
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Dynamic Software Project Scheduling
through a Proactive-rescheduling Method

Xiao-Ning Shen, Leandro L. Minku, Member, IEEE, Rami Bahsoon, and Xin Yao, Fellow, IEEE

Abstract—Software project scheduling in dynamic and uncertain environments is of significant importance to real-
world software development. Yet most studies schedule software projects by considering static and deterministic sce-
narios only, which may cause performance deterioration or even infeasibility when facing disruptions. In order to cap-
ture more dynamic features of software project scheduling than the previous work, this paper formulates the project
scheduling problem by considering uncertainties and dynamic events that often occur during software project devel-
opment, and constructs a mathematical model for the resulting Multi-objective Dynamic Project Scheduling Problem
(MODPSP), where the four objectives of project cost, duration, robustness and stability are considered simultaneously
under a variety of practical constraints. In order to solve MODPSP appropriately, a multi-objective evolutionary algo-
rithm (MOEA) based proactive-rescheduling method is proposed, which generates a robust schedule predictively and
adapts the previous schedule in response to critical dynamic events during the project execution. Extensive experi-
mental results on 21 problem instances, including three instances derived from real-world software projects, show that
our novel method is very effective. By introducing the robustness and stability objectives, and incorporating the dy-
namic optimization strategies specifically designed for MODPSP, our proactive-rescheduling method achieves a very
good overall performance in a dynamic environment.

Index Terms—Schedule and organizational issues, dynamic software project scheduling, search-based software engineering,

multi-objective evolutionary algorithms, mathematical modeling.

——————————  ——————————

1 INTRODUCTION

Effective software project scheduling is crucial, when
managing the development of medium to large scale
projects to meet the deadline and budget [1]. The process
of software project scheduling includes some duties [1],
[2]: ―identify project activities; identify activity depend-
encies; estimate resources for activities; allocate people
to activities; and create project charts.‖ The so-called
Project Scheduling Problem (PSP) [2], [3], [4], [5] deals
with the fourth duty which allocates employees with
certain skills to activities (tasks) so that the required ob-
jectives (project cost, duration, etc.) can be achieved sub-
ject to various constraints. Good allocations are very
important for software projects, since human resources
are their main resources [6]. PSP is solved based on the
information obtained from prior duties, i.e., the indenti-
fied tasks, task dependencies, and the estimated effort
required for tasks provided by the software manager.
Besides, information about the available employees and
their salaries and skills is also needed. PSP has been
tackled by both classical and meta-heuristic approaches.

The classical methods include the program evaluation
and review technique [7] and the critical path method [8],
which represent projects by activity-on-the-arc networks,
and the resource-constrained project scheduling prob-
lem model [9]. PSP has also been formulated as a search-
based optimization problem in [10], [11], [12] to provide
near-optimal schedules in a large search space, and to
automate the task of allocations, which would otherwise
be performed by humans [2].

In previous studies on software project scheduling, it
was assumed that the system information, such as the
effort required by each task and the skills of each em-
ployee, are known beforehand and remain unchanged.
They also assumed that no disruptions occur during the
project lifetime to interrupt the task execution. However,
in the real world, the working environment changes dy-
namically [1] by unpredictable events, such as require-
ment changes during the lifecycle of a project, a new
urgent task arriving suddenly, an employee leaving, etc.
A previously optimal schedule may become obsolete
and infeasible in the new environment. Moreover, it is
common that project activities are subject to considerable
uncertainties. For instance, the task effort may have been
estimated incorrectly, the task specification may be mod-
ified so that the originally estimated effort required by
the task is changed, the employee skill level may be im-
proved because of increasing experience, etc. The opti-
mal schedule generated according to the initial data may
have large performance deterioration when facing dis-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Xiao-Ning Shen is with B-DAT & CICAEET, School of Information and
Control, Nanjing University of Information Science and Technology,
No.219, Ning-Liu Road, Pu-Kou District, Nanjing 210044, P.R. China.
E-mail: sxnystsyt@sina.com.

 Leandro L. Minku is with the Department of Computer Science, University
of Leicester, University Road, Leicester LE17RH, UK.
E-mail: leandro.minku@leicester.ac.uk.

 Rami Bahsoon and Xin Yao are with CERCIA, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK.
E-mails: {r.bahsoon, X.Yao}@cs.bham.ac.uk.

mailto:sxnystsyt@sina.com
mailto:X.Yao%7D@cs.bham.ac.uk

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

turbances.
Pressman [14] indicated eight reasons for late soft-

ware delivery, five of which are related to uncertainties,
risks and unpredictable events appearing during the
project execution, which are: ―changing customer re-
quirements that are not reflected in schedule changes; an
honest underestimate of the amount of effort and/or the
number of resources that will be required to do the job;
predictable and/or unpredictable risks that were not
considered when the project commenced; technical diffi-
culties that could not have been foreseen in advance; and
human difficulties that could not have been foreseen in
advance.‖ Thus, it is vital to develop a dynamic software
project scheduling approach which can deal with both
uncertainties and dynamic events to reduce the late
software delivery. Furthermore, software engineering in
emerging paradigms (e.g. the cloud, mobility, ultra-large
software systems) calls for new scheduling methods that
explicitly cater for uncertainties and dynamism in
scheduling. This is because many of the requirements
may be unique to the said project and exhibit little re-
semblance to prior projects. Consequently, static sched-
uling methods may be ineffective and may render my-
opic outcome if used.

In the field of scheduling, there are mainly three ap-
proaches to dynamic scheduling: completely reactive,
predictive-reactive, and proactive (robust) scheduling
[15]. Completely reactive scheduling creates partial
schedules for the immediate future based on local in-
formation at each decision point. For example, when a
machine becomes idle, the job with the highest priority
will be selected from the waiting queue according to a
priority dispatching rule. This approach is in essence a
greedy one and can be trapped into a local optimum
easily. Predictive-reactive scheduling has a schedul-
ing/rescheduling process where previous schedules are
adapted to the new environment caused by dynamic
events, while proactive scheduling attempts to generate
a schedule in advance, which has the ability to satisfy
performance requirements predictably in an uncertain
environment [16].

Although scheduling in dynamic and uncertain envi-
ronments has attracted attention in construction and
manufacturing domains [17], little effort has been made
to capture the dynamic features of real-world software
projects, let along multi-objective dynamic project
scheduling problems (MODPSP). This paper tackles the
challenge by first proposing a mathematical model to
define the problem and then proposing a new proactive-
rescheduling method that combines proactive and pre-
dictive-reactive scheduling to solve it. In static PSP, effi-
ciency measures like project cost and duration are usual-
ly used as the objectives to be optimized. In dynamic
PSP, a new schedule may be regenerated by simply min-
imizing the impact of disruptions to the project efficien-
cy. For example, a software engineer may be redeployed
on different tasks from the ones that he/she was origi-
nally assigned to. Consequently, he/she may need some
time to learn and understand the newly assigned tasks,
which delays the project, increases the cost/budget, and

disrupts the smooth running of the project. To minimise
potential negative impact of generating very different
schedules in a dynamic environment, our MODPSP re-
scheduling process should create new schedules that
differ as little as possible from the previous ones, i.e., it
should promote stability in dynamic scheduling. Fur-
thermore, given the existence of uncertainties in MOD-
PSP, the schedule's quality should not be too sensitive to
minor data variations, i.e., a good schedule should be
robust against data variations. Therefore, MODPSP con-
siders not only cost and duration as objectives, but also
stability and robustness. Although there has been work
on predictive scheduling for software projects under
uncertainties [18], and on dynamic resource reschedul-
ing in response to new project arrivals [19], there has not
been any research work on the mathematical modeling
and dynamic scheduling of MODPSP, which addresses
both uncertainties and dynamic events occurring during
the software project execution, as well as multi-
objectivity under constraints.

The project cost, duration, robustness, and stability
are usually conflicting with each other. It is useful to
handle such multiple objectives using a true multi-
objective approach, e.g., an multi-objective evolutionary
algorithm (MOEA) [5], [11] that can provide various
trade-offs among different objectives on the Pareto front.
The Pareto front can help make informed decisions in
dynamic scheduling.

The primary aim of this paper is to model the soft-
ware project scheduling problem in a dynamic and un-
certain environment by considering multiple objectives
and constraints, and propose an MOEA-based proactive-
rescheduling method for the formulated problem. Three
aspects are studied: (i) PSP is formulated as a dynamic
scheduling problem with one type of uncertainty and
three kinds of dynamic events that often occur in soft-
ware projects; (ii) the mathematical model for the MOD-
PSP is constructed, considering the four objectives of
project cost, duration, robustness and stability, and a
variety of practical constraints; (iii) a proactive-
rescheduling method is proposed to solve MODPSP. The
key idea of the method is to create a robust schedule
predictively considering the project uncertainties, and
then revise the previous schedule by an MOEA-based
rescheduling method in response to critical dynamic
events.

To evaluate the effectiveness of our method, 18 dy-
namic PSP benchmark instances and 3 instances derived
from real-world software projects are used in our exper-
imental studies, which have three major purposes: (1)
investigating the influence of the robustness objective on
proactive scheduling; (2) evaluating the strength and
weakness of our MOEA-based rescheduling method
over other dynamic scheduling methods which adjust
the original schedule based on a simple heuristic rule;
and (3) comparing the overall performance in dynamic
environments obtained by five MOEA-based reschedul-
ing methods, where the effectiveness of simultaneously
considering project duration, cost, robustness and stabil-
ity, and the dynamic optimization strategies adopted in

AUTHOR ET AL.: TITLE 3

our method are demonstrated.
This paper is organized as follows. Section 2 presents

an overview of the related work. Section 3 describes our
problem formulation and constructs the mathematical
model of MODPSP. In Section 4, the framework of our
proactive-rescheduling method is introduced, and the
proposed rescheduling method called dε-MOEA is de-
scribed. Section 5 details the techniques for individual
representations, constraint handling and objective eval-
uations. Experimental analyses are presented in Section
6. Conclusions are drawn in Section 7.

2 RELATED WORK

In PSP, there are a set of tasks and a group of employees.
Each task has an effort expressed in person-month and a
set of required skills. The tasks have to be carried out
based on a Task Precedence Graph (TPG), which speci-
fies which tasks should finish before a new task starts.
Each employee has a salary and personal skills, a maxi-
mum degree of dedication to the project, and is able to
do several tasks during a working day. PSP consists of
determining which employees are allocated to each task
and when each one should be performed, with the aim
to minimize the project duration, minimize the project
cost and so on, satisfying the constraints of task skills, no
overwork, etc [3].

2.1 Software Project Scheduling with EAs in Static
Environments

With the rapid development of search-based software
engineering, there has been some work on software pro-
ject scheduling based on EAs in the last decade. An early
effort was from Chang et al. [4] who constructed a task-
based model and applied a genetic algorithm (GA) to
find near-optimal schedules. Alba and Chicano [3] used
the same problem formulation as [4], and performed
systematic empirical studies of the impact that important
problem characteristics had on the solutions found by
GAs. Also with such a problem formulation, Minku et al.
[2] gave a runtime analysis to gain insight into how de-
sign choices in EAs affected performance on PSP, and
which instances were easy or hard for EAs to solve.

To make their task-based model more practical,
Chang et al. [12] presented a time-line model which split
the task duration into small time units, and when evalu-
ating the fitness of a solution, it assigned employees to
tasks in discrete time units iteratively so that more hu-
man factors such as re-assignment of employees, learn-
ing and training could be considered. However, this
model introduced a lot of subjective parameters, to
which the sensitivity of the solutions provided by the
GA was unknown [2], and it would induce a large sys-
tem instability because they scheduled tasks separately
in different time units [10]. To preserve the flexibility in
human resource allocation, Chen and Zhang [10] devel-
oped a model with an event-based scheduler which ad-
justed the allocations at events, and adopted an ant col-
ony algorithm to solve the problem. Although the em-
ployee joining or leaving was considered as an event in

[10], and the variations of human factors were allowed
in [12], the software project scheduling was still treated
as a static problem in these two studies, since it was as-
sumed that when and how such events or variations
occur were known in advance, which would be used for
the fitness evaluation of each candidate solution. How-
ever, in the real-world software project, dynamic events
or uncertainties usually occur in a stochastic way, and it
is impossible to get all the accurate information in ad-
vance. Thus, it is more realistic to formulate the software
project scheduling as a dynamic scheduling problem,
and solve it dynamically during the project execution.

Luna et al. [5] and Chicano et al. [11] solved the static
PSP by an MOEA based on Pareto domination [20],
where cost and duration were not converted into a sin-
gle combined function. Penta et al. [19] presented a
comprehensive survey of the search-based techniques
applied to software project scheduling and staffing.

2.2 Software Project Scheduling in Uncertain
Environments

A few studies on software project scheduling under un-
certainties have appeared recently. Hapke et al. [21]
proposed a fuzzy software project scheduling system,
where activity time parameters were uncertain and
modeled by means of L-R fuzzy numbers, and the fuzzy
problem was transformed into a set of associate deter-
ministic problems. Lazarova-Molnar and Mizouni [22]
gave a simulation based method to select the most ap-
propriate remedial action scenario based on the project
goal to limit the impact of uncertainties on the overall
project success. Gueorguiev et al. [18] employed a proac-
tive scheduling method where an MOEA was used to
find the Pareto front which represented the trade-off
between completion time and robustness (defined as the
completion time difference when new tasks were added,
or the tasks’ durations were inflated). The work in [23]
modeled the project scheduling using event chains. To
obtain a schedule under uncertainties, a number of Mon-
te Carlo simulations were performed based on a baseline
project schedule and an event list. It can also be regarded
as a proactive scheduling method. Antoniol et al. [24]
used a tandem GA to find the best order for processing
work packages and the best allocation of staff to project
teams. Then a queuing simulator was used to analyze
the sensitivity of the result obtained by GA with respect
to uncertainties caused by effort estimation errors, re-
works and abandonment on a given percentage of
maintenance tasks. The result of this sensitivity analysis
could guide the search which determined whether a ne-
gotiation of further people and a successive iteration of
the tandem GA process were required. The whole pro-
cess might repeat for multiple times to obtain a satisfied
solution. The work in [24] just considered the robustness
of the initial allocations to dynamic events of re-work
and abandonment, but not provided the responding
strategies when they occurred. Chicano et al. [25] gave a
new multi-objective formulation of PSP which consid-
ered the productivity of the employees in developing

http://www.sciencedirect.com/science/article/pii/0165011494902119

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

different tasks and the inaccuracies of task effort estima-
tions. Task effort variations were assumed to follow the
uniform distribution, and robustness was measured as
the standard deviation of the make-span and cost values
obtained from a certain number of simulations of task
effort inaccuracies. In our work, both robustness to task
effort uncertainties and immediate response to dynamic
events are addressed by the proposed proactive-
rescheduling method. Meanwhile, robustness is defined
as the duration and cost increases from the initial values
obtained in the case assuming no task effort uncertain-
ties, where only the efficiency deterioration in the dis-
rupted scenarios is penalized.

 Xiao et al. [19] may be the first effort to consider dy-
namic resource rescheduling for addressing disruptions
that happen during the software development. They
used the little-JIL process definition language to describe
the relations among different projects and project activi-
ties, where a project could be mapped into a task requir-
ing a set of skills, and an activity could be mapped into
one skill of a task in the task-based model proposed in
[4]. There are three limitations in the work of [19]. Firstly,
unlike the task-based model which searches the dedica-
tion degree of each employee to each task, Xiao et al. [19]
just determined whether an employee should be allocat-
ed to each activity (skill) and the priority of each activity.
The workload allocation of each employee to the as-
signed activity was not determined by the GA. Secondly,
only one kind of disruptive event which represented the
introduction of a new project was considered, and re-
scheduling of merely three new project arrivals were
conducted in their work. In practice, a variety of dynam-
ic events may occur during the software development
process. Moreover, continuous changes like task effort
uncertainties widely exist, which indicates that the
schedule robustness to uncertainties is also an important
factor that should be taken into account. Thirdly, alt-
hough the utility and process stability were considered
in their work, they were converted into a single objective
by a weighted sum method, introducing additional pa-
rameters in their objective definitions and weight deter-
minations. Since multiple objectives are usually conflict-
ing with each other, it is better to handle them by an
MOEA which can provide various trade-offs among dif-
ferent objectives so that a project manager can make an
informed decision when rescheduling.

In our work, we consider the dynamic version of task-
based model, which determines the dedication of each
employee to each task dynamically. The reason for using
the task-based model is that it is more general. The work
in [19] can be considered as a special case of the task-
based model where each task requires a single skill. To
address various uncertainties and real-time events, the
task effort variances, employee leaves and returns, and
new task (urgent or regular) arrivals are considered in
our work. A clear mathematical model for the dynamic
software project scheduling is developed, where four
objectives, including the project cost, duration, robust-
ness and stability, are considered simultaneously. An
MOEA-based, proactive-rescheduling method is pro-

posed to solve the dynamic scheduling problem.

3 PROBLEM FORMULATION AND MATHEMATICAL

MODELING OF MODPSP

3.1 Incorporating Dynamic Features into PSP

In order to address more dynamic characteristics of PSP,
in this paper, one type of uncertainty and three kinds of
dynamic events, which often occur during the execution
of the real-world software project, are incorporated into
PSP. They are listed as follows.

(1) Task effort uncertainty. At the beginning of the
project, the effort required by each task can be estimated
by some method such as the COCOMO model [26] or
the more recent online learning model [27]. However,
modifications in task specifications and inaccuracies in
the initial estimations may cause the changes in the ini-
tially estimated task efforts. Here, task effort variances
are assumed to follow a Normal distribution [3]. To in-
fuse more reality, each task effort is assigned different
values of mean and standard deviation. The mean value
of each task is set to be its initially estimated task effort.

(2) New task arrivals. New requirements will emerge
during the development lifecycle of software. This could
be in response to changes in customers’ requirements
and/or the environment. It can also be attributed to the
iterative and intertwined nature of the software devel-
opment, where continuous refinements of requirements,
architecture and designs can lead to new tasks. As the
project progresses, the stakeholders’ understanding of
the project may evolve and new features may be added
as a result. Furthermore, new requirements may also
emerge as the software is prototyped, tested, or de-
ployed. Such dynamism is very common in large and
complex projects, where requirements tend to be highly
―volatile‖ and changeable during the lifetime of the pro-
ject. Consequently, the landscape of tasks tends to con-
tinuously evolve. Tasks can be classified into urgent and
regular tasks. An urgent task should be performed im-
mediately when it arrives, while a regular task does not
have such a requirement. As volatility of requirements
and its frequency are difficult to predict, we model the
uncertainty of new task arrivals as following a Poisson
distribution (i.e., the time between two new task arrivals
is distributed exponentially).

