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Abstract—Software project scheduling in dynamic and uncertain environments is of significant importance to real-
world software development. Yet most studies schedule software projects by considering static and deterministic sce-
narios only, which may cause performance deterioration or even infeasibility when facing disruptions. In order to cap-
ture more dynamic features of software project scheduling than the previous work, this paper formulates the project 
scheduling problem by considering uncertainties and dynamic events that often occur during software project devel-
opment, and constructs a mathematical model for the resulting Multi-objective Dynamic Project Scheduling Problem 
(MODPSP), where the four objectives of project cost, duration, robustness and stability are considered simultaneously 
under a variety of practical constraints. In order to solve MODPSP appropriately, a multi-objective evolutionary algo-
rithm (MOEA) based proactive-rescheduling method is proposed, which generates a robust schedule predictively and 
adapts the previous schedule in response to critical dynamic events during the project execution. Extensive experi-
mental results on 21 problem instances, including three instances derived from real-world software projects, show that 
our novel method is very effective. By introducing the robustness and stability objectives, and incorporating the dy-
namic optimization strategies specifically designed for MODPSP, our proactive-rescheduling method achieves a very 
good overall performance in a dynamic environment. 

 

Index Terms—Schedule and organizational issues, dynamic software project scheduling, search-based software engineering, 

multi-objective evolutionary algorithms, mathematical modeling. 

——————————      —————————— 

1 INTRODUCTION

Effective software project scheduling is crucial, when 
managing the development of medium to large scale 
projects to meet the deadline and budget [1]. The process 
of software project scheduling includes some duties [1], 
[2]: ―identify project activities; identify activity depend-
encies; estimate resources for activities; allocate people 
to activities; and create project charts.‖ The so-called 
Project Scheduling Problem (PSP) [2], [3], [4], [5] deals 
with the fourth duty which allocates employees with 
certain skills to activities (tasks) so that the required ob-
jectives (project cost, duration, etc.) can be achieved sub-
ject to various constraints. Good allocations are very 
important for software projects, since human resources 
are their main resources [6]. PSP is solved based on the 
information obtained from prior duties, i.e., the indenti-
fied tasks, task dependencies, and the estimated effort 
required for tasks provided by the software manager. 
Besides, information about the available employees and 
their salaries and skills is also needed. PSP has been 
tackled by both classical and meta-heuristic approaches. 

The classical methods include the program evaluation 
and review technique [7] and the critical path method [8], 
which represent projects by activity-on-the-arc networks, 
and the resource-constrained project scheduling prob-
lem model [9]. PSP has also been formulated as a search-
based optimization problem in [10], [11], [12] to provide 
near-optimal schedules in a large search space, and to 
automate the task of allocations, which would otherwise 
be performed by humans [2]. 

In previous studies on software project scheduling, it 
was assumed that the system information, such as the 
effort required by each task and the skills of each em-
ployee, are known beforehand and remain unchanged. 
They also assumed that no disruptions occur during the 
project lifetime to interrupt the task execution. However, 
in the real world, the working environment changes dy-
namically [1] by unpredictable events, such as require-
ment changes during the lifecycle of a project, a new 
urgent task arriving suddenly, an employee leaving, etc. 
A previously optimal schedule may become obsolete 
and infeasible in the new environment. Moreover, it is 
common that project activities are subject to considerable 
uncertainties. For instance, the task effort may have been 
estimated incorrectly, the task specification may be mod-
ified so that the originally estimated effort required by 
the task is changed, the employee skill level may be im-
proved because of increasing experience, etc. The opti-
mal schedule generated according to the initial data may 
have large performance deterioration when facing dis-
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turbances.  
Pressman [14] indicated eight reasons for late soft-

ware delivery, five of which are related to uncertainties, 
risks and unpredictable events appearing during the 
project execution, which are: ―changing customer re-
quirements that are not reflected in schedule changes; an 
honest underestimate of the amount of effort and/or the 
number of resources that will be required to do the job; 
predictable and/or unpredictable risks that were not 
considered when the project commenced; technical diffi-
culties that could not have been foreseen in advance; and 
human difficulties that could not have been foreseen in 
advance.‖ Thus, it is vital to develop a dynamic software 
project scheduling approach which can deal with both 
uncertainties and dynamic events to reduce the late 
software delivery. Furthermore, software engineering in 
emerging paradigms (e.g. the cloud, mobility, ultra-large 
software systems) calls for new scheduling methods that 
explicitly cater for uncertainties and dynamism in 
scheduling. This is because many of the requirements 
may be unique to the said project and exhibit little re-
semblance to prior projects. Consequently, static sched-
uling methods may be ineffective and may render my-
opic outcome if used.  

In the field of scheduling, there are mainly three ap-
proaches to dynamic scheduling: completely reactive, 
predictive-reactive, and proactive (robust) scheduling 
[15]. Completely reactive scheduling creates partial 
schedules for the immediate future based on local in-
formation at each decision point. For example, when a 
machine becomes idle, the job with the highest priority 
will be selected from the waiting queue according to a 
priority dispatching rule. This approach is in essence a 
greedy one and can be trapped into a local optimum 
easily. Predictive-reactive scheduling has a schedul-
ing/rescheduling process where previous schedules are 
adapted to the new environment caused by dynamic 
events, while proactive scheduling attempts to generate 
a schedule in advance, which has the ability to satisfy 
performance requirements predictably in an uncertain 
environment [16].  

Although scheduling in dynamic and uncertain envi-
ronments has attracted attention in construction and 
manufacturing domains [17], little effort has been made 
to capture the dynamic features of real-world software 
projects, let along multi-objective dynamic project 
scheduling problems (MODPSP). This paper tackles the 
challenge by first proposing a mathematical model to 
define the problem and then proposing a new proactive-
rescheduling method that combines proactive and pre-
dictive-reactive scheduling to solve it. In static PSP, effi-
ciency measures like project cost and duration are usual-
ly used as the objectives to be optimized. In dynamic 
PSP, a new schedule may be regenerated by simply min-
imizing the impact of disruptions to the project efficien-
cy. For example, a software engineer may be redeployed 
on different tasks from the ones that he/she was origi-
nally assigned to. Consequently, he/she may need some 
time to learn and understand the newly assigned tasks, 
which delays the project, increases the cost/budget, and 

disrupts the smooth running of the project. To minimise 
potential negative impact of generating very different 
schedules in a dynamic environment, our MODPSP re-
scheduling process should create new schedules that 
differ as little as possible from the previous ones, i.e., it 
should promote stability in dynamic scheduling. Fur-
thermore, given the existence of uncertainties in MOD-
PSP, the schedule's quality should not be too sensitive to 
minor data variations, i.e., a good schedule should be 
robust against data variations. Therefore, MODPSP con-
siders not only cost and duration as objectives, but also 
stability and robustness. Although there has been work 
on predictive scheduling for software projects under 
uncertainties [18], and on dynamic resource reschedul-
ing in response to new project arrivals [19], there has not 
been any research work on the mathematical modeling 
and dynamic scheduling of MODPSP, which addresses 
both uncertainties and dynamic events occurring during 
the software project execution, as well as multi-
objectivity under constraints. 

The project cost, duration, robustness, and stability 
are usually conflicting with each other. It is useful to 
handle such multiple objectives using a true multi-
objective approach, e.g., an multi-objective evolutionary 
algorithm (MOEA) [5], [11] that can provide various 
trade-offs among different objectives on the Pareto front. 
The Pareto front can help make informed decisions in 
dynamic scheduling.  

The primary aim of this paper is to model the soft-
ware project scheduling problem in a dynamic and un-
certain environment by considering multiple objectives 
and constraints, and propose an MOEA-based proactive-
rescheduling method for the formulated problem. Three 
aspects are studied: (i) PSP is formulated as a dynamic 
scheduling problem with one type of uncertainty and 
three kinds of dynamic events that often occur in soft-
ware projects; (ii) the mathematical model for the MOD-
PSP is constructed, considering the four objectives of 
project cost, duration, robustness and stability, and a 
variety of practical constraints; (iii) a proactive-
rescheduling method is proposed to solve MODPSP. The 
key idea of the method is to create a robust schedule 
predictively considering the project uncertainties, and 
then revise the previous schedule by an MOEA-based 
rescheduling method in response to critical dynamic 
events.  

To evaluate the effectiveness of our method, 18 dy-
namic PSP benchmark instances and 3 instances derived 
from real-world software projects are used in our exper-
imental studies, which have three major purposes: (1) 
investigating the influence of the robustness objective on 
proactive scheduling; (2) evaluating the strength and 
weakness of our MOEA-based rescheduling method 
over other dynamic scheduling methods which adjust 
the original schedule based on a simple heuristic rule; 
and (3) comparing the overall performance in dynamic 
environments obtained by five MOEA-based reschedul-
ing methods, where the effectiveness of simultaneously 
considering project duration, cost, robustness and stabil-
ity, and the dynamic optimization strategies adopted in 
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our method are demonstrated.  
This paper is organized as follows. Section 2 presents 

an overview of the related work. Section 3 describes our 
problem formulation and constructs the mathematical 
model of MODPSP. In Section 4, the framework of our 
proactive-rescheduling method is introduced, and the 
proposed rescheduling method called dε-MOEA is de-
scribed. Section 5 details the techniques for individual 
representations, constraint handling and objective eval-
uations. Experimental analyses are presented in Section 
6. Conclusions are drawn in Section 7. 

2 RELATED WORK 

In PSP, there are a set of tasks and a group of employees. 
Each task has an effort expressed in person-month and a 
set of required skills. The tasks have to be carried out 
based on a Task Precedence Graph (TPG), which speci-
fies which tasks should finish before a new task starts. 
Each employee has a salary and personal skills, a maxi-
mum degree of dedication to the project, and is able to 
do several tasks during a working day. PSP consists of 
determining which employees are allocated to each task 
and when each one should be performed, with the aim 
to minimize the project duration, minimize the project 
cost and so on, satisfying the constraints of task skills, no 
overwork, etc [3]. 

2.1 Software Project Scheduling with EAs in Static 
Environments 

With the rapid development of search-based software 
engineering, there has been some work on software pro-
ject scheduling based on EAs in the last decade. An early 
effort was from Chang et al. [4] who constructed a task-
based model and applied a genetic algorithm (GA) to 
find near-optimal schedules. Alba and Chicano [3] used 
the same problem formulation as [4], and performed 
systematic empirical studies of the impact that important 
problem characteristics had on the solutions found by 
GAs. Also with such a problem formulation, Minku et al. 
[2] gave a runtime analysis to gain insight into how de-
sign choices in EAs affected performance on PSP, and 
which instances were easy or hard for EAs to solve. 

To make their task-based model more practical, 
Chang et al. [12] presented a time-line model which split 
the task duration into small time units, and when evalu-
ating the fitness of a solution, it assigned employees to 
tasks in discrete time units iteratively so that more hu-
man factors such as re-assignment of employees, learn-
ing and training could be considered. However, this 
model introduced a lot of subjective parameters, to 
which the sensitivity of the solutions provided by the 
GA was unknown [2], and it would induce a large sys-
tem instability because they scheduled tasks separately 
in different time units [10]. To preserve the flexibility in 
human resource allocation, Chen and Zhang [10] devel-
oped a model with an event-based scheduler which ad-
justed the allocations at events, and adopted an ant col-
ony algorithm to solve the problem. Although the em-
ployee joining or leaving was considered as an event in 

[10], and the variations of human factors were allowed 
in [12], the software project scheduling was still treated 
as a static problem in these two studies, since it was as-
sumed that when and how such events or variations 
occur were known in advance, which would be used for 
the fitness evaluation of each candidate solution. How-
ever, in the real-world software project, dynamic events 
or uncertainties usually occur in a stochastic way, and it 
is impossible to get all the accurate information in ad-
vance. Thus, it is more realistic to formulate the software 
project scheduling as a dynamic scheduling problem, 
and solve it dynamically during the project execution. 

Luna et al. [5] and Chicano et al. [11] solved the static 
PSP by an MOEA based on Pareto domination [20], 
where cost and duration were not converted into a sin-
gle combined function. Penta et al. [19] presented a 
comprehensive survey of the search-based techniques 
applied to software project scheduling and staffing. 

2.2 Software Project Scheduling in Uncertain 
Environments 

A few studies on software project scheduling under un-
certainties have appeared recently. Hapke et al. [21] 
proposed a fuzzy software project scheduling system, 
where activity time parameters were uncertain and 
modeled by means of L-R fuzzy numbers, and the fuzzy 
problem was transformed into a set of associate deter-
ministic problems. Lazarova-Molnar and Mizouni [22] 
gave a simulation based method to select the most ap-
propriate remedial action scenario based on the project 
goal to limit the impact of uncertainties on the overall 
project success. Gueorguiev et al. [18] employed a proac-
tive scheduling method where an MOEA was used to 
find the Pareto front which represented the trade-off 
between completion time and robustness (defined as the 
completion time difference when new tasks were added, 
or the tasks’ durations were inflated). The work in [23] 
modeled the project scheduling using event chains. To 
obtain a schedule under uncertainties, a number of Mon-
te Carlo simulations were performed based on a baseline 
project schedule and an event list. It can also be regarded 
as a proactive scheduling method. Antoniol et al. [24] 
used a tandem GA to find the best order for processing 
work packages and the best allocation of staff to project 
teams. Then a queuing simulator was used to analyze 
the sensitivity of the result obtained by GA with respect 
to uncertainties caused by effort estimation errors, re-
works and abandonment on a given percentage of 
maintenance tasks. The result of this sensitivity analysis 
could guide the search which determined whether a ne-
gotiation of further people and a successive iteration of 
the tandem GA process were required. The whole pro-
cess might repeat for multiple times to obtain a satisfied 
solution. The work in [24] just considered the robustness 
of the initial allocations to dynamic events of re-work 
and abandonment, but not provided the responding 
strategies when they occurred. Chicano et al. [25] gave a 
new multi-objective formulation of PSP which consid-
ered the productivity of the employees in developing 
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different tasks and the inaccuracies of task effort estima-
tions. Task effort variations were assumed to follow the 
uniform distribution, and robustness was measured as 
the standard deviation of the make-span and cost values 
obtained from a certain number of simulations of task 
effort inaccuracies. In our work, both robustness to task 
effort uncertainties and immediate response to dynamic 
events are addressed by the proposed proactive-
rescheduling method. Meanwhile, robustness is defined 
as the duration and cost increases from the initial values 
obtained in the case assuming no task effort uncertain-
ties, where only the efficiency deterioration in the dis-
rupted scenarios is penalized.  

 Xiao et al. [19] may be the first effort to consider dy-
namic resource rescheduling for addressing disruptions 
that happen during the software development. They 
used the little-JIL process definition language to describe 
the relations among different projects and project activi-
ties, where a project could be mapped into a task requir-
ing a set of skills, and an activity could be mapped into 
one skill of a task in the task-based model proposed in 
[4]. There are three limitations in the work of [19]. Firstly, 
unlike the task-based model which searches the dedica-
tion degree of each employee to each task, Xiao et al. [19] 
just determined whether an employee should be allocat-
ed to each activity (skill) and the priority of each activity. 
The workload allocation of each employee to the as-
signed activity was not determined by the GA.  Secondly, 
only one kind of disruptive event which represented the 
introduction of a new project was considered, and re-
scheduling of merely three new project arrivals were 
conducted in their work. In practice, a variety of dynam-
ic events may occur during the software development 
process. Moreover, continuous changes like task effort 
uncertainties widely exist, which indicates that the 
schedule robustness to uncertainties is also an important 
factor that should be taken into account. Thirdly, alt-
hough the utility and process stability were considered 
in their work, they were converted into a single objective 
by a weighted sum method, introducing additional pa-
rameters in their objective definitions and weight deter-
minations. Since multiple objectives are usually conflict-
ing with each other, it is better to handle them by an 
MOEA which can provide various trade-offs among dif-
ferent objectives so that a project manager can make an 
informed decision when rescheduling.  

In our work, we consider the dynamic version of task-
based model, which determines the dedication of each 
employee to each task dynamically. The reason for using 
the task-based model is that it is more general. The work 
in [19] can be considered as a special case of the task-
based model where each task requires a single skill. To 
address various uncertainties and real-time events, the 
task effort variances, employee leaves and returns, and 
new task (urgent or regular) arrivals are considered in 
our work. A clear mathematical model for the dynamic 
software project scheduling is developed, where four 
objectives, including the project cost, duration, robust-
ness and stability, are considered simultaneously. An 
MOEA-based, proactive-rescheduling method is pro-

posed to solve the dynamic scheduling problem. 

3  PROBLEM FORMULATION AND MATHEMATICAL 

MODELING OF MODPSP 

3.1 Incorporating Dynamic Features into PSP 

In order to address more dynamic characteristics of PSP, 
in this paper, one type of uncertainty and three kinds of 
dynamic events, which often occur during the execution 
of the real-world software project, are incorporated into 
PSP. They are listed as follows. 

(1) Task effort uncertainty. At the beginning of the 
project, the effort required by each task can be estimated 
by some method such as the COCOMO model [26] or 
the more recent online learning model [27]. However, 
modifications in task specifications and inaccuracies in 
the initial estimations may cause the changes in the ini-
tially estimated task efforts. Here, task effort variances 
are assumed to follow a Normal distribution [3]. To in-
fuse more reality, each task effort is assigned different 
values of mean and standard deviation. The mean value 
of each task is set to be its initially estimated task effort. 

