit devices/blocks
that have no contribution. We say that a function node i has no contribution if
∀S ⊆ N \ {i} : V (S ∪ {i}) = V (S). This means that it does not change the per-
formance when added to any subtree in of the whole tree. For such null function
node, the valuation should be 0.



Tree-based Genetic Programming for Circuit with Approximate Shapley Value 7

– Symmetric elements: If two nodes contribute exactly the same to any subset of
the rest of function nodes, they will have the same values by definition. Mathe-
matically, if ∀S ⊆ N \ {i} : V (S ∪ {i}) = 0.

– Additivity in Performance Metric: As for a circuit device and circuit evolution
task, there are two or more performance metrics V1, V2, ... for an evolved circuit.
For example V1 measures it’s performance on output accuracy and V2 is its per-
formance on circuit area. A natural way to measure the overall performance of
the model is having a linear combination of such metrics e.g : V = V1 + V2. The
additivity in our context is an optional property, since the circuit performance of
output accuracy is more dominated compared with other metrics due to its critical
impact on reliability and effectiveness in applications.

The Shapley Value-based importance unodei of a function node nodei can be cal-
culated using the following formula, which uniquely satisfies all these properties:

unodei =
1

|NF |
∑

S⊆NF−{i}

V (SubTreeS∪nodei)− V (SubTreeS)(|NF |−1
|S|

) (3)

where V (S) denotes the performance of subtree S. To evaluate the fitness V (s) of
subtrees, we consider two scenarios:

(1) If the subtree πj has overlapping nodes with the subtrees πi ∈ π, i < j, the fitness
is calculated based on the differences between the voltages on the input and output
terminals of the subtree and the target voltage.

(2) If the subtree πj has no overlapping nodes with the subtrees πi ∈ π, i < j, its
fitness is calculated based on the maximum fitness of the previous subtrees or the
fitness of πj itself.

Figure 1 (b) illustrates the example of evaluating the Shapley value within the con-
text of a circuit. To ascertain the contribution of a specific function node, it is tem-
porarily omitted from the circuit and substituted with a distinct node, denoted by
W . This node W signifies a wire connection, effectively short-circuiting the circuit
element whose contribution is under evaluation. By comparing the circuit’s perfor-
mance, before and after this substitution, we can discern the impact of the excluded
node, thereby quantifying its individual contribution to the overall circuit functional-
ity. This process enables a precise calculation of each element’s Shapley value based
on the variance in fitness it induces.

This Shapley Value-based approach provides an equitable assignment of values to
nodes, enabling the evaluation of the contribution of sub-circuits in a circuit-plausible
way. As in [26], crossover will swap the subtree rooted by the function node whose
Shapley value is the highest in the one parent with the one whose Shapley value is the
lowest in the other parent. Mutation will delete or replace the function node with the
lowest Shappley value by a new randomly generated one.

3.3 Two-stage based Evolutionary Framework

In the initial stage, the focus is on populating the Shapley Value Library SVlib with
real Shapley values. For each individual i the population Pt, the algorithm computes



8 X. Shi et al.

the real Shapley value for each node, reflecting its contribution to the individual’s
overall performance. These calculated Shapley values are then used to update SVlib,
ensuring that it contains the most recent and accurate information. Concurrently, the
individual i and its node Shapley values are stored in the archive, providing a rich
dataset for future predictions.

The second stage of the algorithm highlights our novel methodology. As the itera-
tion count t surpasses the predefined threshold T1, the algorithm transitions to using a
KNN (K-Nearest Neighbors) based approach for predicting the Shapley values of nodes
in new individuals.

3.4 KNN-Based Approximation of Shapley Values

Once the iteration count exceeds the predefined threshold T1, our proposed approach
uses KNN to predict the Shapley values of nodes in new individuals, leveraging his-
torical data from the archive for quick estimation of node importance. The predicted
values then guide genetic operations such as crossover and mutation, instead of the
Shappley values themselves. This enables the algorithm to focus on nodes with higher
importance to create offspringwith improved performance, while avoiding the compu-
tational cost of computing the Shapley values. After these operations, the population
Pt is updated with the new, evaluated individuals.

The integration of KNN-based predictions with genetic operations is a key feature,
enabling efficient exploration of the solution space. As the algorithm reaches the max-
imum number of iterations (maxiter), it concludes with a final refined population Pt.
The innovative use of KNN for predicting Shapley values, combined with strategic ge-
netic operations, makes the algorithm a powerful tool for circuit design optimization.