(3) Employee leaves. Due to sickness or being part of
multiple projects or other reasons, an employee may
leave during the project. Here, employee leaves are as-
sumed to follow a Poisson distribution. So for each em-
ployee, the time interval between leaves is assumed to
follow an exponential distribution. To infuse more reali-
ty, each employee is assigned a different mean time be-
tween his/her leaves.

(4) Employee returns. After having been absent from
the project, we consider that the employee may return
back to the project. ―employee returns‖ is the amount of
time that the employee is absent from the project, i.e., the
amount of time that passes from the moment the em-
ployee leaves until the employee returns to the project.
Here, employee returns are also assumed to follow a

http://link.springer.com/search?facet-author=%22Junchao+Xiao%22
http://link.springer.com/search?facet-author=%22Junchao+Xiao%22

AUTHOR ET AL.: TITLE 5

Poisson distribution. To infuse more reality, each em-
ployee is assigned a different mean time to return, i.e.,
the time that an employee is out of the project.

It is worth noting that our approach is not limited to

the Poisson distribution, which is often used in opera-

tions research. It is easy to replace the probability distri-

bution used in our algorithm by any other appropriate

probability distribution. All that is required is to plug in

a different probability distribution to sample from.
Note that other types of uncertainties and dynamic

events, such as changes in task precedence, addition of
new employees not in the company before the project
started, removal of tasks from the project due to changes
in requirements, etc., may also occur during the dynamic
process of a real-world project. As an illustration to vali-
date the effectiveness and efficiency of the proposed
proactive-rescheduling method, we only consider the
task effort uncertainties, new task arrivals, employee
leaves, and employee returns in the model of MODPSP
and experimental studies used in this paper. The incor-
poration of other uncertainties and dynamic events is
proposed as future work.

3.2 Employees’ Properties

Assume a project requires a total of S skills and there are
in total M employees involved in the project. Let

lt

(0,1,2,l ) denote the scheduling point at which a re-

scheduling method is trigged (including the initial time

0t). Each employee
i

e (1,2, ,i M) has some properties

(skills

i
e ,

i
skill , maxded

i
e , _norm salary

i
e , _over salary

i
e), which are consid-

ered to be time-invariant here. During the project, em-

ployee
i

e may leave, and then come back later. Thus,

one time-related variables ()available

i l
e t is also attributed to

i
e . Descriptions of an employee’s properties are listed in

Table 1. _ _ ()
l

e ava set t is used to represent the set of all

available employees at lt , i.e.,

 _ _ () | () 1, 1,2, ,available

l i i l
e ava set t e e t i M   .

3.3 Tasks’ Properties

At the initial time 0t , assume there are
I

N tasks in the

project. As the time progresses, new tasks may be added

one by one. At lt , assume there have been ()
new l

N t new

tasks arrived. Thus by
l

t , a total of (+ ())
I new l

N N t tasks

have been considered as part of the project. Each task
j

T

(1,2, , + ()
I new l

j N N t) has some properties (skills

j
T ,

j
req ,

_ _est tot eff

j
T), which are considered to be time-invariant here.

At lt , it is possible that a certain task has finished, or a

task cannot be performed temporally because of an em-
ployee’s leave (one skill required by the task is not pos-
sessed by any of the remaining employees). Thus, sever-

al time-related properties (()unfinished

j l
T t , TPG, ()available

j l
T t)

are also attributed to task
j

T . Descriptions of a task’s

properties are listed in Table 2. _ _ ()
l

T ava set t is used to

represent the set of all available tasks at
l

t , i.e.,

_ _ ()
l

T ava set t   | () 1, 1,2, , + ()available

j j l I new l
T T t j N N t  .

TABLE 1

PROPERTIES OF EACH EMPLOYEE
name description

skills

i
e

The skill indicator set of employee
i

e .
1 2={ , , , }skills S

i i i i
e pro pro pro , where [0,C]k

i
pro 

(1,2, ,k S) is a fractional score which measures

the proficiency of
i

e for the kth skill. 0k

i
pro 

means
i

e does not have the kth skill, and Ck

i
pro 

shows
i

e totally masters the kth skill. According to

[12], C is set to be 5 in our experimental study.

i
skill

The set of specific skills possessed by
i

e . It can be

converted from skills

i
e , where

{ | 0, 1,2, , }k

i i
skill k pro k S   .

maxded

i
e

The maximum dedication of
i

e to the project,

which means the percentage of a full-time job
i

e is

able to work. 1maxded

i
e  means

i
e can dedicate all

the normal working hours of a month to the pro-

ject. Part-time jobs or overtime working are al-

lowed by setting maxded

i
e to a value smaller or bigger

than 1, respectively. For example, 1.2maxded

i
e  indi-

cates
i

e is allowed to work up to 120% of the nor-

mal working time.
_norm salary

i
e The monthly salary of

i
e for his/her normal work-

ing time.
_over salary

i
e The monthly salary of

i
e for his/her overtime

working time.

()available

i l
e t

A binary variable which indicates whether
i

e is

available or not at lt . () 1available

i l
e t  means

i
e is

available at lt , and () 0available

i
e t  shows

i
e is una-

vailable at lt .

TABLE 2

PROPERTIES OF EACH TASK
name description

skills

j
T

The skill indicator set of task j
T .

 1 2, , ,skills S

j j j j
T sk sk sk , where 1k

j
sk 

(1,2, ,k S) indicates the kth skill is required by

j
T , and 0k

j
sk  means not.

j
req

The set of specific skills required by j
T . It can be

converted from skills

j
T , where

{ | 1, 1,2, , }k

j j
req k sk k S   .

_ _est tot eff

j
T

The initially estimated effort required to com-

plete task j
T in person-months. The task effort

uncertainty of j
T is assumed to follow a normal

distribution of (,)
j j

N   , where j
 and j

 are

the mean and standard deviation, respectively.

Here, we set _ _est tot eff

j j
T  .

()unfinished

j l
T t

A binary variable indicating whether j
T has

finished by lt . () 1unfinished

j l
T t  means j

T is unfin-

ished at lt , and () 0unfinished

j l
T t  shows j

T has

finished by lt .

TPG An acyclic directed graph with tasks as nodes
and task precedence as edges. TPG must be up-

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

dated when a task finishes or a new task is add-

ed into the project. Here,  (), ()
l l

G V t A t is used to

represent the TPG at lt , where ()
l

V t is the ver-

tex set which includes all the arrived and unfin-

ished tasks at lt , i.e.,

 () | () 1, 1,2, , + ()unfinished

l j j l I new l
V t T T t j N N t   ,

and ()A t is the arc set which indicates the prece-

dence relations among the tasks in ()
l

V t .

()available

j l
T t

A binary variable indicating whether j
T is avail-

able or not at lt . () 1available

j l
T t  shows j

T is avail-

able at lt , while () 0available

j l
T t  means not.

j
T is

regarded as available at lt if and only if the fol-

lowing three conditions are satisfied simultane-

ously: (1) j
T is unfinished at lt , i.e.,

() 1unfinished

j l
T t  ; (2) for any skill required by j

T , at

least one of the available employees at lt pos-

sesses the skill, i.e., if
j

k req , then

 , s.t. _ _ ()
i i l i

e e e ava set t k skill    ; and (3) all

the unfinished tasks preceding j
T in the TPG

satisfy the above condition (2).

An example of the TPG update process is shown in
Fig. 1. When a task finishes, its corresponding vertex and
incident edges are removed from the TPG, e.g., task 1.
When a new regular task arrives, it is appended to one
or more unfinished tasks, e.g., task 16. If the new task is
urgent, its precedence should not be lower than any oth-
er unfinished tasks at the time of its arrival. So it may be
inserted preceding one or more unfinished tasks, as task
17, or it may be just added as a vertex in the case of not
having any precedence relations to other unfinished
tasks, as task 18. Note that task preemption is allowed in
our MODPSP model. For example, in Fig. 1, since the
precedence of the new urgent task 17 is higher than task
3, task 3 should stop processing until task 17 has fin-
ished.

An additional property Proficiency

ij
e of the employee

i
e ,

which indicates the proficiency of
i

e for task
j

T , is de-

fined according to [12]:
C

j

k

Proficiency i

ij

k req

pro
e



 , and

[0,1]Proficiency

ij
e  . Proficiency

ij
e is considered to be time-invariant.

2

3

4

5

6

7

8

9 10

11

12

13

14 15

1

2

3

4

5

6

7

8

9 10

11

12

13

14 15

task 1

finishes

2

3

4

5

6

7

8

9 10

11

12

13

14 15

16

17

2

3

4

5

6

7

8

9 10

11

12

13

14 15

16

Regular task

16 arrives

urgent task 17

and 18 arrive

18

Fig. 1. An example of the update of the TPG.

3.4 Solutions to MODPSP

At the scheduling point
lt (

0lt t), a new schedule

which determines the dedication matrix

 
 + ()

X() ()
I new l

l ij l M N N t
t x t


 is constructed, where ()

ij l
x t de-

notes the dedication of employee
i

e to task
j

T sched-

uled at
lt , and it measures the percentage of a full-time

job which
i

e spends on
j

T . In this paper,

() {0, 1 , , }maxded maxded

ij l i i
x t e k e k k   , where kN reflects

the granularity of the solution, and it is described in Sec-

tion 5.1 in detail. () 0
ij l

x t  means
i

e is not assigned to

j
T at

lt . Note that the values of some elements in X()
l

t

are determined easily: if () 0available

i l
e t  , then () 0

ij l
x t  , for

all the 1,2, , + ()
I new l

j N N t ; if () 0a v a i l a b l e

j l
T t  , then

() 0
ij l

x t  , for all the 1,2, ,i M . Only the values of

 () () | () 1 and () 1available available

ij l ij l i l j l
x t x t e t T t   need to be

searched by an optimization method.

3.5 Objectives to be Optimized

At the scheduling point
lt (0lt t), considering all the

current information gathered from the software project:

 A set of available employees _ _ ()
l

e ava set t ;
 A set of available tasks _ _ ()

l
T ava set t with the

remaining estimated task efforts. For each task
_ _ ()

j l
T T ava set t , the finished effort from

0t to

lt is recorded as _ ()fin eff

j l
T t . Thus, the remaining es-

timated effort of
j

T at lt is calculated as
_ _ _ _ _() ()est rem eff est tot eff fin eff

j l j j l
T t T T t  . If _ _ _ ()est tot eff fin eff

j j l
T T t ,

but
j

T is actually unfinished at lt , which indicates

that the initially estimated effort of
j

T is smaller

than its actual effort, then the total effort of
j

T is

re-estimated by sampling a value B from the

normal distribution (,)
j j

N   for several times un-

til the condition _ ()fin eff

j l
B T t is satisfied. Set

_ _est tot eff

j
T B , and _ _ _ _ _() ()est rem eff est tot eff fin eff

j l j j l
T t T T t  ;

 The TPG ((), ())
l l

G V t A t which is updated at lt ,
a new schedule is generated by optimizing the following

objectives:

1 2 3 4
min ()=[(), (), (), ()]

l l l l l
t f t f t f t f tF (1)

where
1
()

l
f t ,

2
()

l
f t ,

3
()

l
f t , and

4
()

l
f t are related to the

duration, cost, robustness and stability of the project,

respectively.

1
()

l
f t represents the maximum elapsed time required

for completing the remaining effort of each available

task rescheduled at lt :

   1
{ | _ _ ()}{ | _ _ ()}

() max () min ()
j lj l

end start

l I j l j l
j T T ava set tj T T ava set t

f t duration T t T t


   (2)

where the subscript I denotes the initial scenario, which
assumes no task effort variances, and considers the re-

maining estimated effort _ _ ()est rem eff

j l
T t calculated above as

the exact remaining effort of task
j

T at lt . For each

AUTHOR ET AL.: TITLE 7

available task
j

T at
lt , we just consider its remaining

effort by
lt , not including its finished effort. Thus,

()start

j l
T t denotes the time (in terms of months) when the

remaining effort of
j

T starts processing after
lt accord-

ing to the new generated schedule, but not the starting

time of the whole task
j

T . Therefore, we have ()start

j l l
T t t ;

and ()end

j l
T t is the completion time of

j
T rescheduled at

lt . According to the TPG and the new schedule (dedica-

tion matrix) rescheduled at
lt , we can draw a Gantt

chart, from which ()start

j l
T t and ()end

j l
T t of

j
T can be ob-

tained.

2
()

l
f t represents the initial cost, which means the to-

tal expenses paid to the available employees for their

dedications to the available tasks at
lt assuming no task

effort variances. Let t’ denote any month during which

the project is being developed after
lt , and

_ _ ()T active s t t'e denote the set of tasks that are active

(being developed) at the moment of time t’, where an
active task is defined as a task that has no preceding un-

finished task in the TPG at t’.
2
()

l
f t is defined as follows:

2

_ _ ()

() _
l i l

l I i

t e e ava s

t

' et

'

tt

f t cost e cost
 

   (3)

If
_ _ ()

 () 1
ij l

j T acti t've set

x t


 , then

 _

_ _ ()

_ ()norm salary

i i ij l

j T activ

t

e s tt

'

e '

t'e cost e x t


    , (4)

else if
_ _ ()

 1< () maxded

ij l i

j T active set t'

x t e


 , then

_ _

_ _ ()

_ 1 () 1norm salary over salary

i i i ij l

j T active s

t

et

'

t'

e cost e e xt' t' t


 
       

 
 (5)

where _ t'

i
e cost means the expense paid to the employee

i
e at the moment of time t’. If the total dedications of

i
e

to all the active tasks (
_ _ ()

()
ij l

j T active set t'

x t


) is larger than 1, it

indicates that
i

e works overtime at t’.

In the following Section 5.3, we will explain how to

evaluate the objectives of
I

duration and
I

cost in detail.

3
()

l
f t represents the robustness performance, which

evaluates the sensitivity of a schedule’s quality to task

effort uncertainties. The smaller the value of
3
()

l
f t , the

better the robustness performance.
2

3

1

2

1

() ()1
() max 0,

()

() ()1
 max 0,

()

N
q l I l

l

q I l

N
q l I l

q I l

duration t duration t
f t robustness

N duration t

cost t cost t

N cost t






  
     

  

  
    

  





 (6)
where

I
duration and

I
cost are the initial duration and

cost evaluated from (2) and (3), respectively. Here, the
scenario-based method is used. A schedule undergoes a

set of task effort scenarios  | 1,2, ,
q

q N  , where
q



is the qth sampled scenario of task efforts, N is the sam-

ple size, and we set N=30.
q

duration and
q

cost are the

corresponding efficiency objective values under
q

 . Spe-

cifically, at
lt ,

q
 is generated as follows: at first, for

each task _ _ ()
j l

T T ava set t , a total effort _ qtot eff

j
T is

sampled from the normal distribution (,)
j j

N   at ran-

dom for multiple times until _ _ ()qtot eff fin eff

j j l
T T t is satisfied,

and then set
_ _ _ _{ () | () (), _ _ ()}q q qrem eff rem eff tot eff fin eff

q j l j l j j l j l
T t T t T T t T T ava set t    

, where _
()qrem eff

j l
T t means the qth sampled remaining ef-

fort of
j

T . Considering that a high efficiency is always

addressed in the real-world software project, when de-
fining the robustness objective in (6), we just penalize
the duration and cost increases which will cause the effi-
ciency deterioration in the disrupted scenarios, while the
variances of duration and cost decreases are truncated
by using a ―max‖ function.  is a weight parameter,

which captures the relative importance of the sensitivity
of the project cost over the sensitivity of the project dura-
tion to task effort uncertainties.  is set to be 1 in our

experiments.

4
()

l
f t denotes the stability, which measures the devia-

tion between the new and original schedules. It is calcu-

lated for all the available tasks at lt (0lt t) which are

left from the previous schedule created at -1lt . It is de-

fined as the weighted sum of the dedication deviations
with the aim of preventing employees from being shuf-
fled around too much.

1 1

4

-1

{ | _ _ () _ _ ()} { | _ _ () _ _ ()}

()

 () ()
i l l j l l

l

ij ij l ij l

i e e ava set t e ava set t j T T ava set t T ava set t

f t stability

x t x t
  



  

(7)
where the value of weight

ij
 is set as follows:

-1

-1

2 if ()=0 and () 0

= 1.5 if () 0 and () 0

1 else

ij l ij l

ij ij l ij l

x t x t

x t x t




 



 (8)

In the first case, a large penalty (2
ij

 ) is given to

reschedule an employee to do a new task. If the employ-

ee
i

e is not assigned to the task
j

T at -1lt , but he/she

should dedicate to
j

T according to the new schedule,

then the employee may feel confused. He/she may need
additional time to familiarise himself/herself with the
newly assigned task, hence the working efficiency may
be decreased. In the second case, if an employee was on
a task previously, but he/she is not allocated to the task

in the new schedule, then a medium penalty (1.5
ij

 ) is

given. The employee might have received training about
the task and become familiar with the task. Such training
would be wasted if the employee does not perform this

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

task any more. In the third case, if an employee contin-
ues a task but with a different dedication level, a small

penalty (1
ij

 ) is given to the differences between the

new and original dedications.

It should be mentioned that at the initial time
0t , only

three of the objectives defined above, which are

I
duration ,

I
cost and robustness (without stability), are to

be optimized.

3.6 Constraints

Constraints of MODPSP at the scheduling point
lt are

listed as follows. Among them, constraints (i) – (ii) are
hard constraints, and constraint (iii) is a soft one.
(i) No overwork constraints

At the moment of time 't after the scheduling point

lt , the total dedication of an available employee to all

the active tasks which are being developed should not
exceed his/her maximum dedication to the project, i.e.,

 _ _ ()
i l

e e ava set t  ,
l

t' t  , s.t.

_ _ ()

_ ()t'

i ij l

j T active set t'

e work x t


  , and _ t' maxded

i i
e work e (9)

For example, if 1.2maxded

i
e  , then

i
e can work over-

time, but his/her overtime working should not exceed
(120%-100%)=20% of the normal working time.
(ii) Task skill constraints

All the available employees working together for one
available task must collectively cover all the skills re-
quired by that task, i.e.,

 _ _ ()
j l

T T ava set t  ,

s.t.  
_ _ ()

| () 0
i l

j i ij l

e e ava set t

req skill x t


  (10)

Note that the task skill constraints include the case

that each available task at lt should be performed by at

least one available employee.
(iii) Maximum headcount constraints

The number of available employees working together

for
j

T is expected to be no more than an upper limit
maxhead

j
T . Here, maxhead

j
T is estimated by the formula in [12]:

   0.672
_ _max 1, 2 3maxhead est tot eff

j j
T round T , which was de-

rived from the COCOMO model [26]. However, if the

team size of
j

T cannot be reduced to maxhead

j
T without

violating the task skill constraints, then the maximum
headcount constraints can be relaxed, but a penalty

should be given to the task effort of
j

T which is intro-

duced in Section 5.2.3. At the scheduling point lt , sup-

pose the team size of
j

T is ()teamsize

j l
T t , and the minimum

number of available employees who should join
j

T to

satisfy the task skill constraint is min_
()empnum

j l
T t , then we

have:

 _ _ ()
j l

T T ava set t  ,  min_
() max , ()empnumteamsize maxhead

j l j j l
T t T T t (11)

4 A PROACTIVE-RESCHEDULING APPROACH TO

SOLVE MODPSP

4.1 Framework of the Proactive-rescheduling
Approach

To handle uncertainties and real-time events occur-
ring during a software project, a proactive-rescheduling
approach is proposed for solving the MODPSP. As an
illustration for introducing our approach, one real-world
instance derived from business software construction
projects for a departmental store [8] is taken as an exam-
ple.