(2) New task arrivals. New requirements will emerge 
during the development lifecycle of software. This could 
be in response to changes in customers’ requirements 
and/or the environment. It can also be attributed to the 
iterative and intertwined nature of the software devel-
opment, where continuous refinements of requirements, 
architecture and designs can lead to new tasks. As the 
project progresses, the stakeholders’ understanding of 
the project may evolve and new features may be added 
as a result. Furthermore, new requirements may also 
emerge as the software is prototyped, tested, or de-
ployed.  Such dynamism is very common in large and 
complex projects, where requirements tend to be highly 
―volatile‖ and changeable during the lifetime of the pro-
ject. Consequently, the landscape of tasks tends to con-
tinuously evolve.  Tasks can be classified into urgent and 
regular tasks. An urgent task should be performed im-
mediately when it arrives, while a regular task does not 
have such a requirement. As volatility of requirements 
and its frequency are difficult to predict, we model the 
uncertainty of new task arrivals as following a Poisson 
distribution (i.e., the time between two new task arrivals 
is distributed exponentially).  

(3) Employee leaves. Due to sickness or being part of 
multiple projects or other reasons, an employee may 
leave during the project. Here, employee leaves are as-
sumed to follow a Poisson distribution. So for each em-
ployee, the time interval between leaves is assumed to 
follow an exponential distribution. To infuse more reali-
ty, each employee is assigned a different mean time be-
tween his/her leaves. 

(4) Employee returns. After having been absent from 
the project, we consider that the employee may return 
back to the project. ―employee returns‖ is the amount of 
time that the employee is absent from the project, i.e., the 
amount of time that passes from the moment the em-
ployee leaves until the employee returns to the project. 
Here, employee returns are also assumed to follow a 

http://link.springer.com/search?facet-author=%22Junchao+Xiao%22
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Poisson distribution. To infuse more reality, each em-
ployee is assigned a different mean time to return, i.e., 
the time that an employee is out of the project. 

It is worth noting that our approach is not limited to 

the Poisson distribution, which is often used in opera-

tions research. It is easy to replace the probability distri-

bution used in our algorithm by any other appropriate 

probability distribution. All that is required is to plug in 

a different probability distribution to sample from.  
Note that other types of uncertainties and dynamic 

events, such as changes in task precedence, addition of 
new employees not in the company before the project 
started, removal of tasks from the project due to changes 
in requirements, etc., may also occur during the dynamic 
process of a real-world project. As an illustration to vali-
date the effectiveness and efficiency of the proposed 
proactive-rescheduling method, we only consider the 
task effort uncertainties, new task arrivals, employee 
leaves, and employee returns in the model of MODPSP 
and experimental studies used in this paper. The incor-
poration of other uncertainties and dynamic events is 
proposed as future work. 

3.2 Employees’ Properties 

Assume a project requires a total of S skills and there are 
in total M  employees involved in the project. Let 

lt  

( 0,1,2,l  ) denote the scheduling point at which a re-

scheduling method is trigged (including the initial time 

0t ). Each employee 
i

e  ( 1,2, ,i M ) has some properties 

( skills

i
e , 

i
skill , maxded

i
e , _norm salary

i
e , _over salary

i
e ), which are consid-

ered to be time-invariant here. During the project, em-

ployee 
i

e  may leave, and then come back later. Thus, 

one time-related variables ( )available

i l
e t  is also attributed to 

i
e . Descriptions of an employee’s properties are listed in 

Table 1. _ _ ( )
l

e ava set t  is used to represent the set of all 

available employees at lt , i.e., 

 _ _ ( ) |  ( ) 1,  1,2, ,available

l i i l
e ava set t e e t i M   . 

3.3 Tasks’ Properties 

At the initial time 0t , assume there are 
I

N  tasks in the 

project. As the time progresses, new tasks may be added 

one by one. At lt , assume there have been ( )
new l

N t  new 

tasks arrived. Thus by 
l

t , a total of ( + ( ))
I new l

N N t  tasks 

have been considered as part of the project. Each task 
j

T  

( 1,2, , + ( )
I new l

j N N t ) has some properties ( skills

j
T , 

j
req , 

_ _est tot eff

j
T ), which are considered to be time-invariant here. 

At lt , it is possible that a certain task has finished, or a 

task cannot be performed temporally because of an em-
ployee’s leave (one skill required by the task is not pos-
sessed by any of the remaining employees). Thus, sever-

al time-related properties ( ( )unfinished

j l
T t , TPG, ( )available

j l
T t ) 

are also attributed to task 
j

T . Descriptions of a task’s 

properties are listed in Table 2. _ _ ( )
l

T ava set t  is used to 

represent the set of all available tasks at 
l

t , i.e., 

_ _ ( )
l

T ava set t   |  ( ) 1,  1,2, , + ( )available

j j l I new l
T T t j N N t  . 

TABLE 1  

PROPERTIES OF EACH EMPLOYEE 
name description 

skills

i
e  

The skill indicator set of employee 
i

e . 
1 2={ , , , }skills S

i i i i
e pro pro pro , where [0,C]k

i
pro   

( 1,2, ,k S ) is a fractional score which measures 

the proficiency of 
i

e  for the kth skill. 0k

i
pro   

means 
i

e  does not have the kth skill, and Ck

i
pro   

shows 
i

e  totally masters the kth skill. According to 

[12], C  is set to be 5 in our experimental study. 

i
skill  

The set of specific skills possessed by 
i

e . It can be 

converted from skills

i
e ,  where 

{ | 0, 1,2, , }k

i i
skill k pro k S   . 

maxded

i
e  

The maximum dedication of 
i

e  to the project, 

which means the percentage of a full-time job 
i

e  is 

able to work. 1maxded

i
e   means 

i
e  can dedicate all 

the normal working hours of a month to the pro-

ject. Part-time jobs or overtime working are al-

lowed by setting maxded

i
e  to a value smaller or bigger 

than 1, respectively. For example, 1.2maxded

i
e   indi-

cates 
i

e  is allowed to work up to 120% of the nor-

mal working time. 
_norm salary

i
e  The monthly salary of 

i
e  for his/her normal work-

ing time. 
_over salary

i
e  The monthly salary of 

i
e  for his/her overtime 

working time. 

( )available

i l
e t  

A binary variable which indicates whether 
i

e  is 

available or not at lt . ( ) 1available

i l
e t   means 

i
e  is 

available at lt , and ( ) 0available

i
e t   shows 

i
e  is una-

vailable at lt . 

TABLE 2 

PROPERTIES OF EACH TASK 
name description 

skills

j
T  

The skill indicator set of task j
T . 

 1 2, , ,skills S

j j j j
T sk sk sk , where 1k

j
sk   

( 1,2, ,k S ) indicates the kth skill is required by 

j
T , and 0k

j
sk   means not. 

j
req  

The set of specific skills required by j
T . It can be 

converted from skills

j
T , where 

{ | 1, 1,2, , }k

j j
req k sk k S   . 

_ _est tot eff

j
T  

The initially estimated effort required to com-

plete task j
T  in person-months. The task effort 

uncertainty of j
T  is assumed to follow a normal 

distribution of ( , )
j j

N   , where j
  and j

  are 

the mean and standard deviation, respectively. 

Here, we set _ _est tot eff

j j
T  . 

( )unfinished

j l
T t  

A binary variable indicating whether j
T  has 

finished by lt . ( ) 1unfinished

j l
T t   means j

T  is unfin-

ished at lt , and ( ) 0unfinished

j l
T t   shows j

T  has 

finished by lt . 

TPG An acyclic directed graph with tasks as nodes 
and task precedence as edges. TPG must be up-
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dated when a task finishes or a new task is add-

ed into the project. Here,  ( ), ( )
l l

G V t A t  is used to 

represent the TPG at lt , where  ( )
l

V t  is the ver-

tex set which includes all the arrived and unfin-

ished tasks at lt , i.e., 

 ( ) |  ( ) 1,  1,2, , + ( )unfinished

l j j l I new l
V t T T t j N N t   , 

and ( )A t  is the arc set which indicates the prece-

dence relations among the tasks in  ( )
l

V t . 

( )available

j l
T t  

A binary variable indicating whether j
T  is avail-

able or not at lt . ( ) 1available

j l
T t   shows j

T  is avail-

able at lt , while ( ) 0available

j l
T t   means not. 

j
T  is 

regarded as available at lt  if and only if the fol-

lowing three conditions are satisfied simultane-

ously: (1) j
T  is unfinished at lt , i.e., 

( ) 1unfinished

j l
T t  ; (2) for any skill required by j

T , at 

least one of the available employees at lt  pos-

sesses the skill, i.e., if  
j

k req  , then 

 ,  s.t. _ _ ( )  
i i l i

e e e ava set t k skill    ; and (3) all 

the unfinished tasks preceding j
T  in the TPG 

satisfy the above condition (2). 

An example of the TPG update process is shown in 
Fig. 1. When a task finishes, its corresponding vertex and 
incident edges are removed from the TPG, e.g., task 1. 
When a new regular task arrives, it is appended to one 
or more unfinished tasks, e.g., task 16. If the new task is 
urgent, its precedence should not be lower than any oth-
er unfinished tasks at the time of its arrival. So it may be 
inserted preceding one or more unfinished tasks, as task 
17, or it may be just added as a vertex in the case of not 
having any precedence relations to other unfinished 
tasks, as task 18. Note that task preemption is allowed in 
our MODPSP model. For example, in Fig. 1, since the 
precedence of the new urgent task 17 is higher than task 
3, task 3 should stop processing until task 17 has fin-
ished. 

An additional property Proficiency

ij
e  of the employee 

i
e , 

which indicates the proficiency of 
i

e  for task 
j

T , is de-

fined according to [12]: 
C

j

k

Proficiency i

ij

k req

pro
e



 , and 

[0,1]Proficiency

ij
e  .  Proficiency

ij
e  is considered to be time-invariant. 
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Fig. 1. An example of the update of the TPG. 

3.4 Solutions to MODPSP 

At the scheduling point 
lt  (

0lt t ), a new schedule 

which determines the dedication matrix 

 
 + ( )

X( ) ( )
I new l

l ij l M N N t
t x t


  is constructed, where ( )

ij l
x t  de-

notes the dedication of employee 
i

e  to task 
j

T  sched-

uled at 
lt , and it measures the percentage of a full-time 

job which 
i

e  spends on 
j

T . In this paper, 

( ) {0, 1 , , }maxded maxded

ij l i i
x t e k e k k   , where kN  reflects 

the granularity of the solution, and it is described in Sec-

tion 5.1 in detail. ( ) 0
ij l

x t   means 
i

e  is not assigned to 

j
T  at 

lt . Note that the values of some elements in X( )
l

t  

are determined easily: if ( ) 0available

i l
e t  , then ( ) 0

ij l
x t  , for 

all the 1,2, , + ( )
I new l

j N N t ; if  ( ) 0a v a i l a b l e

j l
T t  , then 

( ) 0
ij l

x t  , for all the 1,2, ,i M . Only the values of 

 ( ) ( ) | ( ) 1 and ( ) 1available available

ij l ij l i l j l
x t x t e t T t    need to be 

searched by an optimization method. 

3.5 Objectives to be Optimized 

At the scheduling point 
lt  ( 0lt t ), considering all the 

current information gathered from the software project: 

 A set of available employees _ _ ( )
l

e ava set t ; 
 A set of available tasks _ _ ( )

l
T ava set t  with the 

remaining estimated task efforts. For each task 
_ _ ( )

j l
T T ava set t , the finished effort from 

0t  to 

lt  is recorded as _ ( )fin eff

j l
T t . Thus, the remaining es-

timated effort of 
j

T  at lt is calculated as 
_ _ _ _ _( ) ( )est rem eff est tot eff fin eff

j l j j l
T t T T t  . If _ _ _ ( )est tot eff fin eff

j j l
T T t , 

but 
j

T  is actually unfinished at lt , which indicates 

that the initially estimated effort of 
j

T  is smaller 

than its actual effort, then the total effort of 
j

T  is 

re-estimated by sampling a value B  from the 

normal distribution ( , )
j j

N    for several times un-

til the condition _ ( )fin eff

j l
B T t  is satisfied. Set 

_ _est tot eff

j
T B , and _ _ _ _ _( ) ( )est rem eff est tot eff fin eff

j l j j l
T t T T t  ; 

 The TPG ( ( ), ( ))
l l

G V t A t  which is updated at lt , 
a new schedule is generated by optimizing the following 

objectives:  
                

1 2 3 4
min ( )=[ ( ), ( ), ( ), ( )]

l l l l l
t f t f t f t f tF               (1)                                           

where 
1
( )

l
f t , 

2
( )

l
f t , 

3
( )

l
f t , and 

4
( )

l
f t  are related to the 

duration, cost, robustness and stability of the project, 

respectively. 

1
( )

l
f t  represents the maximum elapsed time required 

for completing the remaining effort of each available 

task rescheduled at lt : 

   1
{ | _ _ ( )}{ | _ _ ( )}

( ) max ( ) min ( )
j lj l

end start

l I j l j l
j T T ava set tj T T ava set t

f t duration T t T t


    (2)                                                                                                                       

where the subscript I denotes the initial scenario, which 
assumes no task effort variances, and considers the re-

maining estimated effort _ _ ( )est rem eff

j l
T t  calculated above as 

the exact remaining effort of task 
j

T  at lt . For each 
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available task 
j

T  at 
lt , we just consider its remaining 

effort by 
lt , not including its finished effort. Thus, 

( )start

j l
T t  denotes the time (in terms of months) when the 

remaining effort of 
j

T  starts processing after 
lt  accord-

ing to the new generated schedule, but not the starting 

time of the whole task 
j

T . Therefore, we have ( )start

j l l
T t t ; 

and ( )end

j l
T t  is the completion time  of 

j
T  rescheduled at 

lt .  According to the TPG and the new schedule (dedica-

tion matrix) rescheduled at 
lt ,  we can draw a Gantt 

chart, from which ( )start

j l
T t  and ( )end

j l
T t  of 

j
T  can be ob-

tained. 

2
( )

l
f t  represents the initial cost, which means the to-

tal expenses paid to the available employees for their 

dedications to the available tasks at 
lt  assuming no task 

effort variances. Let t’ denote any month during which 

the project is being developed after 
lt , and 

_ _ ( )T active s t t'e  denote the set of tasks that are active 

(being developed) at the moment of time t’, where an 
active task is defined as a task that has no preceding un-

finished task in the TPG at t’. 
2
( )

l
f t  is defined as follows: 

               
2

_ _ ( )

( ) _
l i l

l I i

t e e ava s

t

' et

'

tt

f t cost e cost
 

                 (3) 

If 
_ _ ( )

 ( ) 1
ij l

j T acti t've set

x t


 , then 

            _

_ _ ( )

_ ( )norm salary

i i ij l

j T activ

t

e s tt

'

e '

t'e cost e x t


    ,              (4) 

else if 
_ _ ( )

  1< ( ) maxded

ij l i

j T active set t'

x t e


 , then 

_ _

_ _ ( )

_ 1 ( ) 1norm salary over salary

i i i ij l

j T active s

t

et

'

t'

e cost e e xt' t' t


 
       

 
 (5)                                                                                                                                              

where _ t'

i
e cost  means the expense paid to the employee 

i
e  at the moment of time t’. If the total dedications of 

i
e  

to all the active tasks (
_ _ ( )

( )
ij l

j T active set t'

x t


 ) is larger than 1, it 

indicates that 
i

e  works overtime at t’.  

In the following Section 5.3, we will explain how to 

evaluate the objectives of 
I

duration  and 
I

cost  in detail. 

3
( )

l
f t  represents the robustness performance, which 

evaluates the sensitivity of a schedule’s quality to task 

effort uncertainties. The smaller the value of 
3
( )

l
f t , the 

better the robustness performance. 
2

3

1

2

1

( ) ( )1
( ) max 0,

( )

( ) ( )1
                             max 0,

( )

N
q l I l

l

q I l

N
q l I l

q I l

duration t duration t
f t robustness

N duration t

cost t cost t

N cost t






  
     

  

  
    

  





 (6) 
where 

I
duration  and 

I
cost  are the initial duration and 

cost evaluated from (2) and (3), respectively. Here, the 
scenario-based method is used. A schedule undergoes a 

set of task effort scenarios  |  1,2, ,
q

q N  , where 
q

  

is the qth sampled scenario of task efforts, N is the sam-

ple size, and we set N=30. 
q

duration  and 
q

cost  are the 

corresponding efficiency objective values under 
q

 . Spe-

cifically, at 
lt , 

q
  is generated as follows: at first, for 

each task _ _ ( )
j l

T T ava set t , a total effort _ qtot eff

j
T  is 

sampled from the normal distribution ( , )
j j

N    at ran-

dom for multiple times until _ _ ( )qtot eff fin eff

j j l
T T t is satisfied, 

and then set  
_ _ _ _{ ( ) | ( ) ( ),  _ _ ( )}q q qrem eff rem eff tot eff fin eff

q j l j l j j l j l
T t T t T T t T T ava set t    

, where _
( )qrem eff

j l
T t  means the qth sampled remaining ef-

fort of 
j

T . Considering that a high efficiency is always 

addressed in the real-world software project, when de-
fining the robustness objective in (6), we just penalize 
the duration and cost increases which will cause the effi-
ciency deterioration in the disrupted scenarios, while the 
variances of duration and cost decreases are truncated 
by using a ―max‖ function.   is a weight parameter, 

which captures the relative importance of the sensitivity 
of the project cost over the sensitivity of the project dura-
tion to task effort uncertainties.   is set to be 1 in our 

experiments. 