The algorithm effectively integrates the concept of Shapley values into the evolu-
tionary process of circuit trees, utilizing a two-stage approach to enhance efficiency.
The first stage is dedicated to building a comprehensive Shapley Value Library, while
the second stage accelerates the computation by predicting Shapley values using KNN,
thereby guiding the evolutionary operations more effectively.

4 Experimental Studies

The main loop of our evolutionary framework is developed in Python, while the per-
formance evaluation of the circuits is conducted through simulations in NGSPICE [29],
a tool derived from Spice3 [22].

The experimental study encompasses three distinct types of circuit evolution tasks,
focusing on the evaluation of the proposed method across three circuits: a voltage ref-
erence circuit, a temperature sensor circuit, and a Gaussian function generator. These
circuits are commonly utilized in assessing the efficacy of evolutionary analog circuit
design methods and are referenced extensively in the literature [14, 20, 4], demonstrat-
ing their relevance and applicability to this field. Parameter setting is given in Table 1.

Reference Voltage Circuit In this task, the objective is to design and refine a ref-
erence voltage circuit that consistently delivers a fixed output of 2V . To assess the



Tree-based Genetic Programming for Circuit with Approximate Shapley Value 9

Algorithm 1 Shapley Value Approximation Using KNN for Circuit Tree Evolution
1: Input: Circuit tree individuals, target
2: Output: Individuals after crossover and mutation based on importance
3: Initialize population Pt, Shapley Value Library SVlib, and archive Archive
4: while t < maxiter do ▷ Iterate until max number of iterations is reached
5: if t < T1 then ▷ First Stage: Shapley Value Library Creation
6: for each individual i in Pt do
7: Calculate real Shapley value of each node in i
8: Update SVlib with real Shapley values
9: Store individual i and its node Shapley values in Archive
10: end for
11: else ▷ Second Stage: Accelerated Computation with KNN Prediction
12: Use KNN to predict Shapley values of nodes in new individuals using Archive
13: for each new individual i in Pt do
14: Predict importance of nodes in i using KNN with Archive
15: Perform crossover and mutation on i guided by predicted importance
16: end for
17: Evaluate new individuals and integrate into the population
18: end if
19: end while
20: Return Pt

Table 1. Parameter setting

Algorithm Parameter Value
Population Size (Pop_Size) 100
Tournament Size (Tou_Size) 20
Maximum Iterations (Max_Iteration) 500
Crossover Probability (Pcross) 0.8
Mutation Probability (Pmutation) 0.2
K Value (K) 10
Threshold (T1) 50
Crossover Value Probability (Pvaluecross) 0.2

circuit’s performance across a range of temperatures, the output voltage is measured
at various points for each temperature condition. These measurements are compared
against predetermined ideal values to evaluate circuit accuracy. The effectiveness of a
given design is quantified by a fitness function, which is a summation of the squared
deviations between the measured and target voltages, adjusted for a margin of error.
Only deviations exceeding a threshold of 0.01V are considered, reflecting the precision
goal of the circuit design [14]. The embryo circuit setting of reference voltage circuit
is presented in our previous work [27]. The fitness function is given as the following
equation [14]:

fitness = −
∑
i,j

εij , (4)



10 X. Shi et al.

where εij is :

εij =


(
Vouti,j − V ∗

outi,j

)2
, if |Vouti,j − V ∗

outi,j | ≥ 0.01V

0, if |Vouti,j − V ∗
outi,j | < 0.01V.

(5)

At various circuit temperatures Ti, each measured output voltage point Vouti,j corre-
sponds to a target value V ∗

outi,j . i represents the i-th circuit temperature, and j repre-
sents the sampled output voltage points.