Step i: At the initial time of the project, the software
manager identifies several attributes of the project to be
developed. These are the tasks, task dependencies, and
required efforts. For example, the software manager
could identify that there are 12 tasks in total, e.g., per-
forming the UML diagrams, designing the database,
designing the web page templates, implementation, test-
ing the software, writing database design documents
and a user manual, etc. In fact, if the scheduling process
starts after the architecture of the system is designed, it
would also be possible to define more fined grained
tasks, such as the implementation of each different com-
ponent of the system. After identifying the tasks, the
software manager would identify the dependencies
among these tasks by creating a TPG, the skills required
by each task, and estimate the effort required for each
task. Supporting tools such as COCOMO [26] or ma-
chine learning algorithms [27] could be used to help
providing effort estimations. Besides the attributes of the
project itself, the project manager also identifies employ-
ees’ properties, such as the skill proficiencies possessed
by each employee, the maximum dedication of each em-
ployee to the project, the normal and overtime working
salaries of each employee. Such information can be ob-
tained based on the experience and knowledge of the
software manager on the project. It can also be based on
historical information.

Step ii: Provide the information collected in step i as
input to the proposed MOEA-based proactive schedul-
ing approach introduced in Section 4.2. The approach

will automatically generate schedules to minimize the
objectives of project duration (defined by (2)), cost (de-
fined by (3)), and the sensitivity of the schedule to task
effort uncertainties (defined by (6)), satisfying the con-
straints of no overwork, task skills and the maximum
headcount (defined by (9) - (11)). The approach assumes
that the task effort uncertainties follow a normal distri-
bution. However, a software engineering tool imple-
menting this approach could be easily modified to as-
sume other distributions. The output of the approach is
a set of non-dominated solutions which represent
schedules with different trade-offs among the three ob-
jectives. Each solution is a matrix providing the dedica-
tion of each employee to each task.

Step iii: Once the approach generates the non-

dominated solutions, the software manager needs to

choose one solution to adopt. A tool implementing the

AUTHOR ET AL.: TITLE 9

approach could display via a GUI some useful infor-

mation for that, such as the dedication matrix of each

solution; its multi-objective values; the maximum, mean

and minimum value on each objective among the ob-

tained non-dominated solutions. The software manager

could choose the schedule suggested by the automated

decision making procedure introduced in Section 4.2.4,

or select a schedule manually based on the information

provided by our approach and his/her own experience

and knowledge about the project. The process of manual

decision making that the software manager would need

to go through is explained in Section 6.7. After that, the

initial project charts, e.g. Gantt charts, can be created

using the information of TPG, the estimated task effort

and allocation.

Step iv: During the lifetime of the project, some dy-

namic events may occur, e.g. altering tasks, employee

leaves, employee with interrupted involvement, squeeze

in budget for some tasks and shift of focus on other tasks.

For simplicity, we just consider new task arrivals, em-

ployee leaves and employee returns in the current work.

Among them, urgent task arrivals, employee leaves and

returns are regarded as critical events, while regular task

arrivals are considered to be non-critical. To reduce the

rescheduling frequency, a critical-event-driven mode is

employed. Once a critical event occurs, the software

manager triggers the rescheduling procedure provided

by our approach. Non-critical events like regular task

arrivals are not scheduled until the next critical event

occurs. However, if the new regular task needs to start

before the next critical event occurs according to the TPG,

a heuristic method is used, which assigns a certain num-

ber of available employees with higher proficiencies

(measured by
Proficiency

ij
e

) to it, simultaneously satisfying

the task skill constraint, and the dedication of each as-

signed employee to it is generated randomly. This is

done automatically, without the need for the software

manager to provide manual input.

In the rescheduling procedure which is triggered

when a critical event occurs, first, the software manager

determines all the available tasks and employees that

can be rescheduled in the current environment. The fol-

lowing are provided by the software manager via GUI as

the input of the proposed MOEA-based rescheduling

approach introduced in Section 4.2: the remaining esti-

mated effort required to finish each available task; the

updated TPG reflecting any changes that may have hap-

pened to the TPG; other properties of the available tasks

and employees, together with the four objectives of du-

ration, cost, robustness and stability defined by (2), (3),

(6) and (7), and the three constraints defined by (9) - (11).

Such information can also be obtained based on the in-

vestigation by and knowledge of the software manager

according to the current state of the project. Then the

rescheduling approach is triggered, and automatically

generates a set of non-dominated solutions, which rep-

resent different trade-offs among the four objectives.

Next, similar to the steps after proactive scheduling,

some useful information is presented via GUI, which the

software manager can take as a reference for deciding

the final schedule in the new environment. The process

of how the software manager would make a decision

based on the Pareto front provided by our approach is

illustrated in Section 6.7. The new schedule is imple-

mented in the project until the next critical event occurs,

at which time the above rescheduling procedure is trig-

gered again. In short, the MODPSP is a dynamic process

formed by a sequence of multi-objective PSPs with dif-

ferent sets of available employees and tasks to be sched-

uled. This process continues until the whole project has

been completed.

As indicated in Section 1, five of the eight reasons

given by Pressman [14] for late software delivery are

related to uncertainties, risks and unpredictable events

appearing during the project execution. In our current

work, four kinds of risks or dynamic events including

task effort uncertainties, new task arrivals, employee

leaves, and employee returns are considered. Each of the

above four cases can be linked to one of the five reasons

for late software delivery noted by Pressman. The rela-

tionship between them and the strategies used by our

proactive-rescheduling approach to address these issues

are shown in Table 3.

TABLE 3

RELATIONSHIP BETWEEN FOUR KINDS OF DYNAM-

IC FEATURES CONSIDERED IN OUR APPROACH

AND FIVE REASONS FOR LATE SOFTWARE DELIV-

ERY NOTED BY PRESSMAN
Five reasons [14] Dynamic events Treatment

Changing customer re-
quirements that are not
reflected in schedule chang-
es.

Task effort uncer-
tainties, new task
arrivals.

Proactive-
ness/resc
heduling.

An honest underestimate of
the amount of effort and/or
the number of resources that
will be required to do the
job.

Task effort uncer-
tainties.

Proactive-
ness.

Predictable and/or unpre-
dictable risks that were not
considered when the project
commenced.

New task arrivals,

employee leaves，
employee returns.

Resched-
uling.

Technical difficulties that
could not have been fore-
seen in advance.

Task effort uncer-
tainties.

Proactive-
ness.

Human difficulties that
could not have been fore-
seen in advance.

Employee

leaves， employee
returns.

Resched-
uling.

4.2 An MOEA-based Rescheduling Method for
MODPSP

The goal of multi-objective optimization is to find a
representative set of Pareto non-dominated solutions.
One solution is said to Pareto dominate another if the
first is not worse than the second in all objectives, and
there is at least one objective where it is better. A solu-
tion is called Pareto non-dominated if none of the objec-

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

tives can be improved without sacrificing some of the
other objective values. The set of Pareto non-dominated
solutions in the objective space is called the Pareto front,
which can provide trade-offs among multiple objectives.

ε-MOEA is an ε-domination based MOEA [28], where
ε-domination is a generalization of the domination rela-
tion introduced in [29]. ε-MOEA employs efficient par-
ent and archive update strategies, and can produce good
convergence and diversity with a small computational
effort, especially when dealing with many objectives (3
or more) [28]. MODPSP is a dynamic problem with four
objectives. In order to solve it in an efficient way, an ε-
MOEA-based rescheduling method, dε-MOEA, is pro-
posed in this paper.

4.2.1 The Procedure of dε-MOEA Applied to
MODPSP

At each scheduling point
lt (0lt t) in MODPSP, the

procedure of dε-MOEA is presented in Fig. 2.

Step 1: Initialization. Construct the initial population ()lP t by

some heuristic strategies (they are described in Section 4.2.3)

according to the updated project state at
lt . Sample a set of task

effort scenarios q
 at random, 1,2, ,q N . Then multi-objective

evaluations are performed, and all the Pareto non-dominated

solutions are determined to form the archive population ()lArc t .

Set the counter of objective evaluation numbers

_ct population size .

Step 2: Population selection. One individual sp is chosen from

the population ()lP t using a pop_selection procedure.

Step 3: Archive selection. One solution e is chosen from the ar-

chive ()lArc t using the archive_selection procedure.

Step 4: Variation. Two offspring
1

sc and
2

sc are generated from

sp and e by the variation operators.

Step 5: Decoding and objective evaluation. Sample a set of task

effort scenarios q
 at random, 1,2, ,q N . Evaluate the multi-

ple objective values of offspring
1

sc and
2

sc .

Step 6: Update of the population. Offspring individuals
1

sc and

2
sc are included in ()lP t using a pop_acceptance procedure.

Step 7: Update of the archive. Individuals
1

sc and
2

sc are in-

cluded in ()lArc t using an archive_acceptance procedure.

Step 8: Termination. If the termination criterion is not satisfied,

set 2ct ct  and go to Step 2. Otherwise, determine all the Pare-

to non-dominated solutions from ()lArc t , record it as '()lArc t ,

output '()lArc t , and select one solution from '()lArc t as the im-

plementation schedule based on a decision making procedure.
Fig. 2. Procedure of dε-MOEA at the scheduling point

lt (
0lt t).

For Step 1, update of the project state and heuristic
constructions of the initial population are described in
Sections 4.2.2 and 4.2.3, respectively. The tournament
selection method is used for the pop_selection procedure
in Step 2. Two individuals are picked up uniformly at
random from the population, and check the domination
of each other. If one dominates the other, the former will
be chosen. Otherwise, one of them is selected at random.
In Step 3, an individual is selected uniformly at random

from the archive. In Step 4, the variation operators are
introduced in Section 5.1. In Step 5, the sampled task
efforts change from one iteration to another, which in-
creases the probability of generating robust solutions
undergoing a large number of scenarios. The
pop_acceptance and archive_acceptance procedures in Steps
6 and 7 are the same as in [28]. The termination criterion
is that the counter ct achieves a predefined maximum
number of objective evaluations. The decision making
procedure is described in Section 4.2.4. For each candi-
date solution, the constraint handling methods and ob-
jective evaluation procedure are presented in Sections
5.2 and 5.3, respectively.

It should be mentioned that at the initial time
0t of

the project, the proactive scheduling is also based on the
dε-MOEA procedure shown in Fig. 2. The differences are
the random population initialization is used in Step 1
instead of the heuristic population initialization, and
when evaluating an individual, only three objectives
(without stability) are considered.

4.2.2 Update of the Project State

At each scheduling point
lt (

0lt t), the project state

should be updated first.

(i) The finished effort of each task from 0t to
lt should

be calculated. If a task has been completed by lt , its cor-

responding vertex and incident edges are removed from
the TPG.

(ii) Information about the new tasks arriving since the

previous scheduling point
1lt 

 must be gathered. The

new tasks and their task precedence are added into the
TPG.

(iii) For each task, whether it is available or not at
lt is

determined by checking the three conditions introduced
in Table 2.

As a result of the above three steps, all the current
available employees, available tasks, and the updated

TPG can be used for rescheduling at lt .

4.2.3 Heuristic Population Initialization in
Rescheduling

With the aim of utilizing the dynamic features of MOD-
PSP and accelerating the convergence speed of the algo-
rithm, several heuristic strategies are incorporated in
constructing the initial population of dε-MOEA.

(1) Exploitation of the dynamic event characteristics.
Inspired by the schedule repair often used in production
scheduling, which refers to local adjustments to the orig-
inal schedule and has the ability of preserving the sys-
tem stability well [15], three schedule repair strategies
are specifically designed for MODPSP to exploit the dy-
namic event features. Firstly, in the case of employee
leaves, all the unaffected tasks remain unchanged both
for their employees and dedications. For each affected
task to which the leaving employee was assigned, the
condition of whether the remaining employees in the
task team can satisfy the task skill constraint is checked.
If yes, their dedications to the task are kept unchanged.

AUTHOR ET AL.: TITLE 11

Otherwise, other available employees with relatively
higher proficiencies are found to join the task team to
satisfy the skill requirement. Secondly, in the case that
an employee returns, for each task left from the previous
schedule, if its team size is less than the maximum head-
count, and the returning employee has one of the task
skills, then he/she is assigned to the task to speed up the
task progress. Otherwise, the previously scheduled em-
ployees and dedications remain unchanged. For each
new arriving regular task, or each previously unavaila-
ble task that becomes available again due to the employ-
ee return, the dedications of the available employees to it
are generated at random. Thirdly, in the case of new
urgent task arrivals, the employees and their dedications
assigned to each task left from the previous schedule are
kept unchanged, while the dedications to the new tasks
are generated at random. In the above cases, if overwork
of any available employee appears, the normalization
method explained in 5.2.1 is applied. The result of the
schedule repair is called the schedule repair solution.

(2) Exploitation of the history information. At each
scheduling point, information left from the previous
schedule is regarded as the history information which
can be utilized. The dedication allocations of the availa-
ble employees to the available tasks in the old schedule
are called the history solution.

(3) Incorporation of random individuals. In order to
introduce diversity, some random individuals are creat-
ed in the initial population. The dedication of each avail-
able employee to each available task is generated uni-
formly at random from the set

 0, () 1 , , ()maxded maxded

i l i l
e t k e t k k  .

In this paper, 20% of the initial population are formed
with the history solution and its variants by mutation,
30% with the schedule repair solution and its variants,
and 50% with the random individuals.

4.2.4 Decision Making

In practice, at each scheduling point, once a set of non-
dominated solutions are found by dε-MOEA, they are
provided to the software manager for selection, and then
the selected schedule is implemented in the project.
However, in our experiments, it is not practical to have a
person for taking decisions. Thus, an automatic decision
making method proposed in our previous work [30] is
adopted, and the procedure is briefly given as follows.

Step i: Construction of the pairwise comparison ma-
trix. Our MODPSP uses N_o= 4 objectives to be opti-
mized. The pairwise comparison questions of ―How im-

portant is the objective
i

f relative to
j

f ?‖

(, 1,2, , _i j N o , j i) are answered by the software

manager a priori. So there are _ (_ 1) / 2N o N o  = 4 (4

– 1)/2 = 6 comparisons in total in our case. Then the

pairwise comparison matrix  1 _ _
C

ij N o N o
c


 can be con-

structed by the nine-point scale in Analytic Hierarchy
Process (AHP) [31], which describes the degree of the
preference for one objective versus another.

Step ii: Estimation of the weight vector  
_ 1

w
i N o

w




for multiple objectives. The logarithmic least squares
method [32] is adopted. The geometric mean of each row

in the matrix
1

C is calculated, which is then normalized

by dividing it by the sum of them.
Step iii: Normalization of the objective values. Each

objective is normalized as:

   max max min_ ()= ()
i i i i i

n f x f f x f f  , 1,2, , _i N o (12)

where max

i
f and min

i
f are the maximum and minimum

objective values among all the non-dominated solutions
obtained at the current scheduling point.

Step iv: Calculation of the utility value. The weighted
geometric mean of the multiple objective values is used
to find the utility value for each non-dominated solution:

_

_

1

() _ ()
N o

w wi ii

N o

i

i

U x n f x




 (13)

Step v: Choose the solution with the maximum utility
value as the final schedule.

Note that the pairwise comparison matrix and the
weight vector in Steps i and ii are determined before-
hand and kept unchanged during the dynamic process.
Only Steps iii, iv, and v are performed at each schedul-
ing point during the project execution.

Here, we give an example of the above decision mak-
ing method. Before the beginning of the project, assume
that the software manager considers that the objectives

I
duration and

I
cost are of the equal importance; robust-

ness and stability are of the equal importance; and the

intensity scale of the importance of
I

duration (or
I

cost)

over robustness (or stability) is set as the intermediate
value between equal importance and weak importance.
Thus the pairwise comparison matrix for the four objec-
tives is constructed according to the nine-point scale in
AHP:

 1 4 4

1 1 2 2

1 1 2 2
C =

1 2 1 2 1 1

1 2 1 2 1 1

ij
c



 
 
 
 
 
 

,

and  
4 1

w [0.3333 0.3333 0.1667 0.1667]T

i
w


  can be

obtained according to the above Step ii. At each schedul-
ing point during the project execution, after normalizing
each objective according to (12), the utility value of each
non-dominated solution can be calculated based on (13).
Then, the non-dominated solution with the highest utili-
ty value is chosen.

There have been AHP-related decision making meth-
ods in the existing work. Javanbarg et al. [33] proposed a
fuzzy AHP decision making model to deal with the im-
precise judgments of decision makers, and then a fuzzy
prioritization method was applied to derive exact priori-
ties from consistent and inconsistent fuzzy comparison
matrices. Kim and Langari [34] gave an adaptive AHP
for decision making in the dynamically changing traffic
environment, which could provide an optimal relative
importance matrix under different traffic situations and

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

driving modes. Bernardon et al. [35] presented a mul-
ticriteria decision-making process for solving the re-
mote-controlled switch allocation problem based on
AHP. In [33], the weight of each objective was set as the
algebraic mean of each row in the normalized pairwise

comparison matrix
1

C , and in [34], the weight was set as

the element in the eigenvector associated with the max-

imum eigenvalue of
1

C . Both [33] and [34] used the

weighted algebraic mean to evaluate the utility of each
alternative. However, when estimating the weight vector

 
_ 1

w
i N o

w


 , it is expected that the entry =
ij i j

W w w in

the matrix
_ _

W ()
ij N o N o

W


 will provide the best fit to the

judgement
ij

c in
1

C [31]. Thus, in our work, the loga-

rithmic least squares method is used to calculate the
weight vector based on the minimization of the distance

between
1

C and W . Meanwhile, the weighted geomet-

ric mean, which is considered as the optimal method to
find the utility value for the alternative [36], is employed.