4
( )

l
f t  denotes the stability, which measures the devia-

tion between the new and original schedules. It is calcu-

lated for all the available tasks at lt  ( 0lt t ) which are 

left from the previous schedule created at -1lt . It is de-

fined as the weighted sum of the dedication deviations 
with the aim of preventing employees from being shuf-
fled around too much.  

1 1

4

-1

{ | _ _ ( ) _ _ ( )} { | _ _ ( ) _ _ ( )}

( )

 ( ) ( )
i l l j l l

l

ij ij l ij l

i e e ava set t e ava set t j T T ava set t T ava set t

f t stability

x t x t
  



            

(7) 
where the value of weight 

ij
  is set as follows: 

             
-1

-1

2     if ( )=0 and ( ) 0

= 1.5  if ( ) 0 and ( ) 0 

1     else

ij l ij l

ij ij l ij l

x t x t

x t x t




 



               (8) 

In the first case, a large penalty ( 2
ij

  ) is given to 

reschedule an employee to do a new task. If the employ-

ee 
i

e  is not assigned to the task 
j

T  at -1lt , but he/she 

should dedicate to 
j

T  according to the new schedule, 

then the employee may feel confused. He/she may need 
additional time to familiarise himself/herself with the 
newly assigned task, hence the working efficiency may 
be decreased. In the second case, if an employee was on 
a task previously, but he/she is not allocated to the task 

in the new schedule, then a medium penalty ( 1.5
ij

  ) is 

given. The employee might have received training about 
the task and become familiar with the task. Such training 
would be wasted if the employee does not perform this 
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task any more. In the third case, if an employee contin-
ues a task but with a different dedication level, a small 

penalty ( 1
ij

  ) is given to the differences between the 

new and original dedications.  

It should be mentioned that at the initial time 
0t , only 

three of the objectives defined above, which are 

I
duration , 

I
cost  and robustness (without stability), are to 

be optimized. 

3.6 Constraints  

Constraints of MODPSP at the scheduling point 
lt  are 

listed as follows. Among them, constraints (i) – (ii) are 
hard constraints, and constraint (iii) is a soft one. 
(i) No overwork constraints  

At the moment of time 't  after the scheduling point 

lt , the total dedication of an available employee to all 

the active tasks which are being developed should not 
exceed his/her maximum dedication to the project, i.e.,  

 _ _ ( )
i l

e e ava set t  , 
l

t' t  , s.t.  

_ _ ( )

_ ( )t'

i ij l

j T active set t'

e work x t


  , and _ t' maxded

i i
e work e      (9) 

For example, if 1.2maxded

i
e  , then 

i
e  can work over-

time, but his/her overtime working should not exceed 
(120%-100%)=20% of the normal working time. 
(ii) Task skill constraints 

All the available employees working together for one 
available task must collectively cover all the skills re-
quired by that task, i.e., 

 _ _ ( )
j l

T T ava set t  ,  

s.t.  
_ _ ( )

| ( ) 0
i l

j i ij l

e e ava set t

req skill x t


                   (10)                                                                             

Note that the task skill constraints include the case 

that each available task at lt  should be performed by at 

least one available employee. 
(iii) Maximum headcount constraints 

The number of available employees working together 

for 
j

T  is expected to be no more than an upper limit 
maxhead

j
T . Here,  maxhead

j
T  is estimated by the formula in [12]: 

   0.672
_ _max 1,   2 3maxhead est tot eff

j j
T round T , which was de-

rived from the COCOMO model [26]. However, if the 

team size of  
j

T  cannot be reduced to maxhead

j
T  without 

violating the task skill constraints, then the maximum 
headcount constraints can be relaxed, but a penalty 

should be given to the task effort of 
j

T  which is intro-

duced in Section 5.2.3. At the scheduling point lt , sup-

pose the team size of  
j

T  is ( )teamsize

j l
T t , and the minimum 

number of available employees who should join 
j

T  to 

satisfy the task skill constraint is min_
( )empnum

j l
T t , then we 

have: 

 _ _ ( )
j l

T T ava set t  ,  min_
( ) max , ( )empnumteamsize maxhead

j l j j l
T t T T t (11)                       

4   A PROACTIVE-RESCHEDULING APPROACH TO 

SOLVE MODPSP 

4.1 Framework of the Proactive-rescheduling 
Approach 

To handle uncertainties and real-time events occur-
ring during a software project, a proactive-rescheduling 
approach is proposed for solving the MODPSP. As an 
illustration for introducing our approach, one real-world 
instance derived from business software construction 
projects for a departmental store [8] is taken as an exam-
ple. 

Step i: At the initial time of the project, the software 
manager identifies several attributes of the project to be 
developed. These are the tasks, task dependencies, and 
required efforts. For example, the software manager 
could identify that there are 12 tasks in total, e.g., per-
forming the UML diagrams, designing the database, 
designing the web page templates, implementation, test-
ing the software, writing database design documents 
and a user manual, etc. In fact, if the scheduling process 
starts after the architecture of the system is designed, it 
would also be possible to define more fined grained 
tasks, such as the implementation of each different com-
ponent of the system. After identifying the tasks, the 
software manager would identify the dependencies 
among these tasks by creating a TPG, the skills required 
by each task, and estimate the effort required for each 
task. Supporting tools such as COCOMO [26] or ma-
chine learning algorithms [27] could be used to help 
providing effort estimations. Besides the attributes of the 
project itself, the project manager also identifies employ-
ees’ properties, such as the skill proficiencies possessed 
by each employee, the maximum dedication of each em-
ployee to the project, the normal and overtime working 
salaries of each employee. Such information can be ob-
tained based on the experience and knowledge of the 
software manager on the project. It can also be based on 
historical information. 

Step ii: Provide the information collected in step i as 
input to the proposed MOEA-based proactive schedul-
ing approach introduced in Section 4.2. The approach 

will automatically generate schedules to minimize the 
objectives of project duration (defined by (2)), cost (de-
fined by (3)), and the sensitivity of the schedule to task 
effort uncertainties (defined by (6)), satisfying the con-
straints of no overwork, task skills and the maximum 
headcount (defined by (9) - (11)). The approach assumes 
that the task effort uncertainties follow a normal distri-
bution. However, a software engineering tool imple-
menting this approach could be easily modified to as-
sume other distributions.  The output of the approach is 
a set of non-dominated solutions which represent 
schedules with different trade-offs among the three ob-
jectives. Each solution is a matrix providing the dedica-
tion of each employee to each task. 

Step iii: Once the approach generates the non-

dominated solutions, the software manager needs to 

choose one solution to adopt. A tool implementing the 
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approach could display via a GUI some useful infor-

mation for that, such as the dedication matrix of each 

solution; its multi-objective values; the maximum, mean 

and minimum value on each objective among the ob-

tained non-dominated solutions. The software manager 

could choose the schedule suggested by the automated 

decision making procedure introduced in Section 4.2.4, 

or select a schedule manually based on the information 

provided by our approach and his/her own experience 

and knowledge about the project. The process of manual 

decision making that the software manager would need 

to go through is explained in Section 6.7. After that, the 

initial project charts, e.g. Gantt charts, can be created 

using the information of TPG, the estimated task effort 

and allocation. 

Step iv: During the lifetime of the project, some dy-

namic events may occur, e.g. altering tasks, employee 

leaves, employee with interrupted involvement, squeeze 

in budget for some tasks and shift of focus on other tasks. 

For simplicity, we just consider new task arrivals, em-

ployee leaves and employee returns in the current work. 

Among them, urgent task arrivals, employee leaves and 

returns are regarded as critical events, while regular task 

arrivals are considered to be non-critical. To reduce the 

rescheduling frequency, a critical-event-driven mode is 

employed. Once a critical event occurs, the software 

manager triggers the rescheduling procedure provided 

by our approach. Non-critical events like regular task 

arrivals are not scheduled until the next critical event 

occurs. However, if the new regular task needs to start 

before the next critical event occurs according to the TPG, 

a heuristic method is used, which assigns a certain num-

ber of available employees with higher proficiencies 

(measured by 
Proficiency

ij
e

) to it, simultaneously satisfying 

the task skill constraint, and the dedication of each as-

signed employee to it is generated randomly. This is 

done automatically, without the need for the software 

manager to provide manual input.  

In the rescheduling procedure which is triggered 

when a critical event occurs, first, the software manager 

determines all the available tasks and employees that 

can be rescheduled in the current environment. The fol-

lowing are provided by the software manager via GUI as 

the input of the proposed MOEA-based rescheduling 

approach introduced in Section 4.2: the remaining esti-

mated effort required to finish each available task; the 

updated TPG reflecting any changes that may have hap-

pened to the TPG; other properties of the available tasks 

and employees, together with the four objectives of du-

ration, cost, robustness and stability defined by (2), (3), 

(6) and (7), and the three constraints defined by (9) - (11). 

Such information can also be obtained based on the in-

vestigation by and knowledge of the software manager 

according to the current state of the project. Then the 

rescheduling approach is triggered, and automatically 

generates a set of non-dominated solutions, which rep-

resent different trade-offs among the four objectives. 

Next, similar to the steps after proactive scheduling, 

some useful information is presented via GUI, which the 

software manager can take as a reference for deciding 

the final schedule in the new environment. The process 

of how the software manager would make a decision 

based on the Pareto front provided by our approach is 

illustrated in Section 6.7. The new schedule is imple-

mented in the project until the next critical event occurs, 

at which time the above rescheduling procedure is trig-

gered again. In short, the MODPSP is a dynamic process 

formed by a sequence of multi-objective PSPs with dif-

ferent sets of available employees and tasks to be sched-

uled. This process continues until the whole project has 

been completed. 

As indicated in Section 1, five of the eight reasons 

given by Pressman [14] for late software delivery are 

related to uncertainties, risks and unpredictable events 

appearing during the project execution. In our current 

work, four kinds of risks or dynamic events including 

task effort uncertainties, new task arrivals, employee 

leaves, and employee returns are considered. Each of the 

above four cases can be linked to one of the five reasons 

for late software delivery noted by Pressman. The rela-

tionship between them and the strategies used by our 

proactive-rescheduling approach to address these issues 

are shown in Table 3. 

TABLE 3 

RELATIONSHIP BETWEEN FOUR KINDS OF DYNAM-

IC FEATURES CONSIDERED IN OUR APPROACH 

AND FIVE REASONS FOR LATE SOFTWARE DELIV-

ERY NOTED BY PRESSMAN 
Five reasons [14] Dynamic events Treatment 

Changing customer re-
quirements that are not 
reflected in schedule chang-
es. 

Task effort uncer-
tainties, new task 
arrivals. 

Proactive-
ness/resc
heduling. 

An honest underestimate of 
the amount of effort and/or 
the number of resources that 
will be required to do the 
job. 

Task effort uncer-
tainties. 

Proactive-
ness. 

Predictable and/or unpre-
dictable risks that were not 
considered when the project 
commenced. 

New task arrivals, 

employee leaves， 
employee returns. 

Resched-
uling. 

Technical difficulties that 
could not have been fore-
seen in advance. 

Task effort uncer-
tainties. 

Proactive-
ness. 

Human difficulties that 
could not have been fore-
seen in advance. 

Employee 

leaves， employee 
returns. 

Resched-
uling. 

4.2 An MOEA-based Rescheduling Method for 
MODPSP 

The goal of multi-objective optimization is to find a 
representative set of Pareto non-dominated solutions. 
One solution is said to Pareto dominate another if the 
first is not worse than the second in all objectives, and 
there is at least one objective where it is better. A solu-
tion is called Pareto non-dominated if none of the objec-
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tives can be improved without sacrificing some of the 
other objective values. The set of Pareto non-dominated 
solutions in the objective space is called the Pareto front, 
which can provide trade-offs among multiple objectives. 

ε-MOEA is an ε-domination based MOEA [28], where 
ε-domination is a generalization of the domination rela-
tion introduced in [29]. ε-MOEA employs efficient par-
ent and archive update strategies, and can produce good 
convergence and diversity with a small computational 
effort, especially when dealing with many objectives (3 
or more) [28]. MODPSP is a dynamic problem with four 
objectives. In order to solve it in an efficient way, an ε-
MOEA-based rescheduling method, dε-MOEA, is pro-
posed in this paper. 

4.2.1 The Procedure of dε-MOEA Applied to 
MODPSP 

At each scheduling point 
lt  ( 0lt t ) in MODPSP, the 

procedure of dε-MOEA is presented in Fig. 2.  

Step 1: Initialization. Construct the initial population ( )lP t  by 

some heuristic strategies (they are described in Section 4.2.3) 

according to the updated project state at 
lt . Sample a set of task 

effort scenarios q
  at random, 1,2, ,q N . Then multi-objective 

evaluations are performed, and all the Pareto non-dominated 

solutions are determined to form the archive population ( )lArc t . 

Set the counter of objective evaluation numbers 

_ct population size . 

Step 2: Population selection. One individual sp  is chosen from 

the population ( )lP t  using a pop_selection procedure. 

Step 3: Archive selection. One solution e is chosen from the ar-

chive ( )lArc t  using the archive_selection procedure. 

Step 4: Variation. Two offspring 
1

sc  and 
2

sc  are generated from 

sp  and e by the variation operators. 

Step 5: Decoding and objective evaluation. Sample a set of task 

effort scenarios q
  at random, 1,2, ,q N . Evaluate the multi-

ple objective values of offspring 
1

sc  and 
2

sc .  

Step 6: Update of the population. Offspring individuals 
1

sc  and 

2
sc  are included in ( )lP t  using a pop_acceptance procedure. 

Step 7: Update of the archive. Individuals 
1

sc  and 
2

sc  are in-

cluded in ( )lArc t  using an archive_acceptance procedure. 

Step 8: Termination. If the termination criterion is not satisfied, 

set 2ct ct   and go to Step 2. Otherwise, determine all the Pare-

to non-dominated solutions from ( )lArc t , record it as '( )lArc t , 

output '( )lArc t , and select one solution from '( )lArc t  as the im-

plementation schedule based on a decision making procedure. 
Fig. 2. Procedure of dε-MOEA at the scheduling point 

lt  (
0lt t ). 

For Step 1, update of the project state and heuristic 
constructions of the initial population are described in 
Sections 4.2.2 and 4.2.3, respectively. The tournament 
selection method is used for the pop_selection procedure 
in Step 2. Two individuals are picked up uniformly at 
random from the population, and check the domination 
of each other. If one dominates the other, the former will 
be chosen. Otherwise, one of them is selected at random. 
In Step 3, an individual is selected uniformly at random 

from the archive. In Step 4, the variation operators are 
introduced in Section 5.1. In Step 5, the sampled task 
efforts change from one iteration to another, which in-
creases the probability of generating robust solutions 
undergoing a large number of scenarios. The 
pop_acceptance and archive_acceptance procedures in Steps 
6 and 7 are the same as in [28]. The termination criterion 
is that the counter ct achieves a predefined maximum 
number of objective evaluations. The decision making 
procedure is described in Section 4.2.4. For each candi-
date solution, the constraint handling methods and ob-
jective evaluation procedure are presented in Sections 
5.2 and 5.3, respectively. 

It should be mentioned that at the initial time 
0t  of 

the project, the proactive scheduling is also based on the 
dε-MOEA procedure shown in Fig. 2. The differences are 
the random population initialization is used in Step 1 
instead of the heuristic population initialization, and 
when evaluating an individual, only three objectives 
(without stability) are considered. 

4.2.2 Update of the Project State 

At each scheduling point 
lt  (

0lt t ), the project state 

should be updated first.  

(i) The finished effort of each task from 0t  to 
lt  should 

be calculated. If a task has been completed by lt , its cor-

responding vertex and incident edges are removed from 
the TPG. 

(ii) Information about the new tasks arriving since the 

previous scheduling point 
1lt 

 must be gathered. The 

new tasks and their task precedence are added into the 
TPG. 

(iii) For each task, whether it is available or not at 
lt  is 

determined by checking the three conditions introduced 
in Table 2. 

As a result of the above three steps, all the current 
available employees, available tasks, and the updated 

TPG can be used for rescheduling at lt . 

4.2.3 Heuristic Population Initialization in 
Rescheduling 

With the aim of utilizing the dynamic features of MOD-
PSP and accelerating the convergence speed of the algo-
rithm, several heuristic strategies are incorporated in 
constructing the initial population of dε-MOEA.  

(1) Exploitation of the dynamic event characteristics. 
Inspired by the schedule repair often used in production 
scheduling, which refers to local adjustments to the orig-
inal schedule and has the ability of preserving the sys-
tem stability well [15], three schedule repair strategies 
are specifically designed for MODPSP to exploit the dy-
namic event features. Firstly, in the case of employee 
leaves, all the unaffected tasks remain unchanged both 
for their employees and dedications. For each affected 
task to which the leaving employee was assigned, the 
condition of whether the remaining employees in the 
task team can satisfy the task skill constraint is checked. 
If yes, their dedications to the task are kept unchanged. 
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Otherwise, other available employees with relatively 
higher proficiencies are found to join the task team to 
satisfy the skill requirement. Secondly, in the case that 
an employee returns, for each task left from the previous 
schedule, if its team size is less than the maximum head-
count, and the returning employee has one of the task 
skills, then he/she is assigned to the task to speed up the 
task progress. Otherwise, the previously scheduled em-
ployees and dedications remain unchanged. For each 
new arriving regular task, or each previously unavaila-
ble task that becomes available again due to the employ-
ee return, the dedications of the available employees to it 
are generated at random. Thirdly, in the case of new 
urgent task arrivals, the employees and their dedications 
assigned to each task left from the previous schedule are 
kept unchanged, while the dedications to the new tasks 
are generated at random. In the above cases, if overwork 
of any available employee appears, the normalization 
method explained in 5.2.1 is applied. The result of the 
schedule repair is called the schedule repair solution.  

