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Abstract—In automotive digital development, engineers utilize
multiple virtual prototyping tools to design and assess the perfor-
mance of 3D shapes. However, accurate performance simulations
are computationally expensive and time-consuming, which may
be prohibitive for design optimization tasks. To address this
challenge, we envision a 3D design assistance system for design
exploration with performance assessment in the automotive
domain. Recent advances in deep learning methods for learning
geometric data are a promising step towards realizing such
systems. Deep learning-based (variational) autoencoder models
have been used for learning and compressing 3D data allow-
ing engineers to generate low-dimensional representations of
3D designs. Finding representations in a data-driven fashion
results in representations that are agnostic to downstream tasks
performed on these representations and are believed to capture
relevant design features. In this paper, we evaluate whether such
data-driven representations contain relevant information about
the input data and whether representations are meaningful in
performance prediction tasks for the input data. We use machine
learning-based surrogate models to predict the performances of
car shapes based on the low-dimensional representation learned
by 3D point cloud (variational) autoencoders. Furthermore, we
exploit the stochastic nature of the representation learned by
variational autoencoders to augment the training data for our
surrogate models, since the limited amount of data is usually a
challenge for surrogate modeling in engineering. We demonstrate
that augmenting training with generated shapes improves pre-
diction accuracy. In sum, we find that geometric deep learning
approaches offer powerful tools to support the engineering design
process.

Index Terms—representation learning, 3D point clouds, au-
toencoder, variational autoencoder, regression analysis

I. INTRODUCTION

Computer-aided design (CAD) and engineering (CAE) tools
accelerate various tasks in the automotive development pro-
cess, particularly through virtual prototyping. These virtual
models enable engineers to simulate the performance of 3D
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shapes in multiple domains, e.g., aerodynamic drag and crash-
worthiness, based on computer simulations, which are more
cost-efficient than physical prototyping. However, highly ac-
curate simulations still require excessive computational ef-
fort, which limits the performance of engineers in design
exploration tasks. To address these challenges in automotive
development, we envision a cooperative design system (CDS)
that suggests novel 3D car designs along with accurate per-
formance predictions.

State-of-the-art machine learning algorithms offer a promis-
ing approach to realize such a CDS. Geometric deep-
generative models, like autoencoders (AEs) [1] and variational
autoencoders (VAEs) [2] learn low-dimensional latent repre-
sentations of 3D geometric models in an unsupervised fashion,
which allows to efficiently explore the learned design features
and generate novel realistic 3D designs [3], [4]. Furthermore,
the latent space of autoencoders has also been utilized for
many predictive tasks in the chemistry and biology domain [5],
allowing the assessment of the chemical compounds before
committing to an expensive synthesis. Hence, autoencoders
trained on 3D car designs potentially learn enough information
in the latent space to be able to predict engineering perfor-
mance metrics, as targeted in our CDS.

However, generating accurate data-driven prediction models
is still challenging. Though benchmark data sets of 3D shapes
are available, data sets that are geared towards engineering
applications and engineering-specific problems are lacking due
to generation costs and confidentiality reasons. Hence, applica-
tions of state-of-the-art machine and deep learning techniques
are challenging to pursue in the engineering domain. An ex-
ample of such an application is the prediction of computational
fluid dynamics (CFD) from geometric representations, which
poses challenges such as highly non-linear data and rela-
tionships between performance and geometry. Furthermore, a
suitable representation of the geometry has to be found that
can be used as input to a predictive model. Here, one approach
is to learn these representations in an unsupervised fashion
using autoencoders. However, when training autoencoders on
geometric data, we neglect information about the geometries’



performance, and it is not clear whether such unsupervised
learning results in representations suitable for building surro-
gate models for the prediction of CFD performances.