5. DETAILS OF OUR IMPLEMENTATION

5.1 Representations and Variation Operators

In MODPSP, the solution at each scheduling point
lt is a

dedication matrix  
 + ()

X() ()
I new l

l ij l M N N t
t x t


 , where

() 0, maxded

ij l i
x t e   . We employ binary string chromo-

somes to encode solutions in dε-MOEA. nb bits are used

to represent an ()
ij l

x t , so that

 () 0, 1 , ,maxded maxded

ij l i i
x t e k e k k   , 2 1nbk   . As men-

tioned in Section 3.4, in X()
l

t , only the values of

 () () | () 1 and () 1available available

ij l ij l i l j l
x t x t e t T t   have to be

searched, while other elements should be 0. In order to

improve the efficiency of dε-MOEA, only such ()
ij l

x t are

encoded in the chromosome, which has a length of

_ _ () _ _ ()
l l

e ava set t T ava set t nb  bits ( means car-

dinality of a set). The chromosome should be decoded
into a dedication matrix for the convenience of objective
evaluation. Fig. 3 gives an example of the representation
of a binary chromosome and its decoded dedication ma-

trix, where there are two available employees
1

e ,
2

e ,

two available tasks
2

T ,
3

T , one leaving employee
3

e ,

one finished task
1

T , and 3nb  .

In dε-MOEA, the 2-D single point crossover operator
[3], which is designed for matrices, and the bit-flip muta-
tion are employed as variation operators.

1 1 0 0 1 1 1 1 1 0 0 0

6/7 3/7 1 0

x12 x13 x22 x23

chromosome dedication matrix

1 1

2

6 3
0

7 7

0 0

0 0 0

maxded maxded

maxded

e e

e

 
 
 
 
 
 
 

Fig. 3. An example of the representation of a chromo-
some and its decoded dedication matrix.

5.2 Constraint Handling

5.2.1 Handling the No Overwork Constraints

In [3], overwork is handled by penalizing the fitness
value of a schedule. As shown in their experimental re-
sults, the no overwork constraints are difficult to be sat-
isfied by this method, especially when the number of
tasks or employees is increased, or the employees’ skills
are decreased, or the project demands more skills. A
modification to the dedication normalization method
proposed in [2] is employed here.

At time t’, if the no overwork constraint for the em-

ployee
i

e is violated, i.e., _ t' maxded

i i
e work e , then his/her

dedication ()
ij l

x t to each active task
j

T , which is being

performed at t’, is divided by _ t' maxded

i i
e work e . If

_ t' maxded

i i
e work e , then the dedication is not normalized.

The normalized value of the dedication ()
ij l

x t is denoted

as ()
ij l

d t , and we have

 () () max 1, _ t' maxded

ij l ij l i i
d t x t e work e . The normalized

dedications ()
ij l

d t are the ones that employees will use at

any moment after
l

t in order to avoid overwork. This

method allows an employee to divide his/her dedica-
tions to several tasks, and it is guaranteed that the no
overwork constraints can always be satisfied by such an
adjustment.

5.2.2 Handling the Task Skill Constraints

In order to incorporate the proficiency of each employee
for different tasks when evaluating a schedule and han-
dling the task skill constraints, according to [10] and [12],

the adjusted total dedication _ ()
j l

A Td t for task
j

T can

be calculated as follows:

First, the total dedication ()
j l

Td t of all the available

employees for
j

T is:

_ _ ()

() ()
i l

j l ij l

e e ava set t

Td t d t


  (14)

Second, the total fitness ()
j l

F t of all the available em-

ployees for the task j
T is calculated:

_ _ ()

() () ()
i l

Proficiency

j l ij ij l j l

e e ava set t

F t e d t Td t


 
  
 

 (15)

where ()
j l

F t is a fraction of the total dedication spent

by employees to the task j
T . The explanation for this

is as follows. Even though employees have a dedica-

tion of ()
ij l

d t for the task j
T , if their proficiency on the

skills needed for the task are low, j
T will take longer

to finish, as if the employees’ dedications were lower

than ()
ij l

d t . (15) reduces the dedications of employees

to tasks based on their proficiency.

Third, ()
j l

F t is converted to a cost drive value ()
j l

V t :

   () max 1,8 ()*7 0.5
j l j l

V t round F t   (16)

AUTHOR ET AL.: TITLE 13

where the value of ()
j l

V t ranges from 1 to 7. () 1
j l

V t 

indicates the assigned employees are the most suitable

for task
j

T , and vice versa. This conversion was pro-

posed by [12].

Fourth, the adjusted total dedication _ ()
j l

A Td t ,

which takes into account the proficiency of the employ-

ees, can be obtained:

_ () () ()
j l j l j l

A Td t Td t V t (17)

where _ ()
j l

A Td t is in person.

 Assume _ ()rem eff

j l
T t is the remaining effort of task

j
T

at
l

t , then the time required to finish
j

T is

  _ _() _ () () () ()rem eff rem eff

j l j l j l j l j l
T t A Td t T t Td t V t (18)

At the scheduling point
lt , if a candidate schedule is

infeasible because certain task skills are not covered by
the allocated employees, then very high penalty values
are assigned to the objectives, as suggested in [2]. Sup-
pose reqsk is the number of missing skills in an infeasi-

ble schedule. Each objective is penalized as follows:

 

 

1

_ _

_ _ () _ _ ()
_ _ ()

_ _

_ _ ()
_ _ ()

_

()

2 () min max

2 () min 7)

= 14

i l j l
j l

i l
j l

l I

est rem eff maxded

j l i j
e e ava set t T T ava set t

T T ava set t

est rem eff maxded

j l i
e e ava set t

T T ava set t

est re

j

f t duration

reqsk T t e k V

reqsk T t e k

reqsk k T

 







  

  

 





_

_ _ ()
_ _ ()

() min
i l

j l

m eff maxded

l i
e e ava set t

T T ava set t

t e






 (19)

2

_ _ _

_ _ () _ _ ()

_ _ _

_ _ () _ _ ()

()

 2 () 7

 = 14 ()

i l j l

i l j l

l I

over salary est rem eff

i j l

e e ava set t T T ava set t

over salary est rem eff

i j l

e e ava set t T T ava set t

f t cost

reqsk e T t

reqsk e T t

 

 



    

  

 

 

(20)

3
() 2

l rob
f t robustness reqsk C    (21)

4

_ _ ()

()

2 _ _ () _ _ () max
i l

l

maxded

l l i
e e ava set t

f t stability

reqsk e ava set t T ava set t e




    
 (22)

where
rob

C is a constant, and we set 100
rob

C  here.

All the four penalized values are higher than the cor-

responding objective values of any feasible schedule,

since, at lt :

 The duration is always at most
_ _

_ _ ()
_ _ ()

7 () min
i l

j l

est rem eff maxded

j l i
e e ava set t

T T ava set t

k T t e




  . The expla-

nation for this is as follows. In the worst case, tasks
are processed one by one. The total dedication for

each task is the minimum value
_ _ ()
min

i l

maxded

i
e e ava set t

e k


,

and the cost driver value of each task takes the
maximum value 7;

 The cost is always at most
_ _ _

_ _ () _ _ ()

() 7
i l j l

over salary est rem eff

i j l

e e ava set t T T ava set t

e T t
 

   . The ex-

planation for this is as follows. In the worst case,
all the available employees have to dedicate to all

tasks with his/her overwork salary _over salary

i
e .

Moreover, the total dedication of each employee to
each task equals to the total effort required for this

task _ _ () 7est rem eff

j l
T t  , where 7 is the maximum pos-

sible cost driver value of each task. This is the total
dedication as if each employee was the only em-
ployee working for the task, i.e., the maximum
possible total dedication of the employee for the
task;

 The stability value is always at most

_ _ ()
_ _ () _ _ () max

i l

maxded

l l i
e e ava set t

e ava set t T ava set t e


  . In

the worst case, dedication deviations of all the
available employees to all the available tasks are

_ _ ()
max

i l

maxded

i
e e ava set t

e


;

 The robustness value was always much smaller

than the constant
rob

C from our experimental ob-

servations;
 Moreover, the penalty values are proportional to

the value of reqsk , which means the penalty will

decrease if the number of missing skills decreases.
This penalized objective vector gives a strong gra-
dient for search algorithms towards feasible re-
gions.

5.2.3 Handling the Maximum Headcount
Constraints

In order to improve the efficiency of our algorithm, two
heuristic operators are performed for a candidate sched-
ule before the objective evaluation. The first one is to set
the dedication of an employee for a task to 0 if he/she
has none of the skills required by the task, i.e., if

Proficiency

ij
e =0, then set ()

ij l
x t =0.

The second one is to check whether the team size of

each available task _ _ ()
j l

T T ava set t is larger than its

maximum headcount maxhead

j
T . If maxhead

j
T is exceeded, then

the following procedure is performed: 1) sort the profi-

ciency Proficiency

ij
e of all the employees in the team of

j
T ; 2)

start from the employee with the lowest proficiency and
have a check. If removing him/her does not violate the
task skill constraints, then he/she can be removed (set

the corresponding ()
ij l

x t =0), otherwise, he/she is kept in

the team; 3) move to the next employee in the sorting list
and do the same operation as in 2) for him/her. This

procedure continues until the team size of
j

T is within

the limit or all the employees in the team have been

checked. If the team size cannot be reduced to maxhead

j
T

without violating the task skill constraints, then it can be

larger than maxhead

j
T , but a penalty is given to the effort of

j
T . As indicated in [37], the communication overhead

must be added to the amount of work to be done. If each
part of the task has to be separately coordinated with
each other part, then the effort requires

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

 1 2teamsize teamsize

j j
T T  times as much pairwise intercom-

munication as that of having only two employees in the

task, where teamsize

j
T denotes the number of employees

assigned to
j

T . Thus, if teamsize maxhead

j j
T T , then we give a

penalty to the effort of
j

T as follows:

(1) 2
1

teamsize teamsize

j jeff eff

j j

T T
T T

Z

  
   

 
 (23)

where eff

j
T is the effort of

j
T without considering the

overhead, and Z is a parameter. We have performed
some preliminary experiments and found that when Z=5,
the relationship of the time to finish the task versus the
number of employees has a similar behavior to the curve
of Fig. 2.4 shown in [37].

In [10] and [12], the maximum headcount constraints
were also considered. However, neither of them pre-
sented any method to handle such constraints, which
might produce infeasible solutions and introduce com-
munication overheads. Here, the approach of penalizing
the task effort given in (23) fills the gap in the literature.

5.3 Objective Evaluations

The pseudo code of the objective evaluation procedure

at the scheduling point
lt is given in Fig. 4. At first, the

procedure tests whether the dedication matrix X()
l

t is

feasible in that the task skill constraint of every available
task is satisfied (lines 1-4). If there is no missing skills
(0reqsk ), two heuristic operators introduced in Section

5.2.3 are performed, and the modified dedication matrix
'X ()

l
t is obtained (lines 5-6). If the team size of

j
T is still

bigger than maxhead

j
T after the heuristic operators, then

give a penalty to the effort of
j

T (lines 7-12). For 'X ()
l

t ,

two efficiency objectives of
I

duration and
I

cost are eval-

uated by calling the function Evaluate_duration_cost
(line 16), the procedure of which is given in Fig. 5. If the
task skill constraints are violated (0reqsk ), output the

penalized objective vector (lines 17-19) and stop the pro-
cedure. Otherwise, the robustness and stability values of

'X ()
l

t are calculated (lines 20-36). Note that the modified

dedication matrix 'X ()
l

t is also output by the procedure,

which will replace X()
l

t in the succeeding optimization.

Procedure 1 Evaluate_objective

Input: _ _ ()
l

T ava set t , _ _ ()
l

e ava set t , ((), ())
l l

G V t A t , _ _ ()est rem eff

j l
T t ,

_
()qrem eff

j l
T t , X()

l
t ,

1
X()

l
t


,
1

_ _ ()
l

T ava set t


,
1

_ _ ()
l

e ava set t


// ((), ())
l l

G V t A t is the TPG at
l

t , and X()
l

t is the dedication matrix at
l

t .

Output: (()
I l

duration t , ()
I l

cost t , ()
l

robustness t , ()
l

stability t , 'X ()
l

t)

1: Let : =0reqsk .

2: for all tasks j
T in _ _ ()

l
T ava set t do

3:
_ _ ()

: + \ { | 0}
i l

j i ij

e e ava set t

reqsk reqsk req skill x


  . // reqsk is the total number of missing skills

4: end for

5: if 0reqsk  then

6: Perform the two heuristic operators introduced in Section 5.2.3, and obtain the modified dedication matrix 'X ()
l

t .

7: for all tasks j
T in _ _ ()

l
T ava set t do

8: if
j

teamsize of j
T after performing heuristic operators exceeds maxhead

j
T , then

9:
 

_ _ _ _
1 2

() : () 1
j jest rem eff est rem eff

j l j l

teamsize teamsize
T t T t

Z

  
   
 
 

;

10:
 _ _

1 2
() : () 1q q j jrem eff rem eff

j l j l

teamsize teamsize
T t T t

Z

  
   
 
 

;

11: end if

12: end for

13: else

14: Let 'X () : X()
l l

t t

15: end if

16: Call the function:

[()
I l

duration t , ()
I l

cost t]:=Evaluate_duration_cost(_ _ ()
l

T ava set t , _ _ ()
l

e ava set t , ((), ())
l l

G V t A t , _ _ ()est rem eff

j l
T t , 'X ()

l
t , reqsk).

 // _ _ ()est rem eff

j l
T t represents the initial scenario.

17: if 0reqsk  then

18: Output (()
I l

duration t , ()
I l

cost t , 2
rob

reqsk C  ,
_ _ ()

2 _ _ () _ _ () max
i l

maxded

l l i
e e ava set t

reqsk e ava set t T ava set t e


    , 'X ()
l

t); exit.

19: end if

20: for all the sampled task effort scenarios q
 in  | 1, 2, ,

q
q N  do // N is the sample size

21: Call the function:

AUTHOR ET AL.: TITLE 15

[()
q l

duration t , ()
q l

cost t]:=Evaluate_duration_cost(_ _ ()
l

T ava set t , _ _ ()
l

e ava set t , ((), ())
l l

G V t A t ,
_

()qrem eff

j l
T t , 'X ()

l
t , reqsk).

 //
_

()qrem eff

j l
T t represents the qth sampled scenario.

22: end for

23: Let

2 2

1 1

() () () ()1 1
() : max 0, max 0,

() ()

N N
q l I l q l I l

l

q qI l I l

duration t duration t cost t cost t
robustness t

N duration t N cost t


 

       
          

      
  . // 1 

24: Let () : 0
l

stability t  .

25: for all employees
i

e in
1

_ _ () _ _ ()
l l

e ava set t e ava set t


 do

26: for all tasks
j

T in
1

_ _ () _ _ ()
l l

T ava set t T ava set t


 do

27: if '

-1
()=0 and () 0

ij l ij l
x t x t  then

28: Let : 2
ij

  ;

29: else if '

-1
() 0 and () 0

ij l ij l
x t x t  then

30: Let : 1.5
ij

  ;

31: else

32: Let : 1
ij

  .

33: end if

34: Let '

-1
() : () () ()

l l ij ij l ij l
stability t stability t x t x t   

35: end for

36: end for

37: Output (()
I l

duration t , ()
I l

cost t , ()
l

robustness t , ()
l

stability t , ' ()
l

tX); exit.

Fig. 4. Pseudo code of the objective evaluation procedure at the scheduling point
lt

The procedure of evaluating duration and cost shown
in Fig. 5 is a modification to Algorithm 1 in [2], which
provides a schedule-driven estimation [38] of duration
and cost. Algorithm 1 considered all the tasks and em-
ployees in the static PSP, while our procedure here is for
computing the elapsed time and cost of processing the
available tasks by the available employees at a specific
scheduling point. Moreover, the skill proficiencies and
overtime salaries are taken into account in our work. If
the task skill constraints are satisfied, the procedure itera-
tively constructs the schedule (Lines 5-34). Line 6 checks
which tasks can be active at the current moment of time
according to the TPG. The dedication is normalized for

employees whose total dedication to all the active tasks
exceeds the upper limit (line 12). Next, the total dedica-
tion of employees for a task is calculated (Line 14), and
the total fitness for the task is evaluated and converted to
a cost drive value by (15) and (16) (lines 15-16). Line 18
determines the earliest moment of time t’ at which a task
finishes. The finished task and its incident edges are re-
moved from the TPG (line 31), thus new tasks are allowed
to become active in the next iteration based on the TPG.
Duration and cost are accumulated along all the iterations
(lines 19-27). Line 29 computes the remaining effort of
each active task, which will be used in the next iteration if
the task has not finished yet.

Procedure 2 Evaluate_duration_cost

Input: _ _T ava set , _ _e ava set , (,)G V A , _rem eff

j
T , X , reqsk // _rem eff

j
T is the remaining effort of task j

T

Output: (duration , cost)

1: if 0reqsk  then // reqsk is the total number of missing skills

2: Output (_ _

_ _ ()
_ _ ()

14 () min
i l

j l

est rem eff maxded

j l i
e e ava set t

T T ava set t

reqsk k T t e




   , _ _

_ _ _ _

14
i j

over salary rem eff

i j

e e ava set T T ava set

reqsk e T
 

   ); exit.

3: end if

4: Let : =0duration , : =0cost .

5: while (,)G V A  , do

6: Let 'V be the set of all the tasks in _ _T ava set without incoming edges in (,)G V A .

7: if 'V  then

8: Output ‚Problem instance not solvable!‛; exit.

9: end if

10: for all tasks j
T in V' do

11: for all employees
i

e in _ _e ava set do

12: Let
'

: max 1,
m

maxded

ij ij im i

T V

d x x e


 
   

 
 . //normalization

13: end for

14: Compute the total dedication for j
T :

_ _

:
i

j ij

e e ava set

Td d


  ;

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

15: Compute the total fitness for j
T :

_ _

:
i

Proficiency

j ij ij j

e e ava set

F e d Td


 
  
 
 ;

16: Convert
j

F to a cost drive value   : max 1,8 *7 0.5
j j

V round F   ; // 1
j

V  means the employees are the most suitable for j
T .

17: end for

18: Let   _

'
: min

j

rem eff

j j j
T V

t' T Td V


 .

19: Let :duration duration t'  .

20: for all employees
i

e in _ _e ava set do

21: Compute the total dedication of
i

e :
'

:
j

i ij

T V

Ed d


 ;

22: if 1
i

Ed  then //within the normal working time

23: Let _: norm salary

i i
cost cost t' e Ed    ;

24: else //overtime working time

25: Let _ _: 1 (1)norm salary over salary

i i i
cost cost t' e t' e Ed        .

26: end if

27: end for

28: for all tasks j
T in V' do

29: Let  _ _:rem eff rem eff

j j j j
T T t' Td V   .

30: if _ 0rem eff

j
T  then

31: Mark j
T as finished, and remove it and its incident edges from (,)G V A .

32: end if

33: end for

34: end while

35: Output (duration, cost); exit.

Fig. 5. Pseudo code of evaluating duration and cost.