(2) Exploitation of the history information. At each 
scheduling point, information left from the previous 
schedule is regarded as the history information which 
can be utilized. The dedication allocations of the availa-
ble employees to the available tasks in the old schedule 
are called the history solution.  

(3) Incorporation of random individuals. In order to 
introduce diversity, some random individuals are creat-
ed in the initial population. The dedication of each avail-
able employee to each available task is generated uni-
formly at random from the set 

 0, ( ) 1 , , ( )maxded maxded

i l i l
e t k e t k k  . 

In this paper, 20% of the initial population are formed 
with the history solution and its variants by mutation, 
30% with the schedule repair solution and its variants, 
and 50% with the random individuals. 

4.2.4 Decision Making  

In practice, at each scheduling point, once a set of non-
dominated solutions are found by dε-MOEA, they are 
provided to the software manager for selection, and then 
the selected schedule is implemented in the project. 
However, in our experiments, it is not practical to have a 
person for taking decisions. Thus, an automatic decision 
making method proposed in our previous work [30] is 
adopted, and the procedure is briefly given as follows. 

Step i: Construction of the pairwise comparison ma-
trix. Our MODPSP uses N_o= 4 objectives to be opti-
mized. The pairwise comparison questions of ―How im-

portant is the objective 
i

f  relative to 
j

f ?‖ 

( , 1,2, , _i j N o , j i ) are answered by the software 

manager a priori. So there are _ ( _ 1) / 2N o N o   = 4 (4 

– 1)/2 = 6 comparisons in total in our case. Then the 

pairwise comparison matrix  1 _   _
C

ij N o N o
c


  can be con-

structed by the nine-point scale in Analytic Hierarchy 
Process (AHP) [31], which describes the degree of the 
preference for one objective versus another. 

Step ii: Estimation of the weight vector  
_   1

w  
i N o

w


  

for multiple objectives. The logarithmic least squares 
method [32] is adopted. The geometric mean of each row 

in the matrix 
1

C  is calculated, which is then normalized 

by dividing it by the sum of them.  
Step iii: Normalization of the objective values. Each 

objective is normalized as: 

   max max min_ ( )= ( )
i i i i i

n f x f f x f f  , 1,2, , _i N o    (12)                         

where max

i
f  and min

i
f  are the maximum and minimum 

objective values among all the non-dominated solutions 
obtained at the current scheduling point.  

Step iv: Calculation of the utility value. The weighted 
geometric mean of the multiple objective values is used 
to find the utility value for each non-dominated solution: 

                         
_

 

_

1

( ) _ ( )
N o

w wi ii

N o

i

i

U x n f x




                      (13)                                  

Step v: Choose the solution with the maximum utility 
value as the final schedule.  

Note that the pairwise comparison matrix and the 
weight vector in Steps i and ii are determined before-
hand and kept unchanged during the dynamic process. 
Only Steps iii, iv, and v are performed at each schedul-
ing point during the project execution. 

Here, we give an example of the above decision mak-
ing method. Before the beginning of the project, assume 
that the software manager considers that the objectives 

I
duration  and 

I
cost  are of the equal importance; robust-

ness and stability are of the equal importance; and the 

intensity scale of the importance of 
I

duration  (or 
I

cost ) 

over robustness (or stability) is set as the intermediate 
value between equal importance and weak importance. 
Thus the pairwise comparison matrix for the four objec-
tives is constructed according to the nine-point scale in 
AHP: 

 1 4 4

1 1 2 2

1 1 2 2
C =

1 2 1 2 1 1

1 2 1 2 1 1

ij
c



 
 
 
 
 
 

, 

and  
4  1

w  [0.3333 0.3333 0.1667 0.1667]T

i
w


   can be 

obtained according to the above Step ii. At each schedul-
ing point during the project execution, after normalizing 
each objective according to (12), the utility value of each 
non-dominated solution can be calculated based on (13). 
Then, the non-dominated solution with the highest utili-
ty value is chosen. 

There have been AHP-related decision making meth-
ods in the existing work. Javanbarg et al. [33] proposed a 
fuzzy AHP decision making model to deal with the im-
precise judgments of decision makers, and then a fuzzy 
prioritization method was applied to derive exact priori-
ties from consistent and inconsistent fuzzy comparison 
matrices. Kim and Langari [34] gave an adaptive AHP 
for decision making in the dynamically changing traffic 
environment, which could provide an optimal relative 
importance matrix under different traffic situations and 
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driving modes. Bernardon et al. [35] presented a mul-
ticriteria decision-making process for solving the re-
mote-controlled switch allocation problem based on 
AHP. In [33], the weight of each objective was set as the 
algebraic mean of each row in the normalized pairwise 

comparison matrix 
1

C , and in [34], the weight was set as 

the element in the eigenvector associated with the max-

imum eigenvalue of 
1

C . Both [33] and [34] used the 

weighted algebraic mean to evaluate the utility of each 
alternative. However, when estimating the weight vector 

 
_   1

w  
i N o

w


 , it is expected that the entry =
ij i j

W w w  in 

the matrix 
_   _

W ( )
ij N o N o

W


  will provide the best fit to the 

judgement 
ij

c  in 
1

C  [31]. Thus, in our work, the loga-

rithmic least squares method is used to calculate the 
weight vector based on the minimization of the distance 

between 
1

C  and W . Meanwhile, the weighted geomet-

ric mean, which is considered as the optimal method to 
find the utility value for the alternative [36], is employed.  

5. DETAILS OF OUR IMPLEMENTATION 

5.1 Representations and Variation Operators 

In MODPSP, the solution at each scheduling point 
lt  is a 

dedication matrix  
 + ( )

X( ) ( )
I new l

l ij l M N N t
t x t


 , where 

( ) 0,  maxded

ij l i
x t e   . We employ binary string chromo-

somes to encode solutions in dε-MOEA. nb  bits are used 

to represent an ( )
ij l

x t , so that 

 ( ) 0, 1 , ,maxded maxded

ij l i i
x t e k e k k   , 2 1nbk   .  As men-

tioned in Section 3.4, in X( )
l

t , only the values of 

 ( ) ( ) | ( ) 1 and ( ) 1available available

ij l ij l i l j l
x t x t e t T t    have to be 

searched, while other elements should be 0. In order to 

improve the efficiency of dε-MOEA, only such ( )
ij l

x t are 

encoded in the chromosome, which has a length of 

_ _ ( ) _ _ ( )
l l

e ava set t T ava set t nb   bits (     means car-

dinality of a set). The chromosome should be decoded 
into a dedication matrix for the convenience of objective 
evaluation. Fig. 3 gives an example of the representation 
of a binary chromosome and its decoded dedication ma-

trix, where there are two available employees 
1

e , 
2

e , 

two available tasks 
2

T , 
3

T , one leaving employee 
3

e , 

one finished task 
1

T , and 3nb  . 

In dε-MOEA, the 2-D single point crossover operator 
[3], which is designed for matrices, and the bit-flip muta-
tion are employed as variation operators. 

1 1 0 0 1 1 1 1 1 0 0 0

6/7 3/7 1 0

x12 x13 x22 x23

chromosome dedication matrix

1 1

2

6 3
0

7 7

0 0

0 0 0

maxded maxded

maxded

e e

e

 
 
 
 
 
 
 

 
Fig. 3. An example of the representation of a chromo-
some and its decoded dedication matrix. 

5.2 Constraint Handling 

5.2.1 Handling the No Overwork Constraints 

In [3], overwork is handled by penalizing the fitness 
value of a schedule. As shown in their experimental re-
sults, the no overwork constraints are difficult to be sat-
isfied by this method, especially when the number of 
tasks or employees is increased, or the employees’ skills 
are decreased, or the project demands more skills. A 
modification to the dedication normalization method 
proposed in [2] is employed here. 

At time t’, if the no overwork constraint for the em-

ployee 
i

e  is violated, i.e., _ t' maxded

i i
e work e , then his/her 

dedication ( )
ij l

x t  to each active task 
j

T , which is being 

performed at t’, is divided by _ t' maxded

i i
e work e . If 

_ t' maxded

i i
e work e , then the dedication is not normalized. 

The normalized value of the dedication ( )
ij l

x t  is denoted 

as ( )
ij l

d t , and we have 

 ( ) ( ) max 1, _ t' maxded

ij l ij l i i
d t x t e work e . The normalized 

dedications ( )
ij l

d t  are the ones that employees will use at 

any moment after 
l

t  in order to avoid overwork. This 

method allows an employee to divide his/her dedica-
tions to several tasks, and it is guaranteed that the no 
overwork constraints can always be satisfied by such an 
adjustment. 

5.2.2 Handling the Task Skill Constraints  

In order to incorporate the proficiency of each employee 
for different tasks when evaluating a schedule and han-
dling the task skill constraints, according to [10] and [12], 

the adjusted total dedication _ ( )
j l

A Td t  for task 
j

T  can 

be calculated as follows: 

First, the total dedication ( )
j l

Td t of all the available 

employees for 
j

T  is: 

                               
_ _ ( )

( ) ( )
i l

j l ij l

e e ava set t

Td t d t


                                 (14) 

Second, the total fitness ( )
j l

F t  of all the available em-

ployees for the task j
T  is calculated:  

_ _ ( )

( ) ( ) ( )
i l

Proficiency

j l ij ij l j l

e e ava set t

F t e d t Td t


 
  
 

              (15) 

where ( )
j l

F t  is a fraction of the total dedication spent 

by employees to the task j
T . The explanation for this 

is as follows. Even though employees have a dedica-

tion of ( )
ij l

d t  for the task j
T , if their proficiency on the 

skills needed for the task are low, j
T  will take longer 

to finish, as if the employees’ dedications were lower 

than ( )
ij l

d t . (15) reduces the dedications of employees 

to tasks based on their proficiency. 

Third,  ( )
j l

F t  is converted to a cost drive value ( )
j l

V t : 

                   ( ) max 1,8 ( )*7 0.5
j l j l

V t round F t                   (16) 
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where the value of  ( )
j l

V t  ranges from 1 to 7. ( ) 1
j l

V t   

indicates the assigned employees are the most suitable 

for task 
j

T  , and vice versa. This conversion was pro-

posed by [12]. 

Fourth, the adjusted total dedication _ ( )
j l

A Td t , 

which takes into account the proficiency of the employ-

ees, can be obtained: 

_ ( ) ( ) ( )
j l j l j l

A Td t Td t V t                       (17) 

where _ ( )
j l

A Td t  is in person. 

      Assume _ ( )rem eff

j l
T t  is the remaining effort of task 

j
T  

at 
l

t , then the time required to finish 
j

T  is  

         _ _( ) _ ( ) ( ) ( ) ( )rem eff rem eff

j l j l j l j l j l
T t A Td t T t Td t V t        (18) 

At the scheduling point 
lt , if a candidate schedule is 

infeasible because certain task skills are not covered by 
the allocated employees, then very high penalty values 
are assigned to the objectives, as suggested in [2]. Sup-
pose reqsk  is the number of missing skills in an infeasi-

ble schedule. Each objective is penalized as follows:    

 

 

1

_ _

_ _ ( ) _ _ ( )
_ _ ( )

_ _

_ _ ( )
_ _ ( )

_

( )

2 ( ) min max

2 ( ) min 7)

= 14

i l j l
j l

i l
j l

l I

est rem eff maxded

j l i j
e e ava set t T T ava set t

T T ava set t

est rem eff maxded

j l i
e e ava set t

T T ava set t

est re

j

f t duration

reqsk T t e k V

reqsk T t e k

reqsk k T

 







  

  

 





_

_ _ ( )
_ _ ( )

( ) min
i l

j l

m eff maxded

l i
e e ava set t

T T ava set t

t e






                                                                                              (19) 

2

_ _ _

_ _ ( ) _ _ ( )

_ _ _

_ _ ( ) _ _ ( )

( )

        2 ( ) 7

         = 14 ( )

i l j l

i l j l

l I

over salary est rem eff

i j l

e e ava set t T T ava set t

over salary est rem eff

i j l

e e ava set t T T ava set t

f t cost

reqsk e T t

reqsk e T t

 

 



    

  

 

 

                                                                                   

(20)  

3
( ) 2

l rob
f t robustness reqsk C                                           (21) 

4

_ _ ( )

( )

2 _ _ ( ) _ _ ( ) max
i l

l

maxded

l l i
e e ava set t

f t stability

reqsk e ava set t T ava set t e




    
 (22)                                                                                         

where 
rob

C  is a constant, and we set 100
rob

C   here.  

All the four penalized values are higher than the cor-

responding objective values of any feasible schedule, 

since, at lt : 

 The duration is always at most 
_ _

_ _ ( )
_ _ ( )

7 ( ) min
i l

j l

est rem eff maxded

j l i
e e ava set t

T T ava set t

k T t e




  . The expla-

nation for this is as follows. In the worst case, tasks 
are processed one by one. The total dedication for 

each task is the minimum value 
_ _ ( )
min

i l

maxded

i
e e ava set t

e k


, 

and the cost driver value of each task takes the 
maximum value 7; 

 The cost is always at most 
_ _ _

_ _ ( ) _ _ ( )

( ) 7
i l j l

over salary est rem eff

i j l

e e ava set t T T ava set t

e T t
 

   . The ex-

planation for this is as follows. In the worst case, 
all the available employees have to dedicate to all 

tasks with his/her overwork salary _over salary

i
e . 

Moreover, the total dedication of each employee to 
each task equals to the total effort required for this 

task _ _ ( ) 7est rem eff

j l
T t  , where 7 is the maximum pos-

sible cost driver value of each task. This is the total 
dedication as if each employee was the only em-
ployee working for the task, i.e., the maximum 
possible total dedication of the employee for the 
task; 

 The stability value is always at most 

_ _ ( )
_ _ ( ) _ _ ( ) max

i l

maxded

l l i
e e ava set t

e ava set t T ava set t e


  . In 

the worst case, dedication deviations of all the 
available employees to all the available tasks are 

_ _ ( )
max

i l

maxded

i
e e ava set t

e


; 

 The robustness value was always much smaller 

than the constant 
rob

C  from our experimental ob-

servations; 
 Moreover, the penalty values are proportional to 

the value of reqsk , which means the penalty will 

decrease if the number of missing skills decreases. 
This penalized objective vector gives a strong gra-
dient for search algorithms towards feasible re-
gions. 

5.2.3 Handling the Maximum Headcount 
Constraints 

In order to improve the efficiency of our algorithm, two 
heuristic operators are performed for a candidate sched-
ule before the objective evaluation. The first one is to set 
the dedication of an employee for a task to 0 if he/she 
has none of the skills required by the task, i.e., if 

Proficiency

ij
e =0, then set ( )

ij l
x t =0.  

The second one is to check whether the team size of 

each available task _ _ ( )
j l

T T ava set t  is larger than its 

maximum headcount maxhead

j
T . If maxhead

j
T  is exceeded, then 

the following procedure is performed: 1) sort the profi-

ciency Proficiency

ij
e  of all the employees in the team of 

j
T ; 2) 

start from the employee with the lowest proficiency and 
have a check. If removing him/her does not violate the 
task skill constraints, then he/she can be removed (set 

the corresponding ( )
ij l

x t =0), otherwise, he/she is kept in 

the team; 3) move to the next employee in the sorting list 
and do the same operation as in 2) for him/her. This 

procedure continues until the team size of 
j

T  is within 

the limit or all the employees in the team have been 

checked. If the team size cannot be reduced to maxhead

j
T  

without violating the task skill constraints, then it can be 

larger than maxhead

j
T , but a penalty is given to the effort of 

j
T . As indicated in [37], the communication overhead 

must be added to the amount of work to be done. If each 
part of the task has to be separately coordinated with 
each other part, then the effort requires 
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 1 2teamsize teamsize

j j
T T   times as much pairwise intercom-

munication as that of having only two employees in the 

task, where teamsize

j
T  denotes the number of employees 

assigned to 
j

T . Thus, if teamsize maxhead

j j
T T , then we give a 

penalty to the effort of 
j

T  as follows: 

( 1) 2
1

teamsize teamsize

j jeff eff

j j

T T
T T

Z

  
   

 
                (23) 

where eff

j
T  is the effort of 

j
T  without considering the 

overhead, and Z  is a parameter. We have performed 
some preliminary experiments and found that when Z=5, 
the relationship of the time to finish the task versus the 
number of employees has a similar behavior to the curve 
of Fig. 2.4 shown in [37]. 

In [10] and [12], the maximum headcount constraints 
were also considered. However, neither of them pre-
sented any method to handle such constraints, which 
might produce infeasible solutions and introduce com-
munication overheads. Here, the approach of penalizing 
the task effort given in (23) fills the gap in the literature. 

5.3 Objective Evaluations 

The pseudo code of the objective evaluation procedure 

at the scheduling point 
lt  is given in Fig. 4. At first, the 

procedure tests whether the dedication matrix X( )
l

t  is 

feasible in that the task skill constraint of every available 
task is satisfied (lines 1-4). If there is no missing skills 
( 0reqsk  ), two heuristic operators introduced in Section 

5.2.3 are performed, and the modified dedication matrix 
'X ( )

l
t  is obtained (lines 5-6). If the team size of 

j
T  is still 

bigger than maxhead

j
T  after the heuristic operators, then 

give a penalty to the effort of 
j

T   (lines 7-12). For 'X ( )
l

t , 

two efficiency objectives of 
I

duration  and 
I

cost  are eval-

uated by calling the function Evaluate_duration_cost 
(line 16), the procedure of which is given in Fig. 5. If the 
task skill constraints are violated ( 0reqsk  ), output the 

penalized objective vector (lines 17-19) and stop the pro-
cedure. Otherwise, the robustness and stability values of 

'X ( )
l

t  are calculated (lines 20-36). Note that the modified 

dedication matrix 'X ( )
l

t  is also output by the procedure, 

which will replace X( )
l

t  in the succeeding optimization. 