Temperature Sensing Circuit The challenge involves developing a circuit capa-
ble of sensing temperature changes, as reflected by variations in its output voltage.
The output voltage linearly correlates with temperature. The linear relationship is
characterized by a constant, ensuring output voltage directly corresponds to ambient
temperature changes. The circuit’s performance is evaluated through a fitness func-
tion, which aggregates the squared differences between actual and expected output
voltages. This approach allows for precise calibration of the circuit’s temperature sen-
sitivity, leveraging genetic algorithms to fine-tune its response characteristics. The
embryo circuit setting of temperature sensor is presented in our previous work [27].
The fitness function is defined as following [14]:

fitness = −
∑
i

(Vouti − V ∗
outi)

2
. (6)

At various circuit temperatures Ti, the output voltage Vout changes and will be mea-
sured for evaluation. The target value of the output voltage for the i-th temperature,
V ∗
outi, is linearly related to Ti and is defined as V ∗

outi = ηTi. Here, η is a constant
representing the linear relationship between the circuit temperature and the output
voltage.

Gaussian Function Generator The task focuses on the creation of a Gaussian func-
tion generator, where the aim is to produce an output current that fits a Gaussian
distribution in relation to the input voltage. The task is to measure the output cur-
rent for various input voltages and align these measurements with their theoretical
Gaussian counterparts. The alignment is measured using a fitness function with a key
normalization factor. This factor adjusts for the scale of the current measurements,
ensuring the squared differences between expected and actual currents are accurately
compared. This process embodies the application of evolutionary algorithms to the
intricate task of circuit function generation, following the methodologies proposed by
[14]. The embryo circuit setting of Gaussian function generator is given in our previ-
ous work [27]. The fitness function is defined as follows [14]:

fitness = −1014 ∗
∑
i

(Iouti − I∗outi)
2
. (7)

During circuit evolution, the output current is measured for evaluation. Different input
voltages Vin1 will correspond to different target values of the output current.



Tree-based Genetic Programming for Circuit with Approximate Shapley Value 11

Table 2. Average fitness under ablation experiments

Tasks Cases |BF| |MBF|

Voltage reference circuit
Random 0.0051 0.0261
TMC SV 0.0027 0.0183
KNN SV 0.0012 0.0142

Temperature sensor
Random 0.0189 0.3981
TMC SV 0.0096 0.1194
KNN SV 0.0087 0.1048

Gaussian function generator
Random 0.0874 0.4046
TMC SV 0.0382 0.1988
KNN SV 0.0396 0.1208

4.1 Ablation Study

Table 4.1 gives the average fitness under ablation experiments, focusing on the per-
formance of three approaches (Random, TMC SV, and KNN SV ) across three different
tasks: a voltage reference circuit, a temperature sensor, and a Gaussian function gener-
ator. This approach helps identify which parts are essential and how each component
influences the overall effectiveness. Random approach refers to the approach where
random nodes are selected for crossover and mutation. The Random method serves
as a baseline, wherein mutation rates, crossover points, and selection mechanisms are
randomized, allowing for straightforward comparisonswithmore sophisticated strate-
gies. TMC SV refers to the approach where the Truncated Monte Carlo Shapley Value
(TMC SV ) is applied. This approach simplifies the computational cost of calculating
the exact Shapley values by using a truncated Monte-Carlo technique [26], maintain-
ing a balance between computational cost and accuracy. The parameter setting is the
same as the work in [26]. KNN SV refers to our proposed approach where the KNN
model is applied to the predict the Shapley Value. Each task evaluates the best fitness
(|BF|) and mean best fitness (|MBF|) achieved by each method. In our study, we employ
three distinct methods for guiding genetic operations.

For the voltage reference circuit, the KNN SV method outperforms the others,
showing the lowest best fitness and mean fitness, indicating a superior capability to
optimize circuit parameters effectively. In the temperature sensor task, KNN SV again
demonstrates its efficacy with the lowest best fitness and a competitive mean fitness,
suggesting its robustness and reliability in sensor optimization. Lastly, for the Gaus-
sian function generator, whileKNN SV does not achieve the lowest best fitness, it offers
a significantly lower mean fitness compared to TMC SV, highlighting its consistency
and effectiveness in generating functions with high fidelity.

Overall, the KNN SV method consistently shows promising results across all tasks,
proving its potential as a highly effective tool in these specific applications. Its abil-
ity to consistently achieve low best and mean fitness values suggests it might be the
preferred method for similar tasks, though specific requirements and goals of each
experiment should guide the final methodology choice.