6 EXPERIMENTAL STUDIES

Considering the uncertainties and dynamic events that
often occur in dynamic environments of a software pro-
ject, it is desirable to provide the software manager with
insight into whether robustness and stability should be
taken into account together with project duration and
cost, and which rescheduling method to choose for solv-
ing MODPSP. This insight should be supported by evi-
dences illustrating the influence of robustness and stabil-
ity on the project duration and cost and also on the per-
formance of the algorithm. The evidence should also
demonstrate which rescheduling algorithm is likely to
behave better according to the evaluation criteria that
may affect the software manager’s decision. With this
aim, this section presents a comprehensive study of the
influence of the robustness objective on proactive sched-
uling, compares our rescheduling method, dε-MOEA,
with the heuristic dynamic scheduling based on the
whole project duration and cost, and also compares five
MOEA-based rescheduling methods based on the con-
vergence, distribution and spread performances that are
usually considered in multi-objective optimization.

6.1 MODPSP Instances

In our experiments, both the instances derived from Al-
ba and Chicano’s benchmarks [3], and those derived
from real-world projects were used.

Since there are no standard benchmarks for the
MODPSP, 18 dynamic instances are generated based on
the 18 static PSP instances of benchmark 4 in [3]. The

reason for selecting these 18 instances is that they in-
clude the variants of three important parameters in PSP,
which are the number of employees, the number of tasks,
and the number of employee skills. To capture more
features of the realistic PSP, the MODPSP instances gen-
erated here differ from the static ones of [3] in the fol-
lowing aspects: (1) The task effort uncertainties and
three kinds of dynamic events (new task arrivals, em-
ployee leaves, and employee returns), which often occur
during the project execution, are incorporated. (2) The
maximum headcount of each task, the skill level of each
employee, part-time jobs, and overtime working of em-
ployees are all taken into account.

The 18 dynamic instances derived from benchmark 4
in [3] contain different software projects. The total num-
ber of different skills required by the project is 10 in each
instance, and each task requires 5 skills randomly select-
ed from them. The number of employees can be 5, 10, or
15, and the number of skills possessed by each employee
ranges from 4 to 5, or from 6 to 7. 20% of the employees
do part-time jobs, whose maximum dedications are uni-
formly generated from [0.5, 1) at random; another 20%
can work overtime, whose maximum dedications are in
the interval (1, 1.5]; and the maximum dedication of each
remaining employee is set to 1.0 (full time). According to
[3], the normal monthly salary of each employee is sam-
pled from a normal distribution with the mean of 10000
and standard deviation of 1000. The overtime salary is
set to be the normal monthly salary multiplied by 3. If an
employee has one skill, the proficiency score is sampled
uniformly from (0, 5] at random, otherwise it is set to 0.

At the initial time, the number of tasks can be 10, 20,

AUTHOR ET AL.: TITLE 17

or 30. Then it is assumed that 10 new tasks arrive one by
one following a Poisson distribution. We suppose the
mean time between task arrivals is 1 month. We assume
20% of the new tasks are urgent, and the remaining 80%
are regular. The simulation continues until all the origi-
nal and new tasks have finished. Variances of task ef-
forts are assumed to follow a normal distribution. Each
task effort is assigned different values of mean and
standard deviation, which vary uniformly in [8, 12] and
[4, 6] (unit: person-month), respectively. These values
are chosen such that on average, the mean of a task ef-
fort is 10 and the standard deviation is 5 [3]. The TPG for
the initial tasks is generated using the method in [3]. For
a newly arrived task, the precedence of the urgent or the
regular one is inserted preceding or succeeding a ran-
domly selected unfinished task, respectively.

During the project execution, employee leaves and re-
turns are assumed to follow a Possion distribution. As
indicated in Section 3.1, each employee is assigned dif-
ferent mean time between his/her leaves and mean time
to his/her return, which vary uniformly in [11, 13] and
[0.4, 0.6] (unit: month), respectively. These values are
chosen such that on average, an employee is available
for 11.5 months per year, and then asks for a leave of 0.5
months. Hence, an employee’s availability is about
95.83%.

The 18 MODPSP instances randomly generated ac-
cording to the above principles are named as
sT#1_dT#2_E#3_SK#4-#5, where sT#1 means the num-
ber of initial static tasks, dT#2 means the number of dy-
namically arriving tasks, E#3 means the total number of
employees, and SK#4-#5 means each employee has #4 to
#5 skills. For example, sT30_dT10_E15_SK6-7 denotes
that there are 30 tasks in the project initially, then 10 new
tasks arrive one by one dynamically, and there are in
total 15 employees, each of whom has 6-7 skills.

Additionally, three real-world instances (named Re-
al_1, Real_2 and Real_3) derived from business software
construction projects for a departmental store [10] were
also used in our experiments. Since these real instances
are originally static PSPs, uncertainties and dynamic
events are introduced to transfer them into the dynamic
instances. For task effort uncertainties, the original task
effort in the static real instances is regarded as the initial-
ly estimated effort, and is set as the mean value of the
normal distribution which each task effort follows, and
the standard deviation is assumed to be 10 percent of the
mean value. The three kinds of dynamic events occur in
the same way as that described in the above 18 random-
ly generated instances. In addition, the maximum dedi-

cation maxded

i
e in our model was calculated from the real

instances as follows:

maximum possible working hours per month

legal normal working hours per month

maxded

i
e  .

When evaluating the cost in the procedure shown in
Fig. 5, the basic salary was incorporated as in [10].

In total, there are 21 test instances used in our exper-
iments, which were performed on a personal computer
with Intel core i5, 3.2 GHz CPU and 4 GB RAM.

We do not currently have access to real world soft-
ware project data containing information about their
dynamic and uncertain events. The simulation nature
and the lack of empirical validation with data of com-
pletely real nature is a threat to validity of this study. In
order to mitigate this threat, we used several simulated
software projects containing different numbers of tasks,
employees, skills, dynamic events and uncertainties. We
have also used three real world software projects with
simulated dynamic and uncertain events. Once real
world data with known dynamic and uncertain events
become available for an empirical study, further anal-
yses should be performed.

6.2 Parameter Settings

Parameter settings of our rescheduling method, dε-
MOEA, in all the experiments are given in Table 4. In
each independent run, the algorithm stops after 10000
objective vector evaluations. In the decision making pro-
cedure, the pairwise comparison matrix for the four ob-
jectives was assumed to be

 1 4 4

1 1 2 2

1 1 2 2
C =

1 2 1 2 1 1

1 2 1 2 1 1

ij
c



 
 
 
 
 
 

.

Hence, the corresponding weight vector is

 
4 1

w [0.3333 0.3333 0.1667 0.1667]T

i
w


  .

TABLE 4

PARAMETER SETTINGS OF THE RESCHEDULING

METHOD

Population size of dε-MOEA 100

Chromosome Binary encoding, 3 bits for each ()
ij l

x t , i.e. nb=3

Crossover possibility 0.9
Mutation possibility 1/L, where L is the chromosome length
maximum number of objective vector evaluations 10000

6.3 Research Questions

The research questions (RQ) that our experimental stud-
ies aim to investigate are as follows:

RQ1: Is our initial proactive scheduling effective in
improving the schedule robustness to task effort uncer-
tainties by simultaneously considering the ―robustness‖
objective and two efficiency objectives?

RQ2: Does our rescheduling method dε-MOEA im-
prove the project efficiency significantly compared
to a heuristic dynamic scheduling method? Is the project
efficiency sensitive to task effort variances when using
our rescheduling method dε-MOEA?

RQ3: Are the strategies designed in dε-MOEA effec-

tive compared to other MOEA-based rescheduling

methods? These strategies include the dynamic optimi-

zation mechanism, introduction of the robustness and

stability objectives, and heuristic initialization strategies.
RQ4: What insights into trade-offs among objectives

can be found in the Pareto fronts of software projects?

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

6.4 RQ1: Influence of the Robustness Objective
on the Initial Proactive Scheduling

This section aims to validate the effectiveness of the ini-
tial proactive scheduling in improving the schedule ro-
bustness to task effort uncertainties (the dynamic events
occurring during the project execution are not consid-
ered here). Performance comparisons were done be-

tween our robust method (three objectives of
I

duration ,

I
cost , and robustness were considered simultaneously,

and it is called ε-MOEA-r), and the method where only

two efficiency objectives (
I

duration and
I

cost) were con-

sidered (it is called ε-MOEA-d). Aiming to compare the
two methods within a multi-objective framework, the
following steps were performed at the initial time of
each of the 21 MODPSP instances:

Step i: Two methods were applied, and two non-
dominated solution sets were produced, respectively.
Then the value of the objective ―robustness‖ was calculat-
ed for the two methods using the same sampled efforts
(100 task effort scenarios were sampled at random here),
despite the fact that only one of them was optimizing
this objective. When comparing the two methods in
terms of Pareto domination, ―robustness‖ was also con-
sidered.

Step ii: The non-dominated sets of the two methods
were compared using the set cover metric C [39], which

is defined as follows: suppose
1 2
, X X are two solution

sets. The metric C maps the ordered pair
1 2

(,)X X into

the interval  0, 1 :

    2 2 1 1 1 2 1 2

1 2

2

x ; x : x x or F x F x
(,)

X X
C X X

X

   
 (24)

where
1 2

x x means solution
1

x Pareto dominates
2

x ,

and F is the objective vector. The metric C gives a com-
parison of two sets based on their domination or equali-

ty to each other.    1 2 2 1, ,C X X C X X indicates that
1

X

is better than
2

X in terms of the metric C.

Step iii: In order to check the overall performance im-
provement (or deterioration) on individual objectives by
using ―robustness‖ as one of the multiple objectives, the
non-dominated solutions of ε-MOEA-r were averaged
along each of the three objectives, respectively, and also
for ε-MOEA-d. The quantitative improvement (or dete-
rioration) of ε-MOEA-r over ε-MOEA-d on each objective
is calculated as follows:

 MOEA r MOEA d

0 MOEA d

_ _
() 100%,

_

1,2,3

i i

i

i

Avg f Avg f
Imp t

Avg f

i

 



   

 


  



 (25)

where MOEA r_
i

Avg f   and MOEA d_
i

Avg f   represent the

average of the non-dominated solutions (i.e., the overall
performance) obtained by ε-MOEA-r and ε-MOEA-d on

the objective
i

f , respectively. Since all objectives were to

be minimized, we used a negative sign in (25).
30 independent runs of both methods were replicated

following the above experimental procedure on each
problem instance. To significantly compare the metric C
between ε-MOEA-r and ε-MOEA-d on the 21 instances,
Wilcoxon rank sum tests with the significance level of
0.05 were employed. The results are listed in Table 5. It
can be seen that C(ε-MOEA-r, ε-MOEA-d) is significantly
better than C(ε-MOEA-d, ε-MOEA-r) in 100% of the real-
world, and 72.22% of the random instances, respectively,
and there is no significant difference between them in
the remaining 27.78% of the random instances, which
indicates that the convergence performance of our ro-
bust method ε-MOEA-r is better than or at least no
worse than ε-MOEA-d in terms of Pareto domination.

TABLE 5

STATISTICAL TESTS OF THE METRIC C BETWEEN ε-MOEA-r AND ε-MOEA-d FOR THE 21 MODPSP INSTANCES AT THE INITIAL

TIME (THE SIGN OF ‘+/−/=’ IN A VS. B INDICATES THAT ACCORDING TO THE METRIC C, ALGORITHM A IS SIGNIFICANTLY BETTER THAN

B, SIGNIFICANTLY WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN A AND B BASED ON THE WILCOXON RANK

SUM TEST WITH THE SIGNIFICANCE LEVEL OF 0.05).

Instance
sT10_dT10_

E5_SK4-5
sT10_dT10_
E10_SK4-5

sT10_dT10_
E15_SK4-5

sT10_dT10_E
5_SK6-7

sT10_dT10_
E10_SK6-7

sT10_dT10_
E15_SK6-7

C(ε-MOEA-r, ε-MOEA-d)
vs. C(ε-MOEA-d, ε-MOEA-r)

p-value
sign

0.0039
+

1.64E-6
+

0.3309
=

3.30E-6
+

1.13E-6
+

7.99E-6
+

Instance
sT20_dT10_

E5_SK4-5
sT20_dT10_
E10_SK4-5

sT20_dT10_
E5_SK4-5

sT20_dT10_E
5_SK6-7

sT20_dT10_
E10_SK6-7

sT20_dT10_
E15_SK6-7

C(ε-MOEA-r, ε-MOEA-d)
vs. C(ε-MOEA-d, ε-MOEA-r)

p-value
sign

8.18E-4
+

0.8865
=

0.0501
=

4.58E-8
+

3.55E-6
+

5.34E-4
+

Instance
sT30_dT10_

E5_SK4-5
sT30_dT10_
E10_SK4-5

sT30_dT10_
E15_SK4-5

sT30_dT10_E
5_SK6-7

sT30_dT10_
E10_SK6-7

sT30_dT10_
E15_SK6-7

C(ε-MOEA-r, ε-MOEA-d)
vs. C(ε-MOEA-d, ε-MOEA-r)

p-value
sign

0.0202
+

0.1671
=

0.0079
=

4.94E-8
+

6.37E-6
+

5.45E-6
+

Instance Real_1 Real_2 Real_3

C(ε-MOEA-r, ε-MOEA-d)
vs. C(ε-MOEA-d, ε-MOEA-r)

p-value
sign

0.0361
+

2.86E-6
+

0.0017
+

AUTHOR ET AL.: TITLE 19

The overall performance improvement (or deteriora-
tion) of ε-MOEA-r over ε-MOEA-d on each objective was
averaged over 30 runs and listed in Table 6. Wilcoxon
rank sum tests with the significance level of 0.05 were
employed to significantly compare the overall perfor-
mance on each objective obtained by each of the two algo-
rithms, and the results are also shown in Table 6. It can be
seen from statistical results that compared to ε-MOEA-d,
ε-MOEA-r improves the robustness significantly in 17 of
the 18 random instances and all the 3 real instances, while
only deteriorates the efficiency objective significantly
(mainly the duration) in 6 of the 18 random instances and
1 of the 3 real instances. From the results of overall per-
formance improvement, the improvement in robustness is
much more than the deterioration in efficiency, which
suggests that if the predictive schedules are generated by
simultaneously considering robustness and efficiency,
there will be a high chance of obtaining more robust
schedules without seriously affecting efficiency. Note that
this happens not only in the random instances, but also in
the ones derived from real-world projects. Moreover, the
better robustness performance obtained by ε-MOEA-r
shows it can produce a set of trade-off schedules with

lower duration delays and cost increases than ε-MOEA-d
when facing task effort uncertainties, which suggests its
ability to reduce the schedule sensitivity to uncertainties.

Take Real_3 as an example to illustrate the behaviors
of different algorithms. The initially estimated efforts of
the 12 initial static tasks are 3, 2, 2, 2, 3, 1, 4, 3, 2, 2, 2, and
3, and a disrupted task effort scenario is 2.84, 2.16, 1.76,
2.16, 3.36, 1.13, 3.31, 3.28, 2.13, 1.87, 2.35 and 2.72 respec-

tively. Duration and cost in the initial (
I

duration and

I
cost) and disrupted (

q
duration and

q
cost) scenario of a

randomly chosen schedule generated by ε-MOEA-d are
shown in Table 7 and also for ε-MOEA-r. It can be seen
that to get better robustness, the initial duration and cost
of ε-MOEA-r are worse than those of ε-MOEA-d. Howev-
er, when facing the same task effort disruption, the dis-
rupted duration and cost for ε-MOEA-d becomes worse
than both the initial and disrupted duration and cost for
ε-MOEA-r, which illustrates that better robustness really
compensates the worse initial cost and duration for ε-
MOEA-r.

TABLE 6

 PERFORMANCE IMPROVEMENTS (OR DETERIORATIONS) OF ε-MOEA-r OVER ε-MOEA-d AND STATISTICAL TESTS OF THE OVER-

ALL PERFORMANCE ON EACH OBJECTIVE ON THE 21 MODPSP INSTANCES AT THE INITIAL TIME (THE POSITIVE VALUE MEANS IM-

PROVEMENT AND IS IN BOLD. THE NEGATIVE VALUE MEANS DETERIORATION. THE SIGN OF ‘+/−/=’ IN A VS. B INDICATES THAT AC-

CORDING TO THE OVERALL PERFORMANCE ON EACH OBJECTIVE, ALGORITHM A IS SIGNIFICANTLY BETTER THAN B, SIGNIFICANTLY

WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN A AND B BASED ON THE WILCOXON RANK SUM TEST WITH THE

SIGNIFICANCE LEVEL OF 0.05)

ε-MOEA-r

vs.

ε-MOEA-d

Instance durationI costI robustness Instance durationI costI robustness

sT10_dT10_

E5_SK4-5

-1.63%

(0.096 =)

0.76%

(0.15 =)

4.05%

(0.022 +)

sT10_dT10_

E10_SK4-5

-2.98%

(0.22 =)

-2.29%

(0.15 =)

5.11%

(0.022 +)

sT10_dT10_

E15_SK4-5

3.29%

(0.0017 +)

-1.42%

(0.16 =)

2.56%

(0.08 =)

sT10_dT10_

E5_SK6-7

-4.46%

(0.12 =)

-0.53%

(0.21 =)

6.42%

(0.003 +)

sT10_dT10_

E10_SK6-7

2.33%

(6.91E-4 +)

-0.94%

(0.14 =)

7.88%

(7.20E-5 +)

sT10_dT10_

E15_SK6-7

-6.13%

(0.0087 −)

0.33%

(0.15 =)

11.36%

(0.023 +)

sT20_dT10_

E5_SK4-5

-1.79%

(0.080 =)

0.75%

(0.52 =)

13.42%

(2.22E-5 +)

sT20_dT10_

E10_SK4‐5

-4.11%

(8.66E-5 −)

-1.03%

(0.082 =)

17.06%

(8.88E-5 +)

sT20_dT10_

E15_SK4-5

-6.25%

(0.047 −)

-1.51%

(0.59 =)

16.70%

(3.83E-5 +)

sT20_dT10_

E5_SK6-7

-2.15%

(0.085 =)

-1.14%

(0.064 =)

9.07%

(0.0076 +)

sT20_dT10_

E10_SK6-7

-1.11%

(0.058 =)

-1.14%

(0.59 =)

3.62%

(1.47E-7 +)

sT20_dT10_

E15_SK6-7

3.72%

(4.46E-4 +)

0.53%

(0.75 =)

5.84%

(4.12E-6 +)

sT30_dT10_

E5_SK4-5

-0.58%

(0.064 =)

1.31%

(0.077 =)

9.53%

(1.17E-4 +)

sT30_dT10_

E10_SK4-5

-7.86%

(8.20E-7 −)

-7.28%

(0.66 =)

32.25%

(1.96E-10 +)

sT30_dT10_

E15_SK4-5

-1.31%

(0.21 =)

-0.17%

(0.060 =)

6.19%

(5.27E-5 +)

sT30_dT10_

E5_SK6-7

-6.61%

(0.0023 −)

-0.94%

(0.52 =)

17.48%

(2.60E-5 +)

sT30_dT10_

E10_SK6-7

-6.81%

(4.22E-4 −)

-2.11%

(0.43 =)

22.82%

(3.96E-8 +)

sT30_dT10_

E15_SK6-7

-8.67%

(6.36E-5 =)

-0.28%

(0.84 =)

21.97%

(2.83E-8 +)

Real_1
-6.25%

(2.60E-8 −)

-4.14%

(4.12E-8 −)

27.84%

(1.61E-10 +)
Real_2

-0.31%

(0.70 =)

1.82%

(0.028 +)

9.29%

(0.0018 +)

Real_3
-1.56%

(0.36 =)

1.53%

(0.0468 +)

2.13%

(0.029 +)

The values in the parentheses are p-values obtained from Wilcoxon rank sum tests.