Procedure 1 Evaluate_objective  

Input: _ _ ( )
l

T ava set t , _ _ ( )
l

e ava set t , ( ( ), ( ))
l l

G V t A t , _ _ ( )est rem eff

j l
T t ,

_
( )qrem eff

j l
T t , X( )

l
t ,

1
X( )

l
t


, 
1

_ _ ( )
l

T ava set t


, 
1

_ _ ( )
l

e ava set t


                 

// ( ( ), ( ))
l l

G V t A t  is the TPG at 
l

t , and X( )
l

t  is the dedication matrix at 
l

t . 

Output: ( ( )
I l

duration t , ( )
I l

cost t , ( )
l

robustness t , ( )
l

stability t , 'X ( )
l

t )     

1: Let : =0reqsk . 

2: for all tasks j
T  in _ _ ( )

l
T ava set t  do 

3:     
_ _ ( )

: + \ { | 0}
i l

j i ij

e e ava set t

reqsk reqsk req skill x


  .       // reqsk  is the total number of missing skills 

4: end for 

5: if 0reqsk   then 

6:        Perform the two heuristic operators introduced in Section 5.2.3, and obtain the modified dedication matrix 'X ( )
l

t . 

7:        for all tasks j
T  in _ _ ( )

l
T ava set t  do 

8:            if 
j

teamsize of  j
T  after performing heuristic operators exceeds maxhead

j
T , then 

9:              
 

_ _ _ _
1 2

( ) : ( ) 1
j jest rem eff est rem eff

j l j l

teamsize teamsize
T t T t

Z

  
   
 
 

; 

10:              
 _ _

1 2
( ) : ( ) 1q q j jrem eff rem eff

j l j l

teamsize teamsize
T t T t

Z

  
   
 
 

; 

11:            end if 

12:        end for 

13: else 

14:     Let 'X ( ) : X( )
l l

t t  

15: end if 

16: Call the function:  

[ ( )
I l

duration t , ( )
I l

cost t ]:=Evaluate_duration_cost( _ _ ( )
l

T ava set t , _ _ ( )
l

e ava set t , ( ( ), ( ))
l l

G V t A t , _ _ ( )est rem eff

j l
T t , 'X ( )

l
t , reqsk ).  

            // _ _ ( )est rem eff

j l
T t represents the initial scenario. 

17: if 0reqsk   then 

18:     Output ( ( )
I l

duration t , ( )
I l

cost t , 2
rob

reqsk C  ,
_ _ ( )

2 _ _ ( ) _ _ ( ) max
i l

maxded

l l i
e e ava set t

reqsk e ava set t T ava set t e


    , 'X ( )
l

t ); exit. 

19: end if 

20: for all the sampled task effort scenarios q
  in   |  1, 2, ,

q
q N   do        // N is the sample size 

21:      Call the function:  
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[ ( )
q l

duration t , ( )
q l

cost t ]:=Evaluate_duration_cost( _ _ ( )
l

T ava set t , _ _ ( )
l

e ava set t , ( ( ), ( ))
l l

G V t A t , 
_

( )qrem eff

j l
T t , 'X ( )

l
t , reqsk ).   

                     // 
_

( )qrem eff

j l
T t  represents the qth sampled scenario. 

22: end for 

23: Let 

2 2

1 1

( ) ( ) ( ) ( )1 1
( ) : max 0, max 0,

( ) ( )

N N
q l I l q l I l

l

q qI l I l

duration t duration t cost t cost t
robustness t

N duration t N cost t


 

       
          

      
  .    // 1   

24: Let ( ) : 0
l

stability t  . 

25: for all employees 
i

e  in 
1

_ _ ( ) _ _ ( )
l l

e ava set t e ava set t


 do 

26:     for all tasks 
j

T  in 
1

_ _ ( ) _ _ ( )
l l

T ava set t T ava set t


 do 

27:           if '

-1
( )=0 and ( ) 0

ij l ij l
x t x t    then 

28:                Let : 2
ij

  ; 

29:           else if '

-1
( ) 0 and ( ) 0

ij l ij l
x t x t   then 

30:                Let : 1.5
ij

  ; 

31:           else 

32:                Let : 1
ij

  . 

33:           end if  

34:           Let '

-1
( ) : ( ) ( ) ( )

l l ij ij l ij l
stability t stability t x t x t     

35:     end for 

36: end for            

37: Output ( ( )
I l

duration t , ( )
I l

cost t , ( )
l

robustness t , ( )
l

stability t , ' ( )
l

tX ); exit. 

Fig. 4. Pseudo code of the objective evaluation procedure at the scheduling point 
lt  

The procedure of evaluating duration and cost shown 
in Fig. 5 is a modification to Algorithm 1 in [2], which 
provides a schedule-driven estimation [38] of duration 
and cost. Algorithm 1 considered all the tasks and em-
ployees in the static PSP, while our procedure here is for 
computing the elapsed time and cost of processing the 
available tasks by the available employees at a specific 
scheduling point. Moreover, the skill proficiencies and 
overtime salaries are taken into account in our work. If 
the task skill constraints are satisfied, the procedure itera-
tively constructs the schedule (Lines 5-34). Line 6 checks 
which tasks can be active at the current moment of time 
according to the TPG. The dedication is normalized for 

employees whose total dedication to all the active tasks 
exceeds the upper limit (line 12). Next, the total dedica-
tion of employees for a task is calculated (Line 14), and 
the total fitness for the task is evaluated and converted to 
a cost drive value by (15) and (16) (lines 15-16). Line 18 
determines the earliest moment of time t’ at which a task 
finishes. The finished task and its incident edges are re-
moved from the TPG (line 31), thus new tasks are allowed 
to become active in the next iteration based on the TPG. 
Duration and cost are accumulated along all the iterations 
(lines 19-27). Line 29 computes the remaining effort of 
each active task, which will be used in the next iteration if 
the task has not finished yet. 

Procedure 2 Evaluate_duration_cost 

Input: _ _T ava set , _ _e ava set , ( , )G V A , _rem eff

j
T , X , reqsk      // _rem eff

j
T  is the remaining effort of task j

T  

Output: ( duration , cost )  

1: if 0reqsk   then        // reqsk  is the total number of missing skills 

2:      Output ( _ _

_ _ ( )
_ _ ( )

14 ( ) min
i l

j l

est rem eff maxded

j l i
e e ava set t

T T ava set t

reqsk k T t e




   , _ _

_ _ _ _

14
i j

over salary rem eff

i j

e e ava set T T ava set

reqsk e T
 

     ); exit. 

3: end if 

4: Let : =0duration , : =0cost . 

5: while ( , )G V A  , do 

6:    Let 'V  be the set of all the tasks in _ _T ava set  without incoming edges in ( , )G V A . 

7:    if  'V   then 

8:        Output ‚Problem instance not solvable!‛; exit. 

9:    end if 

10:   for all tasks j
T  in V'  do 

11:        for all employees 
i

e  in _ _e ava set  do 

12:              Let 
'

: max 1,
m

maxded

ij ij im i

T V

d x x e


 
   

 
 .     //normalization 

13:        end for 

14:        Compute the total dedication for j
T : 

_ _

:
i

j ij

e e ava set

Td d


  ; 
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15:        Compute the total fitness for j
T : 

_ _

:
i

Proficiency

j ij ij j

e e ava set

F e d Td


 
  
 
 ; 

16:        Convert 
j

F  to a cost drive value   : max 1,8 *7 0.5
j j

V round F   ;   // 1
j

V    means the employees are the most suitable for j
T . 

17:    end for 

18:    Let   _

'
: min

j

rem eff

j j j
T V

t' T Td V


 . 

19:    Let :duration duration t'  . 

20:    for all employees 
i

e  in _ _e ava set  do 

21:        Compute the total dedication of 
i

e : 
'

:
j

i ij

T V

Ed d


 ; 

22:        if 1
i

Ed      then       //within the normal working time 

23:            Let _: norm salary

i i
cost cost t' e Ed     ; 

24:        else                            //overtime working time 

25:            Let _ _: 1 ( 1)norm salary over salary

i i i
cost cost t' e t' e Ed        . 

26:        end if 

27:    end for 

28:    for all tasks j
T  in V'  do 

29:        Let  _ _:rem eff rem eff

j j j j
T T t' Td V   . 

30:        if _ 0rem eff

j
T   then 

31:            Mark j
T as finished, and remove it and its incident edges from ( , )G V A . 

32:        end if 

33:     end for 

34: end while 

35: Output (duration, cost); exit. 

Fig. 5. Pseudo code of evaluating duration and cost. 

6 EXPERIMENTAL STUDIES 

Considering the uncertainties and dynamic events that 
often occur in dynamic environments of a software pro-
ject, it is desirable to provide the software manager with 
insight into whether robustness and stability should be 
taken into account together with project duration and 
cost, and which rescheduling method to choose for solv-
ing MODPSP. This insight should be supported by evi-
dences illustrating the influence of robustness and stabil-
ity on the project duration and cost and also on the per-
formance of the algorithm. The evidence should also 
demonstrate which rescheduling algorithm is likely to 
behave better according to the evaluation criteria that 
may affect the software manager’s decision. With this 
aim, this section presents a comprehensive study of the 
influence of the robustness objective on proactive sched-
uling, compares our rescheduling method, dε-MOEA, 
with the heuristic dynamic scheduling based on the 
whole project duration and cost, and also compares five 
MOEA-based rescheduling methods based on the con-
vergence, distribution and spread performances that are 
usually considered in multi-objective optimization. 

6.1 MODPSP Instances 

In our experiments, both the instances derived from Al-
ba and Chicano’s benchmarks [3], and those derived 
from real-world projects were used.  

Since there are no standard benchmarks for the 
MODPSP, 18 dynamic instances are generated based on 
the 18 static PSP instances of benchmark 4 in [3]. The 

reason for selecting these 18 instances is that they in-
clude the variants of three important parameters in PSP, 
which are the number of employees, the number of tasks, 
and the number of employee skills. To capture more 
features of the realistic PSP, the MODPSP instances gen-
erated here differ from the static ones of [3] in the fol-
lowing aspects: (1) The task effort uncertainties and 
three kinds of dynamic events (new task arrivals, em-
ployee leaves, and employee returns), which often occur 
during the project execution, are incorporated. (2) The 
maximum headcount of each task, the skill level of each 
employee, part-time jobs, and overtime working of em-
ployees are all taken into account.  

The 18 dynamic instances derived from benchmark 4 
in [3] contain different software projects. The total num-
ber of different skills required by the project is 10 in each 
instance, and each task requires 5 skills randomly select-
ed from them. The number of employees can be 5, 10, or 
15, and the number of skills possessed by each employee 
ranges from 4 to 5, or from 6 to 7. 20% of the employees 
do part-time jobs, whose maximum dedications are uni-
formly generated from [0.5, 1) at random; another 20% 
can work overtime, whose maximum dedications are in 
the interval (1, 1.5]; and the maximum dedication of each 
remaining employee is set to 1.0 (full time). According to 
[3], the normal monthly salary of each employee is sam-
pled from a normal distribution with the mean of 10000 
and standard deviation of 1000. The overtime salary is 
set to be the normal monthly salary multiplied by 3. If an 
employee has one skill, the proficiency score is sampled 
uniformly from (0, 5] at random, otherwise it is set to 0.  

At the initial time, the number of tasks can be 10, 20, 
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or 30. Then it is assumed that 10 new tasks arrive one by 
one following a Poisson distribution. We suppose the 
mean time between task arrivals is 1 month. We assume 
20% of the new tasks are urgent, and the remaining 80% 
are regular. The simulation continues until all the origi-
nal and new tasks have finished. Variances of task ef-
forts are assumed to follow a normal distribution. Each 
task effort is assigned different values of mean and 
standard deviation, which vary uniformly in [8, 12] and 
[4, 6] (unit: person-month), respectively. These values 
are chosen such that on average, the mean of a task ef-
fort is 10 and the standard deviation is 5 [3]. The TPG for 
the initial tasks is generated using the method in [3]. For 
a newly arrived task, the precedence of the urgent or the 
regular one is inserted preceding or succeeding a ran-
domly selected unfinished task, respectively.  

During the project execution, employee leaves and re-
turns are assumed to follow a Possion distribution. As 
indicated in Section 3.1, each employee is assigned dif-
ferent mean time between his/her leaves and mean time 
to his/her return, which vary uniformly in [11, 13] and 
[0.4, 0.6] (unit: month), respectively. These values are 
chosen such that on average, an employee is available 
for 11.5 months per year, and then asks for a leave of 0.5 
months. Hence, an employee’s availability is about 
95.83%.      

The 18 MODPSP instances randomly generated ac-
cording to the above principles are named as 
sT#1_dT#2_E#3_SK#4-#5, where sT#1 means the num-
ber of initial static tasks, dT#2 means the number of dy-
namically arriving tasks, E#3 means the total number of 
employees, and SK#4-#5 means each employee has #4 to 
#5 skills. For example, sT30_dT10_E15_SK6-7 denotes 
that there are 30 tasks in the project initially, then 10 new 
tasks arrive one by one dynamically, and there are in 
total 15 employees, each of whom has 6-7 skills. 

Additionally, three real-world instances (named Re-
al_1, Real_2 and Real_3) derived from business software 
construction projects for a departmental store [10] were 
also used in our experiments. Since these real instances 
are originally static PSPs, uncertainties and dynamic 
events are introduced to transfer them into the dynamic 
instances. For task effort uncertainties, the original task 
effort in the static real instances is regarded as the initial-
ly estimated effort, and is set as the mean value of the 
normal distribution which each task effort follows, and 
the standard deviation is assumed to be 10 percent of the 
mean value. The three kinds of dynamic events occur in 
the same way as that described in the above 18 random-
ly generated instances. In addition, the maximum dedi-

cation maxded

i
e  in our model was calculated from the real 

instances as follows: 

 
maximum possible working hours per month

 
legal normal working hours per month

maxded

i
e  . 

When evaluating the cost in the procedure shown in 
Fig. 5, the basic salary was incorporated as in [10]. 

In total, there are 21 test instances used in our exper-
iments, which were performed on a personal computer 
with Intel core i5, 3.2 GHz CPU and 4 GB RAM. 

We do not currently have access to real world soft-
ware project data containing information about their 
dynamic and uncertain events. The simulation nature 
and the lack of empirical validation with data of com-
pletely real nature is a threat to validity of this study. In 
order to mitigate this threat, we used several simulated 
software projects containing different numbers of tasks, 
employees, skills, dynamic events and uncertainties. We 
have also used three real world software projects with 
simulated dynamic and uncertain events. Once real 
world data with known dynamic and uncertain events 
become available for an empirical study, further anal-
yses should be performed. 

6.2 Parameter Settings 

Parameter settings of our rescheduling method, dε-
MOEA, in all the experiments are given in Table 4. In 
each independent run, the algorithm stops after 10000 
objective vector evaluations. In the decision making pro-
cedure, the pairwise comparison matrix for the four ob-
jectives was assumed to be  

 1 4 4

1 1 2 2

1 1 2 2
C =

1 2 1 2 1 1

1 2 1 2 1 1

ij
c



 
 
 
 
 
 

. 

Hence, the corresponding weight vector is 

 
4  1

w  [0.3333 0.3333 0.1667 0.1667]T

i
w


  . 

 

TABLE 4 

PARAMETER SETTINGS OF THE RESCHEDULING 

METHOD  

Population size of dε-MOEA       100 

Chromosome         Binary encoding,  3 bits for each ( )
ij l

x t , i.e. nb=3 

Crossover possibility                      0.9 
Mutation possibility              1/L, where L is the chromosome length   
maximum number of objective vector evaluations     10000 

6.3 Research Questions 

The research questions (RQ) that our experimental stud-
ies aim to investigate are as follows: 

RQ1: Is our initial proactive scheduling effective in 
improving the schedule robustness to task effort uncer-
tainties by simultaneously considering the ―robustness‖ 
objective and two efficiency objectives? 

RQ2: Does our rescheduling method dε-MOEA im-
prove the project efficiency significantly compared 
to a heuristic dynamic scheduling method? Is the project 
efficiency sensitive to task effort variances when using 
our rescheduling method dε-MOEA? 

RQ3: Are the strategies designed in dε-MOEA effec-

tive compared to other MOEA-based rescheduling 

methods? These strategies include the dynamic optimi-

zation mechanism, introduction of the robustness and 

stability objectives, and heuristic initialization strategies. 
RQ4: What insights into trade-offs among objectives 

can be found in the Pareto fronts of software projects?  
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6.4 RQ1: Influence of the Robustness Objective 
on the Initial Proactive Scheduling 

This section aims to validate the effectiveness of the ini-
tial proactive scheduling in improving the schedule ro-
bustness to task effort uncertainties (the dynamic events 
occurring during the project execution are not consid-
ered here). Performance comparisons were done be-

tween our robust method (three objectives of 
I

duration , 

I
cost , and robustness were considered simultaneously, 

and it is called ε-MOEA-r), and the method where only 

two efficiency objectives (
I

duration  and 
I

cost ) were con-

sidered (it is called ε-MOEA-d). Aiming to compare the 
two methods within a multi-objective framework, the 
following steps were performed at the initial time of 
each of the 21 MODPSP instances:  

Step i: Two methods were applied, and two non-
dominated solution sets were produced, respectively. 
Then the value of the objective ―robustness‖ was calculat-
ed for the two methods using the same sampled efforts 
(100 task effort scenarios were sampled at random here), 
despite the fact that only one of them was optimizing 
this objective. When comparing the two methods in 
terms of Pareto domination, ―robustness‖ was also con-
sidered. 