12 X. Shi et al.

Table 3. Comparisons with previous works

Parameters [14] [20] [27] Ours

Reference voltage
Evaluations 5.12× 107 5.6× 106 5× 104 5×104

|MBF | 6.6 2.64 0.0261 0.0142
#Components 67 70.2 32 15

Temperature sensor
Evaluations 1.6× 107 6.5× 106 5× 104 5×104

|MBF | 26.4 1.13 0.3981 0.1048
#Components 54 27.8 22 19

Gaussian function
Evaluations 2.3× 107 4.3× 106 5× 104 5×104

|MBF | 0.094 0.3 0.4046 0.1208
#Components 14 36 24 25

P-value [14] VS ours: 0.0404; [20] VS ours:0.0404; [27] VS ours: 0.0452

4.2 Comparisons with Previous Work

Table 3 presents a comprehensive comparison between our work and three previous
studies, applied to the design of reference voltage circuits, temperature sensors, and
Gaussian function generators. A key focus is on the number of evaluations, mean best
fitness (|MBF|), and the number of components utilized in each approach.

In the reference voltage task, our proposed approach alongside Shi [27] drastically
reduces the number of evaluations to just 50,000, a significant decrease from the mil-
lions required in earlier works by Koza [14] andMattiussi [20].Moreover, our proposed
approach achieves the lowest mean best fitness at 0.0142 and uses the fewest compo-
nents (15), indicating a substantial improvement in circuit optimization efficiency and
precision.

Similarly, for the temperature sensor application, both the recent study and Shi
[27] have again significantly cut down the evaluation count. Our work excels with a
mean best fitness of 0.1048, which is the best among all compared studies, and achieves
this with fewer components (19), demonstrating an optimized and efficient design.

The Gaussian function generator results mirror these improvements, with all re-
cent studies requiring fewer evaluations. Although our proposed approach does not
achieve the lowest historical mean best fitness, it performs significantly better than
Shi [27] with a fitness of 0.1208 and uses a moderate number of components (25), bal-
ancing complexity and performance efficiency.

Statistically significant improvements in the currentmethods over previous studies
are confirmed by P-values of 0.0404 and 0.0452. These values indicate a significant
enhancement in performance across all metrics, validating the effectiveness of the new
approaches.

5 Conclusion

In this paper, we focus on the significant challenges of automated analog circuit design
due to the complexity of circuit topology and parameter selection. While traditional



Tree-based Genetic Programming for Circuit with Approximate Shapley Value 13

evolutionary algorithms like Genetic Programming (GP) have shown potential in this
field, they often struggle with inefficient search processes and the vast design space.
To address these issues, we introduce a novel evolutionary framework that uses ap-
proximate Shapley values to guide the optimization process in tree-based genetic pro-
gramming for analog circuit design. Our approach reduces the computational costs of
Shapley values by implementing a two-stage evolutionary framework. This includes
the creation of a Shapley Value Library (SVlib) and a KNN-based prediction phase
for quickly estimating Shapley values. Our approach improves search efficiency by
focusing on the most beneficial sub-circuits, leading to more compact and efficient
circuit designs. Through experimental verification, we demonstrate that our approach
accelerates evolutionary convergence and surpasses traditional methods of evolving
circuits. Our future includes the scalability of our approach to larger analog circuits.

References

1. Allen, P.E., Holberg, D.R.: CMOS analog circuit design. Elsevier (2011)
2. Beadle, L., Johnson, C.G.: Semantically driven crossover in genetic programming. In: 2008

IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational In-
telligence). pp. 111–116. IEEE (2008)

3. Branzei, R., Dimitrov, D., Tijs, S.: Models in cooperative game theory, vol. 556. Springer
Science & Business Media (2008)

4. Castejón, F., Carmona, E.J.: Automatic design of analog electronic circuits using grammati-
cal evolution. Appl. Soft Comput. 62, 1003–1018 (2018)

5. Ffrancon, R., Schoenauer, M.: Memetic semantic genetic programming. In: Proceedings of
the 2015 annual conference on genetic and evolutionary computation. pp. 1023–1030 (2015)

6. Gan, Z., Yang, Z., Shang, T., Yu, T., Jiang, M.: Automated synthesis of passive analog filters
using graph representation. Expert Syst. Appl. 37(3), 1887–1898 (2010)

7. Gelfand, A.E., Dey, D.K., Chang, H.: Model determination using predictive distributionswith
implementation via sampling-basedmethods. Tech. rep., Stanford Univ CADept of Statistics
(1992)