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

TABLE 7

AN EXAMPLE OF THE DURATION AND COST VARIANCE OBTAINED BY ε-MOEA-d AND ε-MOEA-r IN THE INITIAL AND DISRUPTED SCE-

NARIO

 I
duration

I
cost

q
duration

q
cost robustness

ε-MOEA-d 8.34 368583 8.81 380880 0.0563

ε-MOEA-r 8.41 370630 8.68 378275 0.0516

6.5 RQ2: Comparisons of the Proposed
Rescheduling Method dε-MOEA against the
Heuristic Dynamic Scheduling Method

This section compares dε-MOEA with a heuristic dy-
namic scheduling method (it is called h-method), which
generates an initial schedule by the robust scheduling
algorithm ε-MOEA-r (introduced in Section 6.3), com-
bined with the decision making method described in
Section 4.2.4. The h-method then makes a local adjust-
ment to the original schedule based on a heuristic rule
when a dynamic event occurs (these local adjustments
are different strategies that could be adopted if no dy-
namic MOEA rescheduling was used). The heuristic
rules used here are:

1) In the case that an employee leaves and returns, for
each task in which the leaving employee is on, if the task
becomes infeasible because the employee leaves, then
the task is unprocessed and waits until the employee
returns to be continued. Otherwise, if the task is still fea-
sible, then the remaining employees still work on it and
their dedications to the task are kept unchanged. For
other tasks, they are performed according to the initial
schedule.

2) If a newly arrived task is to be performed accord-
ing to the TPG, then a number of available employees

with higher proficiencies (measured by Proficiency

ij
e) will be

assigned to it, simultaneously satisfying the task skill
constraint. The number of selected employees is ex-
pected not to exceed the maximum headcount of the task.
However, if the team size cannot be reduced to the limit
without violating the task skill constraint, then the task
headcount constraints can be relaxed.

Two performance measures were adopted in this sec-
tion. One was the whole project duration (the elapsed
time of finishing all the tasks that have ever been con-
sidered as part of the project), and the other was the
whole project cost (the total expenses paid to the em-
ployees for completing the whole project). 30 independ-
ent runs on each MODPSP instance were performed us-
ing our method dε-MOEA, and also the h-method. Av-
erage results, percentages of the performance improve-

ment of dε-MOEA over h-method, and the statistical
results obtained by Wilcoxon rank sum tests with the
significance level of 0.05 are listed in Table 8.

It can be observed that compared to h-method, dε-
MOEA decreases the whole project duration and cost
significantly on all instances. It improves the project
efficiency to a large extent, which shows the distinct
superiority of dε-MOEA over the heuristic dynamic
scheduling when dealing with MODPSP, although the
mean CPU time consumed by dε-MOEA at each sched-
uling point is much larger than that of the h-method
(The smallest and largest mean execution time cost by
dε-MOEA was 86.33s (Real_1) and 431.68s
(sT30_dT10_E10_SK6-7), while those of h-method were
only 0.0150s (Real_3) and 0.0556s (sT30_dT10_E5_SK6-
7), respectively). However, compared to the project
duration measured by months and the savings found
by dε-MOEA, the time cost of dε-MOEA is relatively
small, and it is worth consuming the time to regenerate
a schedule by dε-MOEA that can improve the project
efficiency significantly.

The sensitivity analysis of the impact of task effort

variances on the project efficiency is also performed on

one real-world instance (Real_1). Here, the standard

deviation of the normal distribution that task effort vari-
ances assumed to follow is set to be 5, 10, 15, 20, 40, 60,
80, and 100 percent of the mean value, respectively,
which reflects the uncertainty level. Fig. 6 gives the var-
iations of the project duration and cost obtained by dε-
MOEA and h-method with the uncertainty in the task
effort estimation (30 replications of either method are
performed under each uncertainty level and the aver-
age value is computed, respectively). It can be seen that
as the uncertainty level increases, the project duration
and cost also increase because the project suffers from
such effort variations. However, the increment of pro-
ject duration and cost produced by dε-MOEA (Fig. 6(a))
is much smaller than that obtained by h-method (Fig.
6(b)), which indicates that our method dε-MOEA is
much less sensitive against such task effort uncertainties.

0 20 40 60 80 100
15

16

17

18

19

20

21

22

23

uncerterty level (%)

p
ro

je
c
t
d
u
ra

tio
n

0 20 40 60 80 100
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

6

uncerterty level (%)

p
ro

je
c
t
c
o
s
t

0 20 40 60 80 100
15

16

17

18

19

20

21

22

23

uncerterty level (%)

p
ro

je
c
t
d
u
ra

tio
n

0 20 40 60 80 100
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

6

uncerterty level (%)

p
ro

je
c
t
c
o
s
t

(a) dε-MOEA (b) h-method

Fig. 6 Variations of the project duration and cost obtained by dε-MOEA and h-method with the task effort uncertainties

AUTHOR ET AL.: TITLE 21

TABLE 8

AVERAGE RESULTS, PERCENTAGES OF THE PERFORMANCE IMPROVEMENT, AND THE STATISTICAL TEST RESULTS OBTAINED BY COM-

PARING dε-MOEA AGAINST h-method (THE BETTER OF THE PERFORMANCE VALUES ON EACH INSTANCE ARE IN BOLD. THE UNIT OF

THE PROJECT DURATION IS MONTH. THE SIGN OF ‘+/−/=’ IN A VS. B INDICATES THAT ACCORDING TO THE PERFORMANCE COMPARED,
ALGORITHM A IS SIGNIFICANTLY BETTER THAN B, SIGNIFICANTLY WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BE-

TWEEN A AND B BASED ON THE WILCOXON RANK SUM TEST WITH THE SIGNIFICANCE LEVEL OF 0.05).

Performance values
Project

duration
Project

cost
Project

duration
Project

cost
Project

duration
Project

cost
Project

duration
Project

cost

Instance sT10_dT10_E5_SK4-5 sT10_dT10_E10_SK4-5 sT10_dT10_E15_SK4-5 sT10_dT10_E5_SK6-7

dε-MOEA
h-method

Improvement percentage
dε-MOEA vs. h-method

108.4

136.2
20.4%

3.02E-11+

3512722

3862030
9.0%

3.02E-11+

71.0

91.0
22.0%

3.61E-13+

2792531

3148683
11.3%

8.73E-14+

57.1

68.2
16.3%

3.02E-11+

2019370

2280162
11.4%

3.02E-11+

145.9

172.5
15.4%

3.02E-11+

3601760

4072819
11.6%

3.02E-11+

Instance sT10_dT10_E10_SK6-7 sT10_dT10_E15_SK6-7 sT20_dT10_E5_SK4-5 sT20_dT10_E10_SK4-5

dε-MOEA
h-method

Improvement percentage
dε-MOEA vs. h-method

65.3

89.3
26.9%

3.02E-11+

2451803

2799789
12.4%

3.02E-11+

60.1

78.2
23.2%

3.02E-11+

2404944

2738974
12.2%

3.02E-11+

161.9

188.1
13.9%

3.02E-11+

6090925

6619072
8.0%

3.02E-11+

65.9

87.2
24.4%

3.02E-11+

3136695

3391533
7.5%

3.02E-11+

Instance sT20_dT10_E15_SK4-5 sT20_dT10_E5_SK6-7 sT20_dT10_E10_SK6-7 sT20_dT10_E15_SK6-7

dε-MOEA
h-method

Improvement percentage
dε-MOEA vs. h-method

58.6

71.3
17.8%

3.02E-11+

3096519

3265817
5.2%

3.02E-11+

230.9

293.8
21.4%

3.02E-11+

6955361

7308816
4.8%

3.02E-11+

78.8

108.3
27.2%

3.02E-11+

4466765

5205138
14.2%

3.02E-11+

64.3

87.2
26.3%

3.02E-11+

3594815

3745180
4.0%

3.02E-11+

Instance sT30_dT10_E5_SK4-5 sT30_dT10_E10_SK4-5 sT30_dT10_E15_SK4-5 sT30_dT10_E5_SK6-7

dε-MOEA
h-method

Improvement percentage
dε-MOEA vs. h-method

120.4

137.2
12.2%

3.02E-11+

5017805

5392107
6.9%

3.02E-11+

82.4

110.2
25.2%

3.02E-11+

5013772

5242736
4.4%

3.02E-11+

69.6

92.9
25.1%

3.02E-11+

4607639

4838638
4.8%

3.02E-11+

196.6

216.3
9.2%

3.02E-11+

7786837

8150944
4.5 %

3.02E-11+

Instance sT30_dT10_E10_SK6-7 sT30_dT10_E15_SK6-7 Real_1 Real_2

dε-MOEA
h-method

Improvement percentage
dε-MOEA vs. h-method

128.1

157.0
18.4%

3.02E-11+

6887576

7571868
9.0%

3.02E-11+

93.0

126.6
26.6%

3.02E-11+

6094726

6317385
3.5%

3.02E-11+

16.2

19.9
18.6%

3.02E-11+

1330256

1451890
8.4%

3.02E-11+

12.1

14.6
17.1%

3.02E-11+

499891

611864
18.3%

3.02E-11+

Instance Real_3

dε-MOEA
h-method

Improvement percentage
dε-MOEA vs. h-method

16.6

20.3
18.2%

3.02E-11+

690717

856075
19.3%

3.02E-11+

The values before the signs ‘+/−/=’ are p-values obtained from Wilcoxon rank sum tests.

6.6 RQ3: Validating the effectiveness of strategies
designed in dε-MOEA

6.6.1 Introduction to the Compared Methods

In this section, the proposed rescheduling method dε-
MOEA was compared to the other four rescheduling
methods which are listed as follows:

i) dCOEA. To validate the effectiveness of the dynamic
optimization mechanism incorporated in dε-MOEA, it
was compared to a state-of-the-art dynamic MOEA called
dCOEA [40]. At each scheduling point, each subpopula-
tion in dCOEA played a role in searching the dedications
of one available employee to all available tasks. In
dCOEA, two strategies were specifically designed for
dynamic optimization: (1) when changes occur, diversity
in each subpopulation was introduced via stochastic
competitors; and (2) to exploit useful information about
the current archive, a temporal memory was used to han-
dle outdated archived solutions. The chromosome repre-
sentations and variation operators in dCOEA were the
same as those in dε-MOEA. The parameter settings of
dCOEA were: the subpopulation size was 10, the maxi-
mum archive size was 100, SCratio was 0.5, Rsize was 5, and

Cfreq was 10, which were the same as recommended by
[40]. Other parameters such as the crossover and muta-
tion probabilities were the same as those in dε-MOEA.

ii) dε-MOEA-Deterministic. To demonstrate the supe-
riority of considering project duration, cost, robustness
and stability simultaneously and incorporating the heu-
ristic initialization, dε-MOEA was compared to dε-
MOEA-Deterministic, which is an ε-MOEA-based com-
plete rescheduling method [15] that regenerates a new
schedule from scratch and does not consider task effort
uncertainties and project stability. At each scheduling

point lt , only the project duration and cost in the initial

scenario are considered. Meanwhile, the initial popula-
tion is entirely generated at random.

iii) dε-MOEA-No-Sta. To study the impact of the stabil-
ity objective, dε-MOEA was compared to an ε-MOEA-
based rescheduling method without considering stability
called dε-MOEA-No-Sta. This method is different from

dε-MOEA in that only three objectives (
I

duration ,
I

cost

and robustness) are optimized simultaneously at each

scheduling point (heuristic initialization is adopted).
From this group of comparisons, a software manager can
gain insight into how the initial duration, cost and ro-

22 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

bustness would be affected by considering stability and
whether the human allocation and dedication changes
would become smaller at different scheduling points.

iv) dε-MOEA-No-HI. To study the influence of heuris-
tic initialization strategies, dε-MOEA was compared to an
ε-MOEA-based rescheduling method which just adopted
random initialization. This method is different from dε-
MOEA in that the initial population is generated at ran-
dom at each scheduling point (four objectives are consid-
ered simultaneously). This group of experiments can pro-
vide a software manager with a better understanding of
whether it would be helpful to utilize dynamic features of
a problem and exploit the previous schedule information
when re-planning a schedule.

The parameter settings of dε-MOEA-Deterministic, dε-
MOEA-No-Sta, and dε-MOEA-No-HI are the same as
those of dε-MOEA, which are given in Table 4. Note that
all algorithms stop after 10000 objective vector evalua-
tions in one run.

6.6.2 Performance Measures

It is desirable for an algorithm to provide a software
manager with a set of non-dominated solutions with
good convergence to the reference Pareto optimal front,
and also with a uniform (in most cases) distribution and a
wide spread over the Pareto front. In this way, the soft-
ware manager can get a full picture of various trade-offs
among the project duration, cost, robustness and stability,
which is very helpful for him/her to understand more
about the problem so that he/she can make an informed
choice or revise the schedule already planned by him-
self/herself according to the requirement of the project.

In this paper, four popular metrics are employed to
evaluate the performance of the five MOEA-based re-
scheduling methods. The first one is the hypervolume ratio
(HVR) [41]. The hypervolume metric HV measures the
size of the objective space dominated by the obtained
non-dominated front PFknown [42], and HVR is the ratio of
HV and the hypervolume of the reference Pareto front
PFref . A larger HVR value indicates a better convergence
and a wider spread of the obtained non-dominated front.
The second one is the Generational Distance (GD), which
measures how far PFknown is from PFref [43]. A small GD
indicates the obtained solutions are close to the reference
Pareto front, which means a good convergence perfor-
mance. The weakness of GD is that it does not take the
spread of solutions into account, hence a set of solutions
which gather around a small region near the reference
Pareto front may also get a good GD value. The third one
is a distribution performance metric called Spacing, which
measures the distance variations of neighbouring vectors
in PFknown [44]. The smaller Spacing is, the better the distri-
bution uniformity of PFknown is. The fourth one is Spread,
which measures the extent of spread achieved by the ob-
tained solutions and the uniformity in the distribution of
PFknown. The definition of Spread in [45] was used for bi-
objective problems. As for problems with three or more
objectives, we propose a modified Spread given in (26):

_ ' '

1 1

_ '

1

PFN o n

j ij i

N o

j PFj

df d d
Spread

df n d

 



 


 

 


 (26)

where _N o is the number of objectives,
j

df is the Eu-

clidean distance between the best solution on the jth objec-
tive and its nearest solution in PFknown, nPF is the number of

vectors in PFknown, '

i
d is the Euclidean distance from the ith

vector of PFknown to its nearest neighbour in PFknown, and 'd

is the mean of all '

i
d . A wide and uniform spread of solu-

tions in PFknown will result in a small value of Spread.
No matter how uniformly the solutions distribute or

how widely the range of objective values covers, if the
obtained solution set is far from the reference Pareto front,
the algorithm is not very useful because some of the pro-
ject cost, duration, robustness and stability are poor. Thus,
the convergence performance (HVR and GD) of an algo-
rithm should be considered first by a software manager
when choosing an algorithm to use. For two algorithms
with comparable convergence, the one with a better dis-
tribution (Spacing) and spread (Spread) is preferred.

Because the true Pareto front at each scheduling point
is unknown in MODPSP, PFref is obtained in our work by
merging the solutions found during all the independent
runs using all the five methods, and then obtaining the
non-dominated solutions from them. The reference point
in HVR is formed by the worst objective values observed
in all optimization runs.

Due to the space limitation, the procedure of compar-
ing dε-MOEA to other MOEA-based rescheduling meth-
ods is presented in Appendix A in detail. To compare the
five methods in terms of the overall performance across
different scheduling points and runs on each instance,
Wilcoxon rank sum tests with the significance level of 0.05
are employed. The statistical test results are listed in Table
B.1 in Appendix B. The overall performance improvement
(or deterioration) and the statistical test results of dε-
MOEA over the other four methods on each objective on
the 21 instances are listed in Table B.2 in Appendix B.

6.6.3 Comparisons to dCOEA

In order to understand the impact of different dynamic
MOEAs on the performance of MODPSP, we also applied
dCOEA to find the Pareto front at each scheduling point.
Table 9 summarizes the statistical test results of our
method dε-MOEA versus the other four methods.

It can be seen that in terms of the convergence metrics
HVR and GD, dε-MOEA is significantly better than
dCOEA in all cases. It maintains a comparable spread
performance to dCOEA, where the Spread values of dε-
MOEA are significantly better than dCOEA in 83% of the
18 random instances and one in three real-world instanc-
es, respectively. As to the distribution performance, dε-
MOEA is comparable to dCOEA on the real-world in-
stances, while a bit worse than dCOEA on the random
instances since its Spacing values are significantly worse
than dCOEA in 33% of the 18 random instances. One pos-
sible reason for this is that dCOEA is a coevolutionary
algorithm known to be good at maintaining a diverse set
of solutions.

AUTHOR ET AL.: TITLE 23

As mentioned before, convergence performance is the
most important factor that a software manager should
take into account when evaluating an algorithm. The poor
convergence performance of dCOEA in our experiments
indicates that the dynamic optimization strategies it
adopts may not be suitable for solving MODPSP (dCOEA

was tested only in dynamic multi-objective function op-
timization in [40]). Other policies, such as the heuristic
initialization strategies designed in this paper which can
utilize dynamic features of MODPSP, should be intro-
duced.