Step ii: The non-dominated sets of the two methods 
were compared using the set cover metric C [39], which 

is defined as follows: suppose 
1 2
,  X X  are two solution 

sets. The metric C maps the ordered pair 
1 2

( , )X X  into 

the interval  0,  1 : 

    2 2 1 1 1 2 1 2

1 2

2

x ; x : x x  or F x F x
( , )

X X
C X X

X

   
 (24)                           

where 
1 2

x x  means solution 
1

x  Pareto dominates 
2

x , 

and F  is the objective vector. The metric C gives a com-
parison of two sets based on their domination or equali-

ty to each other.    1 2 2 1, ,C X X C X X  indicates that 
1

X  

is better than 
2

X  in terms of the metric C. 

Step iii: In order to check the overall performance im-
provement (or deterioration) on individual objectives by 
using ―robustness‖ as one of the multiple objectives, the 
non-dominated solutions of ε-MOEA-r were averaged 
along each of the three objectives, respectively, and also 
for ε-MOEA-d. The quantitative improvement (or dete-
rioration) of ε-MOEA-r over ε-MOEA-d on each objective 
is calculated as follows:  

 MOEA r MOEA d

0 MOEA d

_   _
( ) 100%,

_

1,2,3

i i

i

i

Avg f Avg f
Imp t

Avg f

i

 



   

 


  



  (25) 

where MOEA r_
i

Avg f    and MOEA d_
i

Avg f    represent the 

average of the non-dominated solutions (i.e., the overall 
performance) obtained by ε-MOEA-r and  ε-MOEA-d on 

the objective 
i

f , respectively. Since all objectives were to 

be minimized, we used a negative sign in (25). 
30 independent runs of both methods were replicated 

following the above experimental procedure on each 
problem instance. To significantly compare the metric C 
between ε-MOEA-r and ε-MOEA-d on the 21 instances, 
Wilcoxon rank sum tests with the significance level of 
0.05 were employed. The results are listed in Table 5. It 
can be seen that C(ε-MOEA-r, ε-MOEA-d) is significantly 
better than C(ε-MOEA-d, ε-MOEA-r) in 100% of the real-
world, and 72.22% of the random instances, respectively, 
and there is no significant difference between them in 
the remaining 27.78% of the random instances, which 
indicates that the convergence performance of our ro-
bust method ε-MOEA-r is better than or at least no 
worse than ε-MOEA-d in terms of Pareto domination.

 

TABLE 5  

STATISTICAL TESTS OF THE METRIC C BETWEEN ε-MOEA-r AND ε-MOEA-d FOR THE 21 MODPSP INSTANCES AT THE INITIAL 

TIME (THE SIGN OF ‘+/−/=’ IN A VS. B INDICATES THAT ACCORDING TO THE METRIC C, ALGORITHM A IS SIGNIFICANTLY BETTER THAN 

B, SIGNIFICANTLY WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN A AND B BASED ON THE WILCOXON RANK 

SUM TEST WITH THE SIGNIFICANCE LEVEL OF 0.05). 

Instance  
sT10_dT10_

E5_SK4-5 
sT10_dT10_
E10_SK4-5 

sT10_dT10_
E15_SK4-5 

sT10_dT10_E
5_SK6-7 

sT10_dT10_
E10_SK6-7 

sT10_dT10_
E15_SK6-7 

C(ε-MOEA-r, ε-MOEA-d) 
vs. C(ε-MOEA-d, ε-MOEA-r) 

p-value 
sign 

0.0039 
+ 

1.64E-6 
+ 

0.3309  
= 

3.30E-6 
+ 

1.13E-6 
+ 

7.99E-6 
+ 

Instance  
sT20_dT10_

E5_SK4-5 
sT20_dT10_
E10_SK4-5 

sT20_dT10_
E5_SK4-5 

sT20_dT10_E
5_SK6-7 

sT20_dT10_
E10_SK6-7 

sT20_dT10_
E15_SK6-7 

C(ε-MOEA-r, ε-MOEA-d) 
vs. C(ε-MOEA-d, ε-MOEA-r) 

p-value 
sign 

8.18E-4 
+ 

0.8865 
= 

0.0501 
= 

4.58E-8 
+ 

3.55E-6 
+ 

5.34E-4 
+ 

Instance  
sT30_dT10_

E5_SK4-5 
sT30_dT10_
E10_SK4-5 

sT30_dT10_
E15_SK4-5 

sT30_dT10_E
5_SK6-7 

sT30_dT10_
E10_SK6-7 

sT30_dT10_
E15_SK6-7 

C(ε-MOEA-r, ε-MOEA-d) 
vs. C(ε-MOEA-d, ε-MOEA-r) 

p-value 
sign 

0.0202 
+ 

0.1671 
= 

0.0079 
= 

4.94E-8 
+ 

6.37E-6 
+ 

5.45E-6 
+ 

Instance  Real_1 Real_2 Real_3    

C(ε-MOEA-r, ε-MOEA-d) 
vs. C(ε-MOEA-d, ε-MOEA-r) 

p-value 
sign 

0.0361 
+ 

2.86E-6 
+ 

0.0017 
+ 
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The overall performance improvement (or deteriora-
tion) of ε-MOEA-r over ε-MOEA-d on each objective was 
averaged over 30 runs and listed in Table 6. Wilcoxon 
rank sum tests with the significance level of 0.05 were 
employed to significantly compare the overall perfor-
mance on each objective obtained by each of the two algo-
rithms, and the results are also shown in Table 6. It can be 
seen from statistical results that compared to ε-MOEA-d, 
ε-MOEA-r improves the robustness significantly in 17 of 
the 18 random instances and all the 3 real instances, while 
only deteriorates the efficiency objective significantly 
(mainly the duration) in 6 of the 18 random instances and 
1 of the 3 real instances. From the results of overall per-
formance improvement, the improvement in robustness is 
much more than the deterioration in efficiency, which 
suggests that if the predictive schedules are generated by 
simultaneously considering robustness and efficiency, 
there will be a high chance of obtaining more robust 
schedules without seriously affecting efficiency. Note that 
this happens not only in the random instances, but also in 
the ones derived from real-world projects. Moreover, the 
better robustness performance obtained by ε-MOEA-r 
shows it can produce a set of trade-off schedules with 

lower duration delays and cost increases than ε-MOEA-d 
when facing task effort uncertainties, which suggests its 
ability to reduce the schedule sensitivity to uncertainties.  

Take Real_3 as an example to illustrate the behaviors 
of different algorithms. The initially estimated efforts of 
the 12 initial static tasks are 3, 2, 2, 2, 3, 1, 4, 3, 2, 2, 2, and 
3, and a disrupted task effort scenario is 2.84, 2.16, 1.76, 
2.16, 3.36, 1.13, 3.31, 3.28, 2.13, 1.87, 2.35 and 2.72 respec-

tively. Duration and cost in the initial (
I

duration  and 

I
cost ) and disrupted (

q
duration  and 

q
cost ) scenario of a 

randomly chosen schedule generated by ε-MOEA-d are 
shown in Table 7 and also for ε-MOEA-r. It can be seen 
that to get better robustness, the initial duration and cost 
of ε-MOEA-r are worse than those of ε-MOEA-d. Howev-
er, when facing the same task effort disruption, the dis-
rupted duration and cost for ε-MOEA-d becomes worse 
than both the initial and disrupted duration and cost for 
ε-MOEA-r, which illustrates that better robustness really 
compensates the worse initial cost and duration for ε-
MOEA-r. 

TABLE 6 

 PERFORMANCE IMPROVEMENTS (OR DETERIORATIONS) OF ε-MOEA-r OVER ε-MOEA-d AND STATISTICAL TESTS OF THE OVER-

ALL PERFORMANCE ON EACH OBJECTIVE ON THE 21 MODPSP INSTANCES AT THE INITIAL TIME (THE POSITIVE VALUE MEANS IM-

PROVEMENT AND IS IN BOLD. THE NEGATIVE VALUE MEANS DETERIORATION. THE SIGN OF ‘+/−/=’ IN A VS. B INDICATES THAT AC-

CORDING TO THE OVERALL PERFORMANCE ON EACH OBJECTIVE, ALGORITHM A IS SIGNIFICANTLY BETTER THAN B, SIGNIFICANTLY 

WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN A AND B BASED ON THE WILCOXON RANK SUM TEST WITH THE 

SIGNIFICANCE LEVEL OF 0.05)  

ε-MOEA-r 

vs.  

ε-MOEA-d 

Instance durationI costI robustness Instance durationI costI robustness 

sT10_dT10_

E5_SK4-5 

-1.63% 

(0.096 =) 

0.76% 

(0.15 =) 

4.05% 

(0.022 +) 

sT10_dT10_

E10_SK4-5 

-2.98% 

(0.22 =) 

-2.29% 

(0.15 =) 

5.11% 

(0.022 +) 

sT10_dT10_

E15_SK4-5 

3.29% 

(0.0017 +) 

-1.42% 

(0.16 =) 

2.56% 

(0.08 =) 

sT10_dT10_

E5_SK6-7 

-4.46% 

(0.12 =) 

-0.53% 

(0.21 =) 

6.42% 

(0.003 +) 

sT10_dT10_

E10_SK6-7 

2.33% 

(6.91E-4 +) 

-0.94% 

(0.14 =) 

7.88% 

(7.20E-5 +) 

sT10_dT10_

E15_SK6-7 

-6.13% 

(0.0087 −) 

0.33% 

(0.15 =) 

11.36% 

(0.023 +) 

sT20_dT10_

E5_SK4-5 

-1.79% 

(0.080 =) 

0.75% 

(0.52 =) 

13.42% 

(2.22E-5 +) 

sT20_dT10_

E10_SK4‐5 

-4.11% 

(8.66E-5 −) 

-1.03% 

(0.082 =) 

17.06% 

(8.88E-5 +) 

sT20_dT10_

E15_SK4-5 

-6.25% 

(0.047 −) 

-1.51% 

(0.59 =) 

16.70% 

(3.83E-5 +) 

sT20_dT10_

E5_SK6-7 

-2.15% 

(0.085 =) 

-1.14% 

(0.064 =) 

9.07% 

(0.0076 +) 

sT20_dT10_

E10_SK6-7 

-1.11% 

(0.058 =) 

-1.14% 

(0.59 =) 

3.62% 

(1.47E-7 +) 

sT20_dT10_

E15_SK6-7 

3.72% 

(4.46E-4 +) 

0.53% 

(0.75 =) 

5.84% 

(4.12E-6 +) 

sT30_dT10_

E5_SK4-5 

-0.58% 

(0.064 =) 

1.31% 

(0.077 =) 

9.53% 

(1.17E-4 +) 

sT30_dT10_

E10_SK4-5 

-7.86% 

(8.20E-7 −) 

-7.28% 

(0.66 =) 

32.25% 

(1.96E-10 +) 

sT30_dT10_

E15_SK4-5 

-1.31% 

(0.21 =) 

-0.17% 

(0.060 =) 

6.19% 

(5.27E-5 +) 

sT30_dT10_

E5_SK6-7 

-6.61% 

(0.0023 −) 

-0.94% 

(0.52 =) 

17.48% 

(2.60E-5 +) 

sT30_dT10_

E10_SK6-7 

-6.81% 

(4.22E-4 −) 

-2.11% 

(0.43 =) 

22.82% 

(3.96E-8 +) 

sT30_dT10_

E15_SK6-7 

-8.67% 

(6.36E-5 =) 

-0.28% 

(0.84 =) 

21.97% 

(2.83E-8 +) 

Real_1 
-6.25% 

(2.60E-8 −) 

-4.14% 

(4.12E-8 −) 

27.84% 

(1.61E-10 +) 
Real_2 

-0.31% 

(0.70 =) 

1.82% 

(0.028 +) 

9.29% 

(0.0018 +) 

Real_3 
-1.56% 

(0.36 =) 

1.53% 

(0.0468 +) 

2.13% 

(0.029 +) 
    

The values in the parentheses are p-values obtained from Wilcoxon rank sum tests. 
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TABLE 7 

AN EXAMPLE OF THE DURATION AND COST VARIANCE OBTAINED BY ε-MOEA-d AND ε-MOEA-r IN THE INITIAL AND DISRUPTED SCE-

NARIO 

 I
duration  

I
cost  

q
duration  

q
cost  robustness 

ε-MOEA-d 8.34 368583 8.81 380880 0.0563 

ε-MOEA-r 8.41 370630 8.68 378275 0.0516 

6.5 RQ2: Comparisons of the Proposed 
Rescheduling Method dε-MOEA against the 
Heuristic Dynamic Scheduling Method 

This section compares dε-MOEA with a heuristic dy-
namic scheduling method (it is called h-method), which 
generates an initial schedule by the robust scheduling 
algorithm ε-MOEA-r (introduced in Section 6.3), com-
bined with the decision making method described in 
Section 4.2.4. The h-method then makes a local adjust-
ment to the original schedule based on a heuristic rule 
when a dynamic event occurs (these local adjustments 
are different strategies that could be adopted if no dy-
namic MOEA rescheduling was used). The heuristic 
rules used here are:  

1) In the case that an employee leaves and returns, for 
each task in which the leaving employee is on, if the task 
becomes infeasible because the employee leaves, then 
the task is unprocessed and waits until the employee 
returns to be continued. Otherwise, if the task is still fea-
sible, then the remaining employees still work on it and 
their dedications to the task are kept unchanged. For 
other tasks, they are performed according to the initial 
schedule. 

2)  If a newly arrived task is to be performed accord-
ing to the TPG, then a number of available employees 

with higher proficiencies (measured by Proficiency

ij
e ) will be 

assigned to it, simultaneously satisfying the task skill 
constraint. The number of selected employees is ex-
pected not to exceed the maximum headcount of the task. 
However, if the team size cannot be reduced to the limit 
without violating the task skill constraint, then the task 
headcount constraints can be relaxed. 

Two performance measures were adopted in this sec-
tion. One was the whole project duration (the elapsed 
time of finishing all the tasks that have ever been con-
sidered as part of the project), and the other was the 
whole project cost (the total expenses paid to the em-
ployees for completing the whole project). 30 independ-
ent runs on each MODPSP instance were performed us-
ing our method dε-MOEA, and also the h-method. Av-
erage results, percentages of the performance improve-

ment of dε-MOEA over h-method, and the statistical 
results obtained by Wilcoxon rank sum tests with the 
significance level of 0.05 are listed in Table 8.   

It can be observed that compared to h-method, dε-
MOEA decreases the whole project duration and cost 
significantly on all instances. It improves the project 
efficiency to a large extent, which shows the distinct 
superiority of dε-MOEA over the heuristic dynamic 
scheduling when dealing with MODPSP, although the 
mean CPU time consumed by dε-MOEA at each sched-
uling point is much larger than that of the h-method 
(The smallest and largest mean execution time cost by 
dε-MOEA was 86.33s (Real_1) and 431.68s 
(sT30_dT10_E10_SK6-7), while those of h-method were 
only 0.0150s (Real_3) and 0.0556s (sT30_dT10_E5_SK6-
7), respectively). However, compared to the project 
duration measured by months and the savings found 
by dε-MOEA, the time cost of dε-MOEA is relatively 
small, and it is worth consuming the time to regenerate 
a schedule by dε-MOEA that can improve the project 
efficiency significantly.  

The sensitivity analysis of the impact of task effort 

variances on the project efficiency is also performed on 

one real-world instance (Real_1). Here, the standard 

deviation of the normal distribution that task effort vari-
ances assumed to follow is set to be 5, 10, 15, 20, 40, 60, 
80, and 100 percent of the mean value, respectively, 
which reflects the uncertainty level. Fig. 6 gives the var-
iations of the project duration and cost obtained by dε-
MOEA and h-method with the uncertainty in the task 
effort estimation (30 replications of either method are 
performed under each uncertainty level and the aver-
age value is computed, respectively). It can be seen that 
as the uncertainty level increases, the project duration 
and cost also increase because the project suffers from 
such effort variations. However, the increment of pro-
ject duration and cost produced by dε-MOEA (Fig. 6(a)) 
is much smaller than that obtained by h-method (Fig. 
6(b)), which indicates that our method dε-MOEA is 
much less sensitive against such task effort uncertainties.
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(a) dε-MOEA                                                                                                       (b) h-method 

Fig. 6 Variations of the project duration and cost obtained by dε-MOEA and h-method with the task effort uncertainties
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TABLE 8 

AVERAGE RESULTS, PERCENTAGES OF THE PERFORMANCE IMPROVEMENT, AND THE STATISTICAL TEST RESULTS OBTAINED BY COM-

PARING dε-MOEA AGAINST h-method (THE BETTER OF THE PERFORMANCE VALUES ON EACH INSTANCE ARE IN BOLD. THE UNIT OF 

THE PROJECT DURATION IS MONTH. THE SIGN OF ‘+/−/=’ IN A VS. B INDICATES THAT ACCORDING TO THE PERFORMANCE COMPARED, 
ALGORITHM A IS SIGNIFICANTLY BETTER THAN B, SIGNIFICANTLY WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BE-

TWEEN A AND B BASED ON THE WILCOXON RANK SUM TEST WITH THE SIGNIFICANCE LEVEL OF 0.05). 