8. Ghorbani, A., Zou, J.: Data shapley: Equitable valuation of data for machine learning. In:
International Conference on Machine Learning. pp. 2242–2251. PMLR (2019)

9. Grimbleby, J.B.: Automatic analogue network synthesis using genetic algorithms. In: Proc.
GALESIA 1995. pp. 53–58 (Sheffield, 1995)

10. He, J., Yin, J.: Evolutionary design model of passive filter circuit for practical application.
Genetic Programming and Evolvable Machines 21(4), 571–604 (2020)

11. Hodan, D., Mrazek, V., Vasicek, Z.: Semantically-oriented mutation operator in cartesian
genetic programming for evolutionary circuit design. In: Proceedings of the 2020 Genetic
and Evolutionary Computation Conference. pp. 940–948 (2020)

12. Jia, R., Dao, D., Wang, B., Hubis, F.A., Hynes, N., Gürel, N.M., Li, B., Zhang, C., Song, D.,
Spanos, C.J.: Towards efficient data valuation based on the shapley value. In: The 22nd In-
ternational Conference on Artificial Intelligence and Statistics. pp. 1167–1176. PMLR (2019)

13. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A.: Use of automatically defined functions
and architecture-altering operations in automated circuit synthesis with genetic program-
ming. In: Proc. 1st Annual Conference on Genetic Programming. pp. 132–140 (Stanford,
1996)

14. Koza, J.R., Andre, D., Keane, M.A., Bennett III, F.H.: Genetic programming III: Darwinian
invention and problem solving, vol. 3. Morgan Kaufmann (1999)



14 X. Shi et al.

15. Krawiec, K.,Wieloch, B.: Functionalmodularity for genetic programming. In: Proceedings of
the 11th Annual conference on Genetic and evolutionary computation. pp. 995–1002 (2009)

16. Kruiskamp, W., Leenaerts, D.: Darwin: Cmos opamp synthesis by means of a genetic algo-
rithm. In: Proc. 32nd DAC 1995. pp. 433–438 (San Francisco, 1995)

17. Liu, B., Wang, Y., Yu, Z., Liu, L., Li, M., Wang, Z., Lu, J., Fernández, F.V.: Analog circuit
optimization system based on hybrid evolutionary algorithms. Integration 42(2), 137–148
(2009)

18. Lohn, J.D., Colombano, S.P.: A circuit representation technique for automated circuit design.
IEEE Trans. Evol. Comput. 3(3), 205–219 (1999)

19. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceed-
ings of the 31st international conference on neural information processing systems. pp.
4768–4777 (2017)

20. Mattiussi, C., Floreano, D.: Analog genetic encoding for the evolution of circuits and net-
works. IEEE Trans. Evol. Comput. 11(5), 596–607 (2007)

21. Moraglio, A., Krawiec, K.: Geometric semantic genetic programming for recursive boolean
programs. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp.
993–1000 (2017)

22. Nagel, L., Pederson, D.O.: Spice (simulation program with integrated circuit emphasis)
(1973)

23. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic program-
ming: the case for real-valued function regression. In: Genetic Programming: 12th Euro-
pean Conference, EuroGP 2009 Tübingen, Germany, April 15-17, 2009 Proceedings 12. pp.
292–302. Springer (2009)

24. Pawlak, T.P., Krawiec, K.: Competent geometric semantic genetic programming for sym-
bolic regression and boolean function synthesis. Evolutionary computation 26(2), 177–212
(2018)

25. Roth, A.E.: The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University
Press (1988)

26. Shi, X., Gao, J., Minku, L.L., Yao, X.: Evolving parsimonious circuits through shapley value-
based genetic programming. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion. pp. 602–605 (2022)

27. Shi, X., Minku, L.L., Yao, X.: A novel tree-based representation for evolving analog circuits
and its application to memristor-based pulse generation circuit. Genetic Programming and
Evolvable Machines 23(4), 453–493 (2022)

28. Stier, J., Gianini, G., Granitzer, M., Ziegler, K.: Analysing neural network topologies: a game
theoretic approach. Procedia Computer Science 126, 234–243 (2018)

29. Vogt, H., Hendrix, M., Nenzi, P.: Ngspice user’s manual version 31 (describes ngspice release
version) (2019)

30. Zhao, Z., Zhang, L.: An automated topology synthesis framework for analog integrated
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
39(12), 4325–4337 (2020)