TABLE 9

 COMPARISON RESULTS SUMMARIZED FROM TABLE B.I (THE PERCENTAGE OF THE 18 RANDOM INSTANCES AND 3 REAL-WORLD IN-

STANCES FOR THE STATISTICAL TEST RESULTS OF dε-MOEA VERSUS THE OTHER FOUR METHODS, WHERE THE SIGN OF ‘+/−/=’ IN A

VS. B INDICATES THAT ACCORDING TO THE METRIC CONSIDERED, ALGORITHM A IS SIGNIFICANTLY BETTER THAN B, SIGNIFICANTLY

WORSE THAN B, OR THERE IS NO SIGNIFICANT DIFFERENCE BETWEEN A AND B BASED ON THE WILCOXON SIGNED-RANK TEST WITH

THE SIGNIFICANCE LEVEL OF 0.05)

Random Instances

 HVR GD Spacing Spread

dε-MOEA vs.
dCOEA

+ = − + = − + = − + = −

100% 0 0 100% 0 0 28% 39% 33% 83% 17% 0

dε-MOEA vs.
dε-MOEA-

Deterministic

+ = − + = − + = − + = −

100% 0 0 100% 0 0 11% 39% 50% 61% 33% 6%

dε-MOEA vs.
dε-MOEA-No-

Sta

+ = − + = − + = − + = −

72% 28% 0 28% 72% 0 50% 50% 0% 67% 33% 0

dε-MOEA vs.
dε-MOEA-No-

HI

+ = − + = − + = − + = −

100% 0 0 100% 0 0 22% 45% 33% 11% 39% 50%

Real-world Instances

 HVR GD Spacing Spread

dε-MOEA vs.
dCOEA

+ = − + = − + = − + = −

100% 0 0 100% 0 0 33% 67% 0 33% 67% 0

dε-MOEA vs.
dε-MOEA-

Deterministic

+ = − + = − + = − + = −

100% 0 0 100% 0 0 0 33% 67% 100% 0 0

dε-MOEA vs.
dε-MOEA-No-

Sta

+ = − + = − + = − + = −

100% 0 0 33% 67% 0 33% 67% 0 0% 100% 0

dε-MOEA vs.
dε-MOEA-No-

HI

+ = − + = − + = − + = −

100% 0 0 100% 0 0 33 67% 0 34% 33% 33%

6.6.4 Comparisons to dε-MOEA-Deterministic

With the aim to observe the consequence caused by not
considering uncertainties and system stability when re-
scheduling from scratch in MODPSP, dε-MOEA was
compared to dε-MOEA-Deterministic, which only cares
about the project duration and cost in the initial scenario
and generates the initial population at random. It can be
seen from Table 9 that considering the convergence met-
rics HVR and GD, dε-MOEA is significantly better than
dε-MOEA-Deterministic in all cases. As for the Spread
metric, dε-MOEA behaves better because it is significantly
better than dε-MOEA-Deterministic in 61% of the random
instances and 100% of the real-world instances. However,
in terms of Spacing, dε-MOEA-Deterministic behaves bet-
ter, since it is significantly better than dε-MOEA in 50%
and 67% of the random and real-world instances, respec-
tively. The possible reason is that the initial population
are generated at random in dε-MOEA-Deterministic,
which is helpful in increasing the diversity of solutions.

Besides, it can be found from Table B.2 that compared
to dε-MOEA-Deterministic, dε-MOEA improves the over-
all performance on robustness and stability significantly in

all cases, while it degrades
I

duration and (or)
I

cost some-

times. However, the improvements in robustness and sta-
bility are much more than the deterioration in the initial
efficiency, which suggests that if a software manager re-
schedules by simultaneously considering duration, cost,
robustness and stability, and also taking the dynamic
event features and previous schedule information into
account, he/she will have a higher chance of obtaining
more robust and stable solutions without severely affect-
ing the initial efficiency.

To further present the advantages of dε-MOEA over
dε-MOEA-Deterministic, we plotted a section of the
schedule Gantt charts produced by the two methods on
one real-world instance (Real_2), respectively, which are
given in Fig. 7. Since stability is not taken into account by
dε-MOEA-Deterministic, it is possible that a group of
employees different from the previous ones are assigned
to the same task when rescheduling, and the dedication of
an employee to a task fluctuates a lot. For example, in Fig.
7(b), task T9 is scheduled to be performed by employees e1,
e7, e9 at the initial time t0, by e1, e2, e9 at the scheduling point
t1, and by e7, e9 at t2. Although e9 is assigned to T9 all the
time, his/her dedication changes a lot. This will induce
the system instability and lack of continuity, which is un-
desirable for any real-world software project. In contrast,

24 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

by considering stability, the schedule in Fig. 7(a) pro-
duced by dε-MOEA is more stable with only small ad-
justments in a few dedications, and the group of employ-
ees assigned to tasks T2, T9, T10, T17 are kept unchanged at
different scheduling points as shown in Fig. 7(a). Fur-
thermore, since robustness is not considered in dε-
MOEA-Deterministic either, its schedule may behave

worse when facing task effort disturbances. For example,
in Fig. 7(b), the durations of tasks T1 and T4 were longer
than those built by dε-MOEA in Fig. 7(a). Besides, T3 was
suspended when the new urgent task T17 arrived (the
precedence of T17 was higher than that of T3) and would
continue until T17 finished.

Task No.

Time (month)

0 0.2 0.4 0.6 0.8 1.0 1.2

T1

x71 100%

x81 71.4%

x101 71.4%

x12 100%

x72 85.7%

x82 57.1%
T2

T3

T4

x13 57.1% x73 42.9%

x43 100% x83 57.1%

x14 42.9% x74 57.1%

x44 100% x94 14.3%

T9

T10

T17

x19 57.1%

x29 57.1%

x99 42.9%

new urgent task

17 arrives!

finished

finished

finished

x210 28.6%

x310 28.6%

x510 85.7%

x117100%

x41771.4%

x917100%

x12100%

x7285.7%

x8257.1%

employee 10

leaves!

x19 57.1%

x29 57.1%

x99 42.9%

x12100%

x7285.7%

x8257.1%

x21028.6%

x31028.6%

x51085.7%

x117100%

x41771.4%

x917100%
     

     

     

     

employee 10

returns!

scheduling point t1 t2 t3t0

suspended

(a) A section of the schedule Gantt chart found by dε-MOEA at different scheduling points

Task No.

Time (month)

0 0.2 0.4 0.6 0.8 1.0 1.2

T1

T2

T3

T4

T9

T10

T17

new urgent task

17 arrives!

finished

finished

employee 10

leaves!

     

     

     

     

employee 10

returns!

rescheduling point t1 t2 t3t0

suspended

x71 100%

x81 42.9%

x101 85.7%

x62 100%

x72 100%

x82 85.7%

x1214.3%

x72100%

x8214.3%

x6228.6%

x7285.7%

x8271.4%

x13 100% x73 42.9%

x43 100% x83 100%

x24 42.9%

x34 71.4%

x54 71.4%

x11785.7%

x417100%

x71771.4%

x117100%

x41757.1%

x71714.3%

x7914.3%

x9957.1%

x19 57.1%

x79 57.1%

x99 100%

x1928.6%

x2971.4%

x9971.4%

 (b) A section of the schedule Gantt chart found by dε-MOEA-Deterministic at different scheduling points

Fig. 7. Comparisons of the schedule Gantt charts produced by dε-MOEA and dε-MOEA-Deterministic in the real-world instance Real_2 (
ij

x

denotes the dedication of employee
i

e to task
j

T in the corresponding schedule)

6.6.5 The Influence of the Stability Objective

To study the impact that the stability objective has on the
performance of the MOEA-based rescheduling methods,
dε-MOEA was compared to dε-MOEA-No-Sta which did
not take the stability objective into account. It can be
seen from Table 9 that considering the convergence met-
ric HVR, dε-MOEA is significantly better than dε-MOEA-
No-Sta in 72% and 100% of the random and real-world
instances, respectively, which indicates that compared to
dε-MOEA-No-Sta, dε-MOEA can provide the software
manager with a wider spread of non-dominated solu-

tions that are close to the reference Pareto front. As for
GD, the differences between the two methods are not
large: there is no significant difference between them in
72% and 67% of the random and real-world instances,
respectively. The Spread values produced by dε-MOEA
are better than or comparable to dε-MOEA-No-Sta in all
the instances, and similar results can be obtained for the
Spacing metric. The reason for dε-MOEA-No-Sta having
a relatively good performance on GD, but not so good on
HVR and Spread is that it can find a set of solutions close
to the reference Pareto front, but they just gather around
a small region (with good values of

I
duration ,

I
cost and

AUTHOR ET AL.: TITLE 25

robustness, but bad stability), so the spread of its solutions
is not wide.

Besides, it can be found from Table B.2 that com-
pared to dε-MOEA-No-Sta, dε-MOEA improves the sys-
tem stability significantly with a small sacrifice in the
initial efficiency and (or) robustness. This result is very
practical for a software manager since stability is an im-
portant factor in the real-world software project.

6.6.6 The Influence of Heuristic Initialization
Strategies

To study the impact that the heuristic initialization strat-
egies have on the performance of the rescheduling
method, dε-MOEA was compared to dε-MOEA-No-HI. It
can be seen from Table 9 that considering the conver-
gence metrics HVR and GD, dε-MOEA is significantly
better than dε-MOEA-No-HI in all cases, which indicates
that the combined use of dynamic features and history
information in initialization can help improve the con-
vergence performance of the MOEA-based rescheduling
method a lot. Thus, when rescheduling, it is better for a
software manager to take both the dynamic event fea-
tures and previous schedule information into account.
As for the Spacing metric, dε-MOEA outperforms or is
comparable to dε-MOEA-No-HI in all the real-world
instances, but it is significantly worse than dε-MOEA-
No-HI in 33% of the random instances. Meanwhile, dε-
MOEA-No-HI has better Spread performance as a whole
since it is significantly better than dε-MOEA in 50% and
33% of the random and real-world instances, respectively.
The reason is that dε-MOEA uses the history solution,

the schedule repair solution and their variants as parts of
the initial population, which can help speed up the con-
vergence. However, this may limit the search space ex-
plored by the algorithm.

 It can also be found from Table B.2 that compared to

dε-MOEA-No-HI, dε-MOEA improves the overall per-

formance on
I

cost and stability significantly in all cases,

and improves
I

duration significantly in 16 of the 18 ran-

dom instances and in all the 3 real instances, while it

may degrade robustness in some instances. However, the

improvements in
I

duration ,
I

cost and stability are much

more than the deterioration in robustness (if any), which

suggests that the incorporation of heuristic initialization

is able to improve the efficiency and stability significant-

ly with a small sacrifice in robustness.
 To further understand the advantages and disad-
vantages of the convergence performance of dε-MOEA
over the other four methods, we plotted the average
HVR and GD values over 30 independent runs across the
scheduling points, which are shown in Fig. 8 and Fig. 9,
respectively. Due to the space limitation, we just give
curves on the instances with the best, medium and worst
mean value of HVR or GD obtained by dε-MOEA. It can
be seen that dε-MOEA can achieve the maximum HVR or
the minimum GD value at most of the scheduling points.
The convergence performance of dε-MOEA-No-Sta is
close to that of dε-MOEA, while the other three methods
are much worse.

(a) HVR comparisons on the instance
Real_2 (with the best mean value of
HVR obtained by dε-MOEA)

(b) HVR comparisons on the instance
sT20_dT10_E10_SK6-7(with the medium mean
value of HVR obtained by dε-MOEA)

26 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

 Fig. 8. Average HVR comparisons of the five methods at each scheduling point on the MODPSP instance (HVR is to be maximized).

Fig. 9. Average GD comparisons of the five methods at each scheduling point on the MODPSP instance (GD is to be minimized).

6.7 RQ4: Pareto Fronts of the Evolved Schedules
at Scheduling Points

At each scheduling point, a set of non-dominated solu-

tions were evolved by dε-MOEA. In order to demon-

strate the trade-offs among these solutions which a soft-

ware manager can utilize in balancing their choices

when making a decision about the final schedule, one

scheduling point on a real-world instance (Real_3) was

selected arbitrarily and taken as an example. At

=2.6lt (month), the employee
10

e leaves, and tasks
4

T to

(c) HVR comparisons on the instance
sT10_dT10_E5_SK4-5 (with the worst mean value

of HVR obtained by dε-MOEA)

(c) GD comparisons on the instance
sT20_dT10_E5_SK4-5 (with the worst
mean value of GD obtained by dε-MOEA)

(a) GD comparisons on the instance Real_2 (with the
best mean value of GD obtained by dε-MOEA)

(b) GD comparisons on the instance
sT30_dT10_E15_SK4-5 (with the medium
mean value of GD obtained by dε-MOEA)

AUTHOR ET AL.: TITLE 27

14
T are available. 31 independent runs of dε-MOEA were

performed. With the aim of showing the sample median

quality attained in multiple (31 here) runs, the 50%-

summary attainment surface (i.e., the 16th-summary

attainment surface) [46] is obtained. A four objective

problem requires 4D data to be represented. To visually

investigate the resulting summary attainment surface,

we give the slice plot in Fig.10. The slice plot draws slic-

es along the
I

duration ,
I

cost and robustness directions,

and the colors on the slices are determined by the values

on stability. As indicated in [46], the summary attainment

surface emphasizes the distribution of the location

achieved over multiple runs. Thus, it can be seen from

Fig.10 that the points on the 50%-summary attainment

surface tend to crowd around the regions with small

values on the objective
I

duration , i.e., the density of such

regions is much higher than others.

To inspect different trade-offs among the four objec-

tives found by dε-MOEA in one run, one of the 31 Pareto

fronts obtained from 31 runs of dε-MOEA was selected

randomly. To visually investigate the Pareto front, we

give the diagonal plot [47] in Fig. 11. The diagonal plot

gives pairwise interactions among the four objective val-

ues on the Pareto front, where the axes of any plot can be

obtained by finding the corresponding diagonal boxes

and their ranges. For instance, the plot at the third row

and fourth column has its vertical axis as robustness and

horizontal axis as stability. Firstly, it can be observed

from the figure
I

duration vs.
I

cost that the two efficiency

objectives are conflicting with each other, since a smaller

I
duration normally leads to a larger

I
cost . Secondly, it

can be seen from figures
I

cost vs. robustness and
I

cost

vs. stability that the robustness or stability measure is

slightly conflicting with the objective of
I

cost . When

finding solutions that have smaller
I

cost , robustness or

stability becomes worse. However, it is hard to determine

the relationship from the figures robustness vs. stability,

I
duration vs. robustness and

I
duration vs. stability. For

example, a small robustness may correspond to either a

small or high stability. There is no solution that can sim-

ultaneously optimize all the considered objectives.

Table 10 gives several examples of the objective vec-

tors selected from the Pareto front shown in Fig. 11. A

solution may perform very well for one objective, but

poorly for some others, such as Solution1 - Solution4.

Some solutions may have good (but not the best) values

in all objectives, which indicate a good compromise

among all the objectives, such as Solution5 - Solution7.

The Pareto front produced by dε-MOEA can provide a

software manager with better knowledge about various

trade-offs among multiple objectives. It is very helpful

for him/her to make an informed decision about the best

compromise with regards to his/her preference.
Next, we will suggest the process of how a software

manager could make a manual choice based on the Pare-
to front provided by our approach. The tool implement-
ing our proposed approach displays the plot of different
trade-offs among the four objectives as in Fig.11. The
software manager could first pick a given range of cost
and durations, if these are the objectives that he/she is
most interested in. For example, he/she could decide
that he/she is more interested in solutions with higher
cost and lower duration. So, he/she would select a few
solutions with high cost and low duration in the figure

of
I

duration vs.
I

cost . Then, he/she could check the dif-

ferent robustnesses and stabilities of these solutions so
that a final choice could be made. Alternatively, the
software manager could also choose the schedule auto-
matically suggested by our decision making procedure
introduced in Section 4.2.4, if he/she wishes to avoid the
manual choice.

Fig. 10. Slice plot of the 50%-summary attainment surface obtained

at the scheduling point =2.6lt in Real_3.

Fig. 11 Diagonal plot of the Pareto front obtained in one run of

dε-MOEA at the scheduling point =2.6lt on Real_3.

28 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

TABLE 10

 SEVERAL EXAMPLES OF OBJECTIVE VECTORS SELECTED

FROM THE AGGREGATED PARETO FRONT AT THE SCHEDULING

POINT =2.6lt ON REAL_3

 [
I

duration ,
I

cost ,robustness, stability]

 Solution1 [5.30, 304597, 0.12, 6.14]

Solution2 [6.31, 276596, 0.077, 5]

Solution3 [6.91, 327794, 0.028,13.79]

Solution4 [5.34, 296656, 0.036, 0]

Solution5 [5.67, 286808, 0.057, 0.86]

Solution6 [5.97, 279699, 0.054, 3.86]

Solution7 [5.75, 283536, 0.061, 2.00]

7 CONCLUSION

This paper introduced a novel MOEA-based dynamic
scheduling method to regenerate new schedules in re-
sponse to real-time events and uncertainties in MODPSP.
Our first contribution is to capture more of the dynamic
features of a real-world PSP than previous work, and
formulate the problem with one type of uncertainty and
three kinds of dynamic events, including: 1) variations of
task efforts; 2) new task arrivals; 3) employee leaves; and
4) employee returns.

Our second contribution is the construction of a
mathematical model for MODPSP. In this model, consid-
ering the updated project state at each scheduling point,
four objectives with respect to the project duration, cost,
robustness and stability are optimized simultaneously.
In addition, three practical constraints, which are the
task skill constraints, no overwork constraints, and the
maximum headcount constraints, are considered.

Our third contribution is the design of an MOEA-
based proactive-rescheduling method to solve MODPSP.
A predictive schedule is generated initially using a pro-
active scheduling method considering task effort uncer-
tainties. During the project, the previous schedule is re-
vised by a rescheduling method dε-MOEA in response to
critical dynamic events. dε-MOEA considers the project
duration, cost, robustness and stability simultaneously,
and employs heuristic initialization strategies, which
exploit dynamic event characteristics and history infor-
mation so that a new schedule is not regenerated from
scratch. Furthermore, new methods to handle the task
skill constraints, no overwork constraints, and the max-
imum headcount constraints are proposed.

Our fourth contribution is a comprehensive experi-
mental study of the newly proposed dε-MOEA. The
study is based on three groups of comparisons. The first
group compared our proactive scheduling method con-
sidering the robustness (ε-MOEA-r) with the method
without caring about robustness (ε-MOEA-d). Our anal-
yses confirm that ε-MOEA-r reduces the schedule sensi-
tivity to task effort uncertainties significantly with only a
small sacrifice in the project duration and cost under the
initial scenario. Meanwhile, better robustness can com-
pensate the worse initial duration and cost. The second
group compared our rescheduling method dε-MOEA to
the heuristic dynamic scheduling which regenerated a

new schedule based on a simple heuristic rule. Our re-
sults show that dε-MOEA is very effective in improving
the whole project duration and cost, and it is much less
sensitive against task effort variances during the dynam-
ic project scheduling process. The third group compared
dε-MOEA to state-of-the-art MOEA-based rescheduling
methods. Our analyses confirm the benefits that can be
obtained by considering robustness and stability togeth-
er with the project initial efficiency, where project dura-
tion and cost deteriorate only slightly when facing task
effort uncertainties, and employee assignments and ded-
ications change very little between the new and original
schedules, which reduces the potential confusion to both
the manager and employees. In addition, these benefits
can be produced without severely affecting the initial
efficiency. Our results suggest that dε-MOEA outper-
forms the state-of-the-art dynamic MOEA (dCOEA) for
solving MODPSP since it can provide a software manag-
er with a wider range of non-dominated solutions that
are much closer to the reference Pareto front.