Performance values 
Project 

duration 
Project 

cost 
Project 

duration 
Project 

cost 
Project 

duration 
Project 

cost 
Project 

duration 
Project 

cost 

Instance sT10_dT10_E5_SK4-5 sT10_dT10_E10_SK4-5 sT10_dT10_E15_SK4-5 sT10_dT10_E5_SK6-7 

dε-MOEA 
h-method 

Improvement percentage 
dε-MOEA vs. h-method 

108.4 

136.2 
20.4% 

3.02E-11+ 

3512722 

3862030 
9.0% 

3.02E-11+ 

71.0 

91.0 
22.0% 

3.61E-13+ 

2792531 

3148683 
11.3% 

8.73E-14+ 

57.1 

68.2 
16.3% 

3.02E-11+ 

2019370 

2280162 
11.4% 

3.02E-11+ 

145.9 

172.5 
15.4% 

3.02E-11+ 

3601760 

4072819 
11.6% 

3.02E-11+ 

Instance sT10_dT10_E10_SK6-7 sT10_dT10_E15_SK6-7 sT20_dT10_E5_SK4-5 sT20_dT10_E10_SK4-5 

dε-MOEA 
h-method 

Improvement percentage 
dε-MOEA vs. h-method 

65.3 

89.3 
26.9% 

3.02E-11+ 

2451803 

2799789 
12.4% 

3.02E-11+ 

60.1 

78.2 
23.2% 

3.02E-11+ 

2404944 

2738974 
12.2% 

3.02E-11+ 

161.9 

188.1 
13.9% 

3.02E-11+ 

6090925 

6619072 
8.0% 

3.02E-11+ 

65.9 

87.2 
24.4% 

3.02E-11+ 

3136695 

3391533 
7.5% 

3.02E-11+ 

Instance sT20_dT10_E15_SK4-5 sT20_dT10_E5_SK6-7 sT20_dT10_E10_SK6-7 sT20_dT10_E15_SK6-7 

dε-MOEA 
h-method 

Improvement percentage 
dε-MOEA vs. h-method 

58.6 

71.3 
17.8% 

3.02E-11+ 

3096519 

3265817 
5.2% 

3.02E-11+ 

230.9 

293.8 
21.4% 

3.02E-11+ 

6955361 

7308816 
4.8% 

3.02E-11+ 

78.8 

108.3 
27.2% 

3.02E-11+ 

4466765 

5205138 
14.2% 

3.02E-11+ 

64.3 

87.2 
26.3% 

3.02E-11+ 

3594815 

3745180 
4.0% 

3.02E-11+ 

Instance sT30_dT10_E5_SK4-5 sT30_dT10_E10_SK4-5 sT30_dT10_E15_SK4-5 sT30_dT10_E5_SK6-7 

dε-MOEA 
h-method 

Improvement percentage 
dε-MOEA vs. h-method 

120.4 

137.2 
12.2% 

3.02E-11+ 

5017805 

5392107 
6.9% 

3.02E-11+ 

82.4 

110.2 
25.2% 

3.02E-11+ 

5013772 

5242736 
4.4% 

3.02E-11+ 

69.6 

92.9 
25.1% 

3.02E-11+ 

4607639 

4838638 
4.8% 

3.02E-11+ 

196.6 

216.3 
9.2% 

3.02E-11+ 

7786837 

8150944 
4.5 % 

3.02E-11+ 

Instance sT30_dT10_E10_SK6-7 sT30_dT10_E15_SK6-7 Real_1 Real_2 

dε-MOEA 
h-method 

Improvement percentage 
dε-MOEA vs. h-method 

128.1 

157.0 
18.4% 

3.02E-11+ 

6887576 

7571868 
9.0% 

3.02E-11+ 

93.0 

126.6 
26.6% 

3.02E-11+ 

6094726 

6317385 
3.5% 

3.02E-11+ 

16.2 

19.9 
18.6% 

3.02E-11+ 

1330256 

1451890 
8.4% 

3.02E-11+ 

12.1 

14.6 
17.1% 

3.02E-11+ 

499891 

611864 
18.3% 

3.02E-11+ 

Instance Real_3 

 
dε-MOEA 
h-method 

Improvement percentage 
dε-MOEA vs. h-method 

16.6 

20.3 
18.2% 

3.02E-11+ 

690717 

856075 
19.3% 

3.02E-11+ 

The values before the signs ‘+/−/=’ are p-values obtained from Wilcoxon rank sum tests.

6.6 RQ3: Validating the effectiveness of strategies 
designed in dε-MOEA 

6.6.1 Introduction to the Compared Methods 

In this section, the proposed rescheduling method dε-
MOEA was compared to the other four rescheduling 
methods which are listed as follows: 

i) dCOEA. To validate the effectiveness of the dynamic 
optimization mechanism incorporated in dε-MOEA, it 
was compared to a state-of-the-art dynamic MOEA called 
dCOEA [40].  At each scheduling point, each subpopula-
tion in dCOEA played a role in searching the dedications 
of one available employee to all available tasks. In 
dCOEA, two strategies were specifically designed for 
dynamic optimization: (1) when changes occur, diversity 
in each subpopulation was introduced via stochastic 
competitors; and (2) to exploit useful information about 
the current archive, a temporal memory was used to han-
dle outdated archived solutions. The chromosome repre-
sentations and variation operators in dCOEA were the 
same as those in dε-MOEA. The parameter settings of 
dCOEA were: the subpopulation size was 10, the maxi-
mum archive size was 100, SCratio was 0.5, Rsize was 5, and 

Cfreq was 10, which were the same as recommended by 
[40]. Other parameters such as the crossover and muta-
tion probabilities were the same as those in dε-MOEA. 

ii) dε-MOEA-Deterministic. To demonstrate the supe-
riority of considering project duration, cost, robustness 
and stability simultaneously and incorporating the heu-
ristic initialization, dε-MOEA was compared to dε-
MOEA-Deterministic, which is an ε-MOEA-based com-
plete rescheduling method [15] that regenerates a new 
schedule from scratch and does not consider task effort 
uncertainties and project stability. At each scheduling 

point lt , only the project duration and cost in the initial 

scenario are considered. Meanwhile, the initial popula-
tion is entirely generated at random.  

iii) dε-MOEA-No-Sta. To study the impact of the stabil-
ity objective, dε-MOEA was compared to an ε-MOEA-
based rescheduling method without considering stability 
called dε-MOEA-No-Sta. This method is different from 

dε-MOEA in that only three objectives (
I

duration ,
I

cost  

and robustness ) are optimized simultaneously at each 

scheduling point (heuristic initialization is adopted). 
From this group of comparisons, a software manager can 
gain insight into how the initial duration, cost and ro-
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bustness would be affected by considering stability and 
whether the human allocation and dedication changes 
would become smaller at different scheduling points. 

iv) dε-MOEA-No-HI. To study the influence of heuris-
tic initialization strategies, dε-MOEA was compared to an 
ε-MOEA-based rescheduling method which just adopted 
random initialization. This method is different from dε-
MOEA in that the initial population is generated at ran-
dom at each scheduling point (four objectives are consid-
ered simultaneously). This group of experiments can pro-
vide a software manager with a better understanding of 
whether it would be helpful to utilize dynamic features of 
a problem and exploit the previous schedule information 
when re-planning a schedule. 

The parameter settings of dε-MOEA-Deterministic, dε-
MOEA-No-Sta, and dε-MOEA-No-HI are the same as 
those of dε-MOEA, which are given in Table 4. Note that 
all algorithms stop after 10000 objective vector evalua-
tions in one run. 

6.6.2 Performance Measures 

It is desirable for an algorithm to provide a software 
manager with a set of non-dominated solutions with 
good convergence to the reference Pareto optimal front, 
and also with a uniform (in most cases) distribution and a 
wide spread over the Pareto front.  In this way, the soft-
ware manager can get a full picture of various trade-offs 
among the project duration, cost, robustness and stability, 
which is very helpful for him/her to understand more 
about the problem so that he/she can make an informed 
choice or revise the schedule already planned by him-
self/herself according to the requirement of the project.  

In this paper, four popular metrics are employed to 
evaluate the performance of the five MOEA-based re-
scheduling methods. The first one is the hypervolume ratio 
(HVR) [41]. The hypervolume metric HV measures the 
size of the objective space dominated by the obtained 
non-dominated front PFknown [42], and HVR is the ratio of 
HV and the hypervolume of the reference Pareto front 
PFref . A larger HVR value indicates a better convergence 
and a wider spread of the obtained non-dominated front. 
The second one is the Generational Distance (GD), which 
measures how far PFknown is from PFref [43]. A small GD 
indicates the obtained solutions are close to the reference 
Pareto front, which means a good convergence perfor-
mance. The weakness of GD is that it does not take the 
spread of solutions into account, hence a set of solutions 
which gather around a small region near the reference 
Pareto front may also get a good GD value. The third one 
is a distribution performance metric called Spacing, which 
measures the distance variations of neighbouring vectors 
in PFknown [44]. The smaller Spacing is, the better the distri-
bution uniformity of PFknown is. The fourth one is Spread, 
which measures the extent of spread achieved by the ob-
tained solutions and the uniformity in the distribution of 
PFknown. The definition of Spread in [45] was used for bi-
objective problems. As for problems with three or more 
objectives, we propose a modified Spread given in (26): 
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where _N o  is the number of objectives, 
j

df  is the Eu-

clidean distance between the best solution on the jth objec-
tive and its nearest solution in PFknown, nPF is the number of 

vectors in PFknown, '

i
d  is the Euclidean distance from the ith 

vector of PFknown to its nearest neighbour in PFknown, and 'd  

is the mean of all '

i
d . A wide and uniform spread of solu-

tions in PFknown will result in a small value of Spread.  
No matter how uniformly the solutions distribute or 

how widely the range of objective values covers, if the 
obtained solution set is far from the reference Pareto front, 
the algorithm is not very useful because some of the pro-
ject cost, duration, robustness and stability are poor. Thus, 
the convergence performance (HVR and GD) of an algo-
rithm should be considered first by a software manager 
when choosing an algorithm to use. For two algorithms 
with comparable convergence, the one with a better dis-
tribution (Spacing) and spread (Spread) is preferred. 

Because the true Pareto front at each scheduling point 
is unknown in MODPSP, PFref  is obtained in our work by 
merging the solutions found during all the independent 
runs using all the five methods, and then obtaining the 
non-dominated solutions from them. The reference point 
in HVR is formed by the worst objective values observed 
in all optimization runs.  

Due to the space limitation, the procedure of compar-
ing dε-MOEA to other MOEA-based rescheduling meth-
ods is presented in Appendix A in detail. To compare the 
five methods in terms of the overall performance across 
different scheduling points and runs on each instance, 
Wilcoxon rank sum tests with the significance level of 0.05 
are employed. The statistical test results are listed in Table 
B.1 in Appendix B. The overall performance improvement 
(or deterioration) and the statistical test results of dε-
MOEA over the other four methods on each objective on 
the 21 instances are listed in Table B.2 in Appendix B.   

6.6.3 Comparisons to dCOEA 

In order to understand the impact of different dynamic 
MOEAs on the performance of MODPSP, we also applied 
dCOEA to find the Pareto front at each scheduling point. 
Table 9 summarizes the statistical test results of our 
method dε-MOEA versus the other four methods.  

It can be seen that in terms of the convergence metrics 
HVR and GD, dε-MOEA is significantly better than 
dCOEA in all cases. It maintains a comparable spread 
performance to dCOEA, where the Spread values of dε-
MOEA are significantly better than dCOEA in 83% of the 
18 random instances and one in three real-world instanc-
es, respectively. As to the distribution performance, dε-
MOEA is comparable to dCOEA on the real-world in-
stances, while a bit worse than dCOEA on the random 
instances since its Spacing values are significantly worse 
than dCOEA in 33% of the 18 random instances. One pos-
sible reason for this is that dCOEA is a coevolutionary 
algorithm known to be good at maintaining a diverse set 
of solutions.  
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As mentioned before, convergence performance is the 
most important factor that a software manager should 
take into account when evaluating an algorithm. The poor 
convergence performance of dCOEA in our experiments 
indicates that the dynamic optimization strategies it 
adopts may not be suitable for solving MODPSP (dCOEA 

was tested only in dynamic multi-objective function op-
timization in [40]). Other policies, such as the heuristic 
initialization strategies designed in this paper which can 
utilize dynamic features of MODPSP, should be intro-
duced. 

TABLE 9 

 COMPARISON RESULTS SUMMARIZED FROM TABLE B.I (THE PERCENTAGE OF THE 18 RANDOM INSTANCES AND 3 REAL-WORLD IN-

STANCES FOR THE STATISTICAL TEST RESULTS OF dε-MOEA VERSUS THE OTHER FOUR METHODS, WHERE THE SIGN OF ‘+/−/=’ IN A 

VS. B INDICATES THAT ACCORDING TO THE METRIC CONSIDERED, ALGORITHM A IS SIGNIFICANTLY BETTER THAN B, SIGNIFICANTLY 

WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN A AND B BASED ON THE WILCOXON SIGNED-RANK TEST WITH 

THE SIGNIFICANCE LEVEL OF 0.05) 

Random Instances 

 HVR GD Spacing Spread 

dε-MOEA vs. 
dCOEA 

+ = − + = − + = − + = − 

100% 0 0 100% 0 0 28% 39% 33% 83% 17% 0 

dε-MOEA vs. 
dε-MOEA-

Deterministic 

+ = − + = − + = − + = − 

100% 0 0 100% 0 0 11% 39% 50% 61% 33% 6% 

dε-MOEA vs. 
dε-MOEA-No-

Sta 

+ = − + = − + = − + = − 

72% 28% 0 28% 72% 0 50% 50% 0% 67% 33% 0 

dε-MOEA vs. 
dε-MOEA-No-

HI 

+ = − + = − + = − + = − 

100% 0 0 100% 0 0 22% 45% 33% 11% 39% 50% 

Real-world Instances 

 HVR GD Spacing Spread 

dε-MOEA vs. 
dCOEA 

+ = − + = − + = − + = − 

100% 0 0 100% 0 0 33% 67% 0 33% 67% 0 

dε-MOEA vs. 
dε-MOEA-

Deterministic 

+ = − + = − + = − + = − 

100% 0 0 100% 0 0 0 33% 67% 100% 0 0 

dε-MOEA vs. 
dε-MOEA-No-

Sta 

+ = − + = − + = − + = − 

100% 0 0 33% 67% 0 33% 67% 0 0% 100% 0 

dε-MOEA vs. 
dε-MOEA-No-

HI 

+ = − + = − + = − + = − 

100% 0 0 100% 0 0 33 67% 0 34% 33% 33% 

6.6.4 Comparisons to dε-MOEA-Deterministic 

With the aim to observe the consequence caused by not 
considering uncertainties and system stability when re-
scheduling from scratch in MODPSP, dε-MOEA was 
compared to dε-MOEA-Deterministic, which only cares 
about the project duration and cost in the initial scenario 
and generates the initial population at random. It can be 
seen from Table 9 that considering the convergence met-
rics HVR and GD, dε-MOEA is significantly better than 
dε-MOEA-Deterministic in all cases. As for the Spread 
metric, dε-MOEA behaves better because it is significantly 
better than dε-MOEA-Deterministic in 61% of the random 
instances and 100% of the real-world instances. However, 
in terms of Spacing, dε-MOEA-Deterministic behaves bet-
ter, since it is significantly better than dε-MOEA in 50% 
and 67% of the random and real-world instances, respec-
tively. The possible reason is that the initial population 
are generated at random in dε-MOEA-Deterministic, 
which is helpful in increasing the diversity of solutions. 

Besides, it can be found from Table B.2 that compared 
to dε-MOEA-Deterministic, dε-MOEA improves the over-
all performance on robustness and stability significantly in 

all cases, while it degrades 
I

duration  and (or) 
I

cost  some-

times. However, the improvements in robustness and sta-
bility are much more than the deterioration in the initial 
efficiency, which suggests that if a software manager re-
schedules by simultaneously considering duration, cost, 
robustness and stability, and also taking the dynamic 
event features and previous schedule information into 
account, he/she will have a higher chance of obtaining 
more robust and stable solutions without severely affect-
ing the initial efficiency.  

To further present the advantages of dε-MOEA over 
dε-MOEA-Deterministic, we plotted a section of the 
schedule Gantt charts produced by the two methods on 
one real-world instance (Real_2), respectively, which are 
given in Fig. 7. Since stability is not taken into account by 
dε-MOEA-Deterministic, it is possible that a group of 
employees different from the previous ones are assigned 
to the same task when rescheduling, and the dedication of 
an employee to a task fluctuates a lot. For example, in Fig. 
7(b), task T9 is scheduled to be performed by employees e1, 
e7, e9 at the initial time t0, by e1, e2, e9 at the scheduling point 
t1, and by e7, e9 at t2. Although e9 is assigned to T9 all the 
time, his/her dedication changes a lot. This will induce 
the system instability and lack of continuity, which is un-
desirable for any real-world software project. In contrast, 
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by considering stability, the schedule in Fig. 7(a) pro-
duced by dε-MOEA is more stable with only small ad-
justments in a few dedications, and the group of employ-
ees assigned to tasks T2, T9, T10, T17 are kept unchanged at 
different scheduling points as shown in Fig. 7(a). Fur-
thermore, since robustness is not considered in dε-
MOEA-Deterministic either, its schedule may behave 

worse when facing task effort disturbances. For example, 
in Fig. 7(b), the durations of tasks T1 and T4 were longer 
than those built by dε-MOEA in Fig. 7(a). Besides, T3 was 
suspended when the new urgent task T17 arrived (the 
precedence of T17 was higher than that of T3) and would 
continue until T17 finished.  