Although our MODPSP model is an advancement
and considers more aspects of reality than previous
models, it is still far from capturing all events and factors
that can affect project scheduling situations. As indicated
in [48] and [49], estimation inaccuracies may be caused
by political behaviors, or psychological and economic
factors. Our current work assumes that the deviations in
effort estimations follow a Gaussian distribution. An
empirical validation should be performed to reveal how
suitable the Gaussian distribution is to model deviations,
and how to best model such deviations. This can be a
challenging study that would probably require data col-
lection in terms of deviations in effort estimations ob-
tained during a period of time. After that, our approach
could be easily adapted to use such different distribu-
tions. In addition, certain factors could also cause the
objectives of software scheduling efforts to be affected.

As future work, our approach could be modified to
deal with changing objectives by considering them as
extra dynamic events to be dealt with. Some methods
which can involve the participation of the software man-
ager, such as the interview study for collecting infor-
mation [48], will be used to get feedback from practi-
tioners on how to improve our approach. Besides, more
types of uncertainties and dynamic events which may
occur during the project execution, such as changes in
the task precedence, addition of new employees to the
project, and task cancellations should be considered.
More characteristics about tasks and employees, such as
the employees’ experiences, training courses, and the
due-date of each task should also be considered, as well
as the relationship between such attributes and the per-
formances of MOEAs on MODPSP need to be further
studied. Moreover, a thorough empirical validation in
industrial contexts should be performed in order to
evaluate the practicality of the approach and to further
improve it in terms of how close it is to real software
development scenarios. In particular, such empirical
validation would allow us to get feedback on the as-
sumptions made by our approach, on additional types of

AUTHOR ET AL.: TITLE 29

uncertainty and dynamic events to be considered, and
on the trade-off between the improvements in cost, du-
ration, robustness and stability provided by our ap-
proach and the effort needed to adopt the approach in
the real world.

Various dynamic events and factors can affect project
scheduling situations, thus future PSP investigations
should avoid making simplistic modeling assumptions
and simplifications that are not valid in practice.

ACKNOWLEDGEMENT

This work was partially supported by the National Nat-
ural Science Foundation of China (NSFC) under Grant
No. 61502239, No. 61329302 and No. 61503191, Natural
Science Foundation of Jiangsu Province of China under
Grant No. BK20150924 and No. BK20150933, an EPSRC
Grant (No. EP/J017515/1) on ―DAASE: Dynamic Adap-
tive Automated Software Engineering‖, and an EPSRC
Grant (No. EP/K001523/1) on ―Evolutionary Computa-
tion for Dynamic Optimization in Network Environ-
ments‖. This work was done while the first author was
with CERCIA, School of Computer Science, University
of Birmingham, UK. We are grateful to Weineng Chen
and Jun Zhang for providing the data of the three real-
world PSP instances. Xin Yao was supported by a Royal
Society Wolfson Research Merit Award.

REFERENCES

[1] I. Sommerville, Software Engineering, eighth ed.. Essex: Addi-
son-Wesley, 2006.

[2] L. L. Minku, D. Sudholt, and X. Yao, ―Improved Evolutionary
Algorithm Design for the Project Scheduling Problem based
on Runtime Analysis,― IEEE Transactions on Software Engineer-
ing, vol. 40, no. 1, pp. 83-102, 2014.

[3] E. Alba and J. F. Chicano, ―Software Project Management with
Gas,― Information Sciences, vol. 177, no. 11, pp. 2380-2401, 2007.

[4] C. K. Chang, M. J. Christensen, and T. Zhang, ―Genetic Algo-
rithms for Project Management,― Annals of Software Eng., vol.
11, pp. 107-139, 2001.

[5] F. Luna, D. González-Álvarez, F. Chicano, and M. A. Vega-
Rodríguez, ―The software project scheduling problem: A
scalability analysis of multi-objective metaheuristics,― Applied
Soft Computing, vol. 15, pp. 136-148, 2014.

[6] A. Barreto, M. de O. Barros, and C. Werner, ―Staffing a soft-
ware project: A constraint satisfaction and optimization based
approach,‖ Computers & Operations Research, vol. 35, pp. 3073-
3089, 2008.

[7] J. D. Wiest, and F. K. Levy, A Management Guide to PERT/CPM:
with GERT/PDM/CPM and Other Networks. Englewood Cliffs,
NJ: Prentice-Hall. 1977.

[8] D. Golenko-Ginsburg, and A. Ganik, ―Stochastic Network
Project Scheduling with Non-consumable Limited Re-
sources,― International Journal of Production Economics, vol. 48,
pp. 29-37, 1997.

[9] W. Herroelen, B. D. Reyck, and E. Demeulemeester, ―Re-
source-constrained Project Scheduling: A Survey of Recent
Developments,― Computers & Operations Research, vol. 25, no. 4,
pp. 279-302, 1998.

[10] W. N. Chen and J. Zhang, ―Ant Colony Optimization for
Software Project Scheduling and Staffing with an Event-based
Scheduler,― IEEE Trans. Software Engineering, vol. 39, pp. 1-17,
2013.

[11] F. Chicano, F. Luna, A. J. Nebro, and E. Alba, ―Using Multi-
objective Metaheuristics to Solve the Software Project Schedul-

ing Problem,― Proc. the 13th Annual Genetic and Evolutionary
Computation Conference (GECCO’11), pp. 1915-1922, 2011.

[12] C. K. Chang, H. Jiang, Y. Di, D. Zhu, and Y. Ge, ―Time-line
based Model for Software Project Scheduling with Genetic Al-
gorithms,― Information and Software Technology, vol.50, pp.
1142-1154, 2008.

[13] M. Di Penta, M. Harman, and G. Antoniol, ―The Use of Search
based Optimization Techniques to Schedule and Staff Soft-
ware Projects: an Approach and an Empirical Study,― Software:
Practice and Experience, vol. 41, no. 5, pp. 495-519, 2011.

[14] R. S. Pressman, software engineering: a practitioner's approach,
sixth ed.. McGraw-Hill Science, 2005.

[15] D. Ouelhadj, and S. Petrovic, ―A Survey of Dynamic Schedul-
ing in Manufacturing Systems,― Journal of Scheduling, vol. 12,
no. 4, pp. 417-431, 2009.

[16] C. Le Pape, ―Constraint Propagation in Planning and Schedul-
ing,‖ CIFE Technical Report, Robotics Laboratory, Department
of Computer Science, Stanford University, 1991.

[17] W. Herroelen, and R. Leus, ―Project Scheduling under Uncer-
tainty: Survey and Research Potentials,― European Journal of
Operational Research, vol. 165, no.2, pp. 289-306, 2005.

[18] S. Gueorguiev, M. Harman, and G. Antoniol, ―Software Pro-
ject Planning for Robustness and Completion Time in the
Presence of Uncertainty Using Multi-objective Search based
Software Engineering,― Proc. 11th Annual Genetic and Evolu-
tionary Computation Conference (GECCO’09), pp. 1673-1680,
2009.

[19] J. Xiao, L. J. Osterweil, Q. Wang, and M. Li, ―Dynamic Re-
source Scheduling in Disruption-Prone Software Development
Environments,― Proc. 13th International Conference on Funda-
mental Approaches to Software Engineering (FASE 2010), pp. 107-
122, 2010.

[20] C. A. Coello Coello, ―Evolutionary Multiobjective Optimiza-
tion: a Historical View of the Field,― IEEE Computational Intel-
ligence Magazine, vol. 1, no. 1, pp. 28-36, 2006.

[21] M. Hapke, A. Jaszkiewicz, and R. Slowinski, ―Fuzzy Project
Scheduling System for Software Development,― Fuzzy Sets and
Systems, vol. 67, no.1, pp. 101-117, 1994.

[22] S. Lazarova-Molnar, and R. Mizouni, ―A Simulation-based
Approach to Enhancing Project Schedules by the Inclusion of
Remedial Action Secnarios,‖ Proc. of the 2011 Winter Simulation
Conference, pp. 761-772, 2011.

[23] Intaver Institute Inc, ‚Software Project Scheduling under Un-

certaintie,―
http://www.intaver.com/Articles/Article_SoftwareProjectManageme

nt.pdf.
[24] G. Antoniol, M. Di Penta, and M. Harman, ―A Robust Search-

Based Approach to Project Management in the Presence of
Abandonment, Rework, Error and Uncertainty,‖ Proc. of the
10th International Symposium on Software Metrics, pp. 172-183,
2004.

[25] F. Chicano, A. Cervantes, F. Luna, and Gustavo Recio, ―A
Novel Multiobjective Formulation of the Robust Software Pro-
ject Scheduling Problem,‖ EvoApplications, LNCS 7248, pp.
497-507, 2012.

[26] B. Boehm, Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[27] L. L. Minku, and X. Yao, ―Software effort estimation as a mul-
ti-objective learning problem,― ACM Transactions on Software
Engineering and Methodology, vol. 22, no. 4, Article No. 35, Oc-
tober 2013, 32 pages.

[28] K. Deb, M. Mohan, and S. Mishra, ―Evaluating the ε-
domination based Multi-objective Evolutionary Algorithm for
a Quick Computation of Pareto-optimal,― Evolutionary Compu-
tation, vol. 13, no. 4, pp. 501-525, 2005.

[29] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, ―Combining
Convergence and Diversity in Evolutionary Multi-objective
Optimization,― Evolutionary Computation, vol. 10, no. 3, pp.
263-282, 2002.

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K001523/1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6648326
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6648326
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/article/pii/S0305054897000555
http://www.sciencedirect.com/science/article/pii/S0305054897000555
http://www.sciencedirect.com/science/article/pii/S0305054897000555
http://www.sciencedirect.com/science/journal/03050548
http://search.china-pub.com/s/?key1=Roger+S.Pressman
http://search.china-pub.com/s/?key1=McGraw-Hill+Science%2fEngineering%2fMath
http://link.springer.com/search?facet-author=%22Junchao+Xiao%22
http://link.springer.com/search?facet-author=%22Leon+J.+Osterweil%22
http://www.lania.mx/~ccoello/EMOO/coello06a.pdf.gz
http://www.lania.mx/~ccoello/EMOO/coello06a.pdf.gz
http://www.sciencedirect.com/science/article/pii/0165011494902119
http://www.sciencedirect.com/science/article/pii/0165011494902119
http://www.sciencedirect.com/science/article/pii/0165011494902119
http://www.sciencedirect.com/science/journal/01650114
http://www.sciencedirect.com/science/journal/01650114
http://dl.acm.org/citation.cfm?id=2431607
http://dl.acm.org/citation.cfm?id=2431607
http://dl.acm.org/citation.cfm?id=2431607
http://www.intaver.com/Articles/Article_SoftwareProjectManagement.pdf
http://www.intaver.com/Articles/Article_SoftwareProjectManagement.pdf

30 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[30] X. Shen, and X. Yao, ―Mathematical Modeling and Multi-
objective Evolutionary Algorithms Applied to Dynamic Flexi-
ble Job Shop Scheduling Problems,― Information Sciences, vol.
298: 198-224.

[31] J. Fülöp, ―Introduction to Decision Making Methods,― Work-
ing Paper 05-6, Laboratory of Operations Research and Deci-
sion Systems, Computer and Automation Institute, Hungarian
Academy of Sciences, Budapest.
http://academic.evergreen.edu/projects/bdei/documents/decisionmaki
ngmethods.pdf. 2005.

[32] T. L. Saaty, and L. G. Vargas, ―Comparison of Eigenvalue,
Logarithmic Least Squares and Least Squares Methods in Es-
timating Ratios,‖ Mathematical Modelling, vol.5, pp. 309-324,
1984.

[33] M. B. Javanbarg, C. Scawthorn, J. Kiyono, and B. Shahboda-
ghkhan, ―Fuzzy AHP-based multicriteria decision making
systems using particle swarm optimization,‖ Expert Systems
with Applications, vol. 39, pp. 960-966, 2012.

[34] C. Kim, and R. Langari, ―Adaptive Analytic Hierarchy Pro-
cess-Based Decision Making to Enhance Vehicle Autonomy,‖
IEEE Transaction on Vehicular Technology, vol.6, no. 7, pp. 3321-
3332, 2012.

[35] D. P. Bernardon, M. Sperandio, V. J. Garcia, L. N. Canha, A. R.
Abaide, and E. F. B. Daza, ―AHP Decision-Making Algorithm
to Allocate Remotely Controlled Switches in Distribution
Networks,‖ IEEE Transaction on Power Delivery, Vol.26, no.3,
pp. 1884-1892, 2011.

[36] C. Mészáros, and T.Rapcsák, ―On Sensitivity Analysis for a
Class of Decision Dystems,‖ Decision Support Systems, vol.16,
pp. 231-240, 1996.

[37] F. P. Brooks, The Mythical Man-Month: Essays on Software Engi-
neering. Boston: Addison Wesley, 1995.

[38] L. A. Maciaszek and B. L. Liong, Practical Software Engineering

– A Case Study Approach. Essex: Addison-Wesley, 2005.
[39] K. Deb, Multi-objective Optimization Using Evolutionary Algo-

rithms. New York: John Wiley & Sons, 2001.
[40] C. Goh, and K. C. Tan, ―A Competitive-cooperative Coevolu-

tionary Paradigm for Dynamic Multiobjective Optimiza-
tion,― IEEE Trans. Evolutionary Computation, vol. 13, no. 1, pp.
102-127, 2009.

[41] D. A. Van Veldhuizen, and G. B. Lamont, ―Multiobjective
Evolutionary Algorithm Test Suites,― Proc. 1999 ACM Sympo-
sium on Applied Computing, pp. 351-357, 1999.

[42] E. Zitzler, and L. Thiele, ―Multiobjective Evolutionary Algo-
rithms: A Comparative Case Study and the Strength Pareto
Approach,― IEEE Trans. Evolutionary Computation, vol.3, no. 4,
pp. 257-271, 1999.

[43] D. A. Van Veldhuizen, and G. B. Lamont, ―Multiobjective
Evolutionary Algorithm Research: a History and Analy-
sis,― Technical Report TR-98-03, Department of Electrical and
Computer Engineering, Air Force Institute of Technology,
Ohio, 1998.

[44] J. R. Schott, ―Fault Tolerant Design Using Single and Mul-
ticriteria Genetic Algorithm Optimization,― Master’s thesis,
Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1995.

[45] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ―A Fast and
Elitist Multiobjective Genetic Algorithm: NSGA-II,― IEEE
Trans. on Evolutionary Computation, vol. 6, no. 2, pp. 182-197,
2002.

[46] J. Knowles, “A Summary-attainment-surface Plotting Method for
Visualizing the Performance of Stochastic Multiobjective Optimiz-

ers,” Proc. of the 5th International Conference on Intelligent Sys-

tems Design and Applications, pp. 552-557, 2005.
[47] R. Shang, L. Jiao, F. Liu, and W. Ma. A Novel Immune Clonal

Algorithm for MO Problems. IEEE Trans. Evolutionary Compu-
tation, vol.16, no. 1, pp. 35-50, 2012.

[48] A. Magazinius, S.Borjesson, and R. Feldt, ―Investigating inten-
tional distortions in software cost estimation - An exploratory

study,‖ The Journal of Systems and Software, vol. 85, pp.
1770-1781, 2012.

[49] M. Jorgensen, K. H. Teigen, K. Molokken, ―Better sure than
safe? Over-confidence in judgement based software develop-
ment effort prediction intervals,‖ The Journal of Systems and
Software, vol. 70, pp. 79-93, 2004.

http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf
http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf

AUTHOR ET AL.: TITLE 31

Xiaoning Shen is an associate professor
at B-DAT & CICAEET, School of Infor-
mation and Control, Nanjing University
of Information Science and Technology,
P.R. China. She received the bachelor’s
degree in Automation and the PhD de-
gree in Control Science and Engineering

from Nanjing University of Science and Technology,
Nanjing, P.R. China, in 2003 and 2008, respectively. Her
main research interests are multi-objective optimization,
evolutionary computation and its applications on soft-
ware engineering and dynamic production scheduling.

Leandro L. Minku is a Lecturer (Assis-
tant Professor) at the Department of
Computer Science, University of Leices-
ter (UK). Prior to that, he was a research
fellow at the University of Birmingham
(UK). He received the PhD degree in
Computer Science from the University of

Birmingham (UK) in 2010. During his PhD, he was the
recipient of the Overseas Research Students Award
(ORSAS) from the British government. He was also in-
vited to a 6-month internship at Google in 2009/2010. Dr.
Minku's main research interests are computational intel-
ligence for software engineering, machine learning in
non-stationary environments / data stream mining and
ensembles of learning machines. His work has been pub-
lished in internationally renowned journals such as IEEE
Transactions on Software Engineering, ACM Transac-
tions on Software Engineering and Methodology, IEEE
Transactions on Knowledge and Data Engineering, and
Neural Networks. He has been invited to give keynotes
and tutorials in his research topics.

Rami Bahsoon is a Senior lecturer in
Software Engineering(~Associate Profes-
sor) and leads the Software Engineering
for/in the Cloud Interest group at the
University of Birmingham. The group’s
research aims at developing architecture
and frameworks to support and reason

about dependable complex software systems, where the
investigations span cloud computing architectures and
their economics. He published extensively in the area of
economics-driven software engineering, Cloud Software
Engineering and Utility computing and co-edited a book
on Software Architecture and Software Quality and an-
other on Economics-Driven Software Architecture (pub-
lished by Elsevier). He holds a PhD in Software Engi-
neering from University College London (UCL) for his
research on evaluating software architecture stability
using real options and he attended London Business
School for MBA-level studies in technology strategy and
dynamics.

Xin Yao is a Professor of Computer Science and
the Director of CERCIA (the Centre of Excellence
for Research in Computational Intelligence and
Applications) at the University of Birmingham,
UK. He is an IEEE Fellow, and a Distinguished
Lecturer of IEEE Computational Intelligence
Society (CIS). His major research interests in-
clude evolutionary computation, ensemble

learning, and their applications in software engineering. In particu-
lar, he has been working on software effort estimation and software
defect prediction using advanced machine learning algorithms and
on software project scheduling in dynamic environments. His re-
search won the 2001 IEEE Donald G. Fink Prize Paper Award, 2010
and 2015 IEEE Transactions on Evolutionary Computation Out-
standing Paper Awards, 2010 BT Gordon Radley Award for Best
Author of Innovation (Finalist), 2011 IEEE Transactions on Neural
Networks Outstanding Paper Award, and many other best paper
awards. He received the prestigious Royal Society Wolfson Re-
search Merit Award in 2012 and the IEEE CIS Evolutionary Com-
putation Pioneer Award in 2013. He was the President (2014-15) of
IEEE CIS, and the Editor-in-Chief (2003-08) of IEEE Transactions on
Evolutionary Computation.