Task No.

Time (month)

0 0.2 0.4 0.6 0.8 1.0 1.2

T1

x71   100%

x81   71.4%

x101 71.4%

x12 100%

x72 85.7%

x82 57.1%
T2   

T3 

T4

x13 57.1%  x73 42.9%

x43 100%   x83 57.1%

x14 42.9%  x74 57.1%

x44 100%   x94 14.3%

T9

T10 

T17 

x19 57.1%

x29 57.1%

x99 42.9%

new urgent task 

17 arrives!

finished

finished

finished

x210 28.6%

x310 28.6%

x510  85.7%

x117100%

x41771.4%

x917100%

x12100%

x7285.7%

x8257.1%

employee 10 

leaves!

x19 57.1%

x29 57.1%

x99 42.9%

x12100%

x7285.7%

x8257.1%

x21028.6%

x31028.6%

x51085.7%

x117100%

x41771.4%

x917100%
     

     

     

     

employee 10 

returns!

scheduling point t1 t2  t3t0

suspended

 

(a) A section of the schedule Gantt chart found by dε-MOEA at different scheduling points 

Task No.

Time (month)

0 0.2 0.4 0.6 0.8 1.0 1.2

T1

T2   
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T10 
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new urgent task 
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finished

finished
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leaves!

     

     

     

     

employee 10 

returns!

rescheduling point t1 t2  t3t0

suspended

x71   100%

x81   42.9%

x101 85.7%

x62 100%

x72 100%

x82 85.7%

x1214.3%

x72100%

x8214.3%

x6228.6%

x7285.7%

x8271.4%

x13 100%  x73 42.9%

x43 100%  x83 100%

x24 42.9% 

x34 71.4%

x54 71.4%

x11785.7%

x417100%

x71771.4%

x117100%

x41757.1%

x71714.3%

x7914.3%

x9957.1%

x19 57.1%

x79 57.1%

x99 100%

x1928.6%

x2971.4%

x9971.4%

 

 (b) A section of the schedule Gantt chart found by dε-MOEA-Deterministic at different scheduling points 

Fig. 7. Comparisons of the schedule Gantt charts produced by dε-MOEA and dε-MOEA-Deterministic in the real-world instance Real_2 (
ij

x  

denotes the dedication of employee 
i

e  to task 
j

T  in the corresponding schedule) 

6.6.5 The Influence of the Stability Objective 

To study the impact that the stability objective has on the 
performance of the MOEA-based rescheduling methods, 
dε-MOEA was compared to dε-MOEA-No-Sta which did 
not take the stability objective into account. It can be 
seen from Table 9 that considering the convergence met-
ric HVR, dε-MOEA is significantly better than dε-MOEA-
No-Sta in 72% and 100% of the random and real-world 
instances, respectively, which indicates that compared to 
dε-MOEA-No-Sta, dε-MOEA can provide the software 
manager with a wider spread of non-dominated solu-

tions that are close to the reference Pareto front. As for 
GD, the differences between the two methods are not 
large: there is no significant difference between them in 
72% and 67% of the random and real-world instances, 
respectively. The Spread values produced by dε-MOEA 
are better than or comparable to dε-MOEA-No-Sta in all 
the instances, and similar results can be obtained for the 
Spacing metric. The reason for dε-MOEA-No-Sta having 
a relatively good performance on GD, but not so good on 
HVR and Spread is that it can find a set of solutions close 
to the reference Pareto front, but they just gather around 
a small region (with good values of 

I
duration , 

I
cost  and 
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robustness, but bad stability), so the spread of its solutions 
is not wide. 

Besides, it can be found from Table B.2 that com-
pared to dε-MOEA-No-Sta, dε-MOEA improves the sys-
tem stability significantly with a small sacrifice in the 
initial efficiency and (or) robustness. This result is very 
practical for a software manager since stability is an im-
portant factor in the real-world software project.   

6.6.6 The Influence of Heuristic Initialization 
Strategies 

To study the impact that the heuristic initialization strat-
egies have on the performance of the rescheduling 
method, dε-MOEA was compared to dε-MOEA-No-HI. It 
can be seen from Table 9 that considering the conver-
gence metrics HVR and GD, dε-MOEA is significantly 
better than dε-MOEA-No-HI in all cases, which indicates 
that the combined use of dynamic features and history 
information in initialization can help improve the con-
vergence performance of the MOEA-based rescheduling 
method a lot.  Thus, when rescheduling, it is better for a 
software manager to take both the dynamic event fea-
tures and previous schedule information into account. 
As for the Spacing metric, dε-MOEA outperforms or is 
comparable to dε-MOEA-No-HI in all the real-world 
instances, but it is significantly worse than dε-MOEA-
No-HI in 33% of the random instances. Meanwhile, dε-
MOEA-No-HI has better Spread performance as a whole 
since it is significantly better than dε-MOEA in 50% and 
33% of the random and real-world instances, respectively. 
The reason is that dε-MOEA uses the history solution, 

the schedule repair solution and their variants as parts of 
the initial population, which can help speed up the con-
vergence. However, this may limit the search space ex-
plored by the algorithm.  

      It can also be found from Table B.2 that compared to 

dε-MOEA-No-HI, dε-MOEA improves the overall per-

formance on 
I

cost  and stability significantly in all cases, 

and improves 
I

duration  significantly in 16 of the 18 ran-

dom instances and in all the 3 real instances, while it 

may degrade robustness in some instances. However, the 

improvements in 
I

duration , 
I

cost  and stability are much 

more than the deterioration in robustness (if any), which 

suggests that the incorporation of heuristic initialization 

is able to improve the efficiency and stability significant-

ly with a small sacrifice in robustness.  
      To further understand the advantages and disad-
vantages of the convergence performance of dε-MOEA 
over the other four methods, we plotted the average 
HVR and GD values over 30 independent runs across the 
scheduling points, which are shown in Fig. 8 and Fig. 9, 
respectively. Due to the space limitation, we just give 
curves on the instances with the best, medium and worst 
mean value of HVR or GD obtained by dε-MOEA. It can 
be seen that dε-MOEA can achieve the maximum HVR or 
the minimum GD value at most of the scheduling points. 
The convergence performance of dε-MOEA-No-Sta is 
close to that of dε-MOEA, while the other three methods 
are much worse. 

    

 
(a) HVR comparisons on the instance 
Real_2 (with the best mean value of 
HVR obtained by dε-MOEA) 

 

(b) HVR comparisons on the instance 
sT20_dT10_E10_SK6-7(with the medium mean 
value of HVR obtained by dε-MOEA) 
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 Fig. 8. Average HVR comparisons of the five methods at each scheduling point on the MODPSP instance (HVR is to be maximized). 

 

  

 
 

 

 

 

Fig. 9. Average GD comparisons of the five methods at each scheduling point on the MODPSP instance (GD is to be minimized). 

6.7 RQ4: Pareto Fronts of the Evolved Schedules 
at Scheduling Points 

At each scheduling point, a set of non-dominated solu-

tions were evolved by dε-MOEA. In order to demon-

strate the trade-offs among these solutions which a soft-

ware manager can utilize in balancing their choices 

when making a decision about the final schedule, one 

scheduling point on a real-world instance (Real_3) was 

selected arbitrarily and taken as an example. At 

=2.6lt (month), the employee 
10

e  leaves, and tasks 
4

T  to 

(c) HVR comparisons on the instance 
sT10_dT10_E5_SK4-5 (with the worst mean value 

of HVR obtained by dε-MOEA) 

 

(c) GD comparisons on the instance 
sT20_dT10_E5_SK4-5 (with the worst 
mean value of GD obtained by dε-MOEA) 
 

(a) GD comparisons on the instance Real_2 (with the 
best mean value of GD obtained by dε-MOEA) 
 

(b) GD comparisons on the instance 
sT30_dT10_E15_SK4-5 (with the medium 
mean value of GD obtained by dε-MOEA) 
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14
T  are available. 31 independent runs of dε-MOEA were 

performed. With the aim of showing the sample median 

quality attained in multiple (31 here) runs, the 50%-

summary attainment surface (i.e., the 16th-summary 

attainment surface) [46] is obtained. A four objective 

problem requires 4D data to be represented. To visually 

investigate the resulting summary attainment surface, 

we give the slice plot in Fig.10. The slice plot draws slic-

es along the 
I

duration , 
I

cost  and robustness directions, 

and the colors on the slices are determined by the values 

on stability. As indicated in [46], the summary attainment 

surface emphasizes the distribution of the location 

achieved over multiple runs. Thus, it can be seen from 

Fig.10 that the points on the 50%-summary attainment 

surface tend to crowd around the regions with small 

values on the objective 
I

duration , i.e., the density of such 

regions is much higher than others.  

To inspect different trade-offs among the four objec-

tives found by dε-MOEA in one run, one of the 31 Pareto 

fronts obtained from 31 runs of dε-MOEA was selected 

randomly. To visually investigate the Pareto front, we 

give the diagonal plot [47] in Fig. 11. The diagonal plot 

gives pairwise interactions among the four objective val-

ues on the Pareto front, where the axes of any plot can be 

obtained by finding the corresponding diagonal boxes 

and their ranges. For instance, the plot at the third row 

and fourth column has its vertical axis as robustness and 

horizontal axis as stability. Firstly, it can be observed 

from the figure 
I

duration  vs. 
I

cost  that the two efficiency 

objectives are conflicting with each other, since a smaller 

I
duration  normally leads to a larger 

I
cost . Secondly, it 

can be seen from figures 
I

cost  vs. robustness and 
I

cost   

vs. stability that the robustness or stability measure is 

slightly conflicting with the objective of 
I

cost . When 

finding solutions that have smaller 
I

cost , robustness or 

stability becomes worse. However, it is hard to determine 

the relationship from the figures robustness vs. stability, 

I
duration  vs. robustness and 

I
duration  vs. stability. For 

example, a small robustness may correspond to either a 

small or high stability. There is no solution that can sim-

ultaneously optimize all the considered objectives. 

Table 10 gives several examples of the objective vec-

tors selected from the Pareto front shown in Fig. 11. A 

solution may perform very well for one objective, but 

poorly for some others, such as Solution1 - Solution4. 

Some solutions may have good (but not the best) values 

in all objectives, which indicate a good compromise 

among all the objectives, such as Solution5 - Solution7. 

The Pareto front produced by dε-MOEA can provide a 

software manager with better knowledge about various 

trade-offs among multiple objectives. It is very helpful 

for him/her to make an informed decision about the best 

compromise with regards to his/her preference. 
Next, we will suggest the process of how a software 

manager could make a manual choice based on the Pare-
to front provided by our approach. The tool implement-
ing our proposed approach displays the plot of different 
trade-offs among the four objectives as in Fig.11.  The 
software manager could first pick a given range of cost 
and durations, if these are the objectives that he/she is 
most interested in. For example, he/she could decide 
that he/she is more interested in solutions with higher 
cost and lower duration. So, he/she would select a few 
solutions with high cost and low duration in the figure 

of 
I

duration vs.
I

cost . Then, he/she could check the dif-

ferent robustnesses and stabilities of these solutions so 
that a final choice could be made. Alternatively, the 
software manager could also choose the schedule auto-
matically suggested by our decision making procedure 
introduced in Section 4.2.4, if he/she wishes to avoid the 
manual choice. 

 
Fig. 10. Slice plot of the 50%-summary attainment surface obtained 

at the scheduling point =2.6lt  in Real_3. 

 

 
Fig. 11 Diagonal plot of the Pareto front obtained in one run of 

dε-MOEA at the scheduling point =2.6lt  on Real_3. 
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TABLE 10 

 SEVERAL EXAMPLES OF OBJECTIVE VECTORS SELECTED 

FROM THE AGGREGATED PARETO FRONT AT THE SCHEDULING 

POINT =2.6lt ON REAL_3 

 [
I

duration ,
I

cost ,robustness, stability] 

               Solution1 [5.30, 304597, 0.12, 6.14] 

Solution2 [6.31, 276596, 0.077, 5] 

Solution3 [6.91, 327794, 0.028,13.79] 

Solution4 [5.34, 296656, 0.036, 0] 

Solution5 [5.67, 286808, 0.057, 0.86] 

Solution6 [5.97, 279699, 0.054, 3.86] 

Solution7 [5.75, 283536, 0.061, 2.00] 

7 CONCLUSION 

This paper introduced a novel MOEA-based dynamic 
scheduling method to regenerate new schedules in re-
sponse to real-time events and uncertainties in MODPSP. 
Our first contribution is to capture more of the dynamic 
features of a real-world PSP than previous work, and 
formulate the problem with one type of uncertainty and 
three kinds of dynamic events, including: 1) variations of 
task efforts; 2) new task arrivals; 3) employee leaves; and 
4) employee returns.  

Our second contribution is the construction of a 
mathematical model for MODPSP. In this model, consid-
ering the updated project state at each scheduling point, 
four objectives with respect to the project duration, cost, 
robustness and stability are optimized simultaneously. 
In addition, three practical constraints, which are the 
task skill constraints, no overwork constraints, and the 
maximum headcount constraints, are considered. 

Our third contribution is the design of an MOEA-
based proactive-rescheduling method to solve MODPSP. 
A predictive schedule is generated initially using a pro-
active scheduling method considering task effort uncer-
tainties. During the project, the previous schedule is re-
vised by a rescheduling method dε-MOEA in response to 
critical dynamic events. dε-MOEA considers the project 
duration, cost, robustness and stability simultaneously, 
and employs heuristic initialization strategies, which 
exploit dynamic event characteristics and history infor-
mation so that a new schedule is not regenerated from 
scratch. Furthermore, new methods to handle the task 
skill constraints, no overwork constraints, and the max-
imum headcount constraints are proposed.  

Our fourth contribution is a comprehensive experi-
mental study of the newly proposed dε-MOEA. The 
study is based on three groups of comparisons. The first 
group compared our proactive scheduling method con-
sidering the robustness (ε-MOEA-r) with the method 
without caring about robustness (ε-MOEA-d). Our anal-
yses confirm that ε-MOEA-r reduces the schedule sensi-
tivity to task effort uncertainties significantly with only a 
small sacrifice in the project duration and cost under the 
initial scenario. Meanwhile, better robustness can com-
pensate the worse initial duration and cost. The second 
group compared our rescheduling method dε-MOEA to 
the heuristic dynamic scheduling which regenerated a 

new schedule based on a simple heuristic rule. Our re-
sults show that dε-MOEA is very effective in improving 
the whole project duration and cost, and it is much less 
sensitive against task effort variances during the dynam-
ic project scheduling process. The third group compared 
dε-MOEA to state-of-the-art MOEA-based rescheduling 
methods. Our analyses confirm the benefits that can be 
obtained by considering robustness and stability togeth-
er with the project initial efficiency, where project dura-
tion and cost deteriorate only slightly when facing task 
effort uncertainties, and employee assignments and ded-
ications change very little between the new and original 
schedules, which reduces the potential confusion to both 
the manager and employees. In addition, these benefits 
can be produced without severely affecting the initial 
efficiency. Our results suggest that dε-MOEA outper-
forms the state-of-the-art dynamic MOEA (dCOEA) for 
solving MODPSP since it can provide a software manag-
er with a wider range of non-dominated solutions that 
are much closer to the reference Pareto front.  

Although our MODPSP model is an advancement 
and considers more aspects of reality than previous 
models, it is still far from capturing all events and factors 
that can affect project scheduling situations. As indicated 
in [48] and [49], estimation inaccuracies may be caused 
by political behaviors, or psychological and economic 
factors. Our current work assumes that the deviations in 
effort estimations follow a Gaussian distribution. An 
empirical validation should be performed to reveal how 
suitable the Gaussian distribution is to model deviations, 
and how to best model such deviations. This can be a 
challenging study that would probably require data col-
lection in terms of deviations in effort estimations ob-
tained during a period of time. After that, our approach 
could be easily adapted to use such different distribu-
tions. In addition, certain factors could also cause the 
objectives of software scheduling efforts to be affected.  

As future work, our approach could be modified to 
deal with changing objectives by considering them as 
extra dynamic events to be dealt with. Some methods 
which can involve the participation of the software man-
ager, such as the interview study for collecting infor-
mation [48], will be used to get feedback from practi-
tioners on how to improve our approach. Besides, more 
types of uncertainties and dynamic events which may 
occur during the project execution, such as changes in 
the task precedence, addition of new employees to the 
project, and task cancellations should be considered. 
More characteristics about tasks and employees, such as 
the employees’ experiences, training courses, and the 
due-date of each task should also be considered, as well 
as the relationship between such attributes and the per-
formances of MOEAs on MODPSP need to be further 
studied. Moreover, a thorough empirical validation in 
industrial contexts should be performed in order to 
evaluate the practicality of the approach and to further 
improve it in terms of how close it is to real software 
development scenarios. In particular, such empirical 
validation would allow us to get feedback on the as-
sumptions made by our approach, on additional types of 
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uncertainty and dynamic events to be considered, and 
on the trade-off between the improvements in cost, du-
ration, robustness and stability provided by our ap-
proach and the effort needed to adopt the approach in 
the real world. 

Various dynamic events and factors can affect project 
scheduling situations, thus future PSP investigations 
should avoid making simplistic modeling assumptions 
and simplifications that are not valid in practice.  
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