In the present paper, we propose to exploit the properties
of the latent space learned with 3D point cloud (variational)
autoencoders to address some of these challenges in the
design of 3D car shapes. First, we utilize information-theoretic
measures to qualitatively evaluate the learned latent space of
(variational) autoencoders with respect to engineering perfor-
mance metrics, which hints at the quality of the regressions
before training a multi-output surrogate model. Second, we
evaluate the accuracy of the multi-output surrogate model for
predicting performance metrics of 3D car designs from the
learned latent representations. Additionally, since the VAE
has a regularized latent space, we train the network on a
data set of benchmark car shapes and utilize the learned
latent distributions to generate additional realistic car shapes
to augment the surrogate model’s training data. Our main
contributions are to build an effective surrogate model for
mapping the latent representations to performance metrics and
to quantify the advantage of VAEs for shape generations to
address data-limitation in regression tasks.

The remainder of the paper is organized as follows: In
Section II, we review deep-generative models for 3D shapes
and surrogate models for predicting performance metrics of
3D designs. Based on the review, we describe our approach in
Section III and provide details on the architecture of point-
cloud (variational) autoencoders, surrogate models, and the
data-augmentation process. In Section IV, we present the
experimental settings and information-theoretic analysis of the
(variational) autoencoders latent space for regression tasks.
In Section V, we define our regression task and discuss the
performance of the surrogate model with and without data-
augmentation with respect to the performance predictions of
3D designs. Finally, in Section VI, we present a summary and
conclusion of our paper.

II. RELATED WORK

A. (Variational) Autoencoders for Unsupervised Learning of
3D Shape Representations

Engineers utilize different geometric representations for
processing the design surface of 3D shapes, such as 3D point
clouds, voxels, and meshes. Among the explored represen-
tations, 3D point clouds are the simplest and most flexible
representation, and thus compatible with a wide range of
applications [6]. 3D point clouds which are a list of data point
coordinates in 3D space are sampled directly from the surface
of the CAE models, require less pre-processing effort, and
preserve enough geometric details.

Popular deep-generative models for point cloud data are
autoencoders (AEs) [1], variational autoencoders (VAEs) [2],
and generative adversarial networks (GANSs) [7], used to learn
and transform high-dimensional 3D data into a compressed
low-dimensional representation. The most common AE archi-
tectures that process from 3D point clouds are PointNet [§]

and PointNet++ [9]. Many networks have adopted PointNet ar-
chitectures because the architecture addresses the permutation
invariance of points in point clouds by handling the input data
with point-wise operators followed by a global operator, e.g.,
max-pooling. AEs typically comprise a bottleneck layer after
the global operator to learn a compact representation of the
input data, the so-called latent space. This layer also divides
the network into two parts: an encoder, which maps, the input
data to the latent features, and a decoder, which generates 3D
point clouds from representations in the latent space. However,
the lack of regularization in the latent space limits the shape-
generative capabilities of AEs.

VAEs follow the same topology that of AEs but enforce
the regularization of the latent space by adding Kullback-
Leibler (KL) divergence as a term in the training loss function
of the network. Hence, by improving the distribution of the
representations in the latent space, the VAE improves the
shape-generative capability compared to AEs [3]. However, the
latent representations of AEs and VAEs provide a high-level
summary of the input representations [10], and a quantitative
analysis of the information stored in latent representations of
this model is currently missing.

B. Learning Surrogate Models on Latent Representations

Previous research in the Chemistry domain utilizes au-
toencoders to learn latent representations for classification
and regression tasks [5], [11]. However, in the automotive
domain, few studies use analogous representations to predict
aerodynamic forces for real-world applications. In 2D laminar
flow estimation, Eismann et al. [12] utilized a variational
autoencoder for learning latent representations of 2D shapes
and Gaussian process regression to predict the corresponding
drag coefficients. For 3D shapes, Umetani et al. [13] utilized
a machine learning-based regression model to predict aero-
dynamic forces of 3D shapes, along with a time-averaged
velocity field around the object. However, the proposed model
is limited to 3D shapes parameterized using PolyCube maps.

Different from the prior research, we learn design repre-
sentations from unstructured data. Thus, since the encoder
processes data through point-wise operations, the VAE learns
primarily local design features. Furthermore, in our applica-
tion, the data available for training our surrogate model is
limited to a subset of the available shapes. Previous works
address this data limitation problem by utilizing the generative
capability of VAEs to synthesize data to tackle imbalanced
data sets [14] and improve classification accuracy [14], [15].
In contrast to classification tasks, the labels in the regression
task are in continuous space, so associating labels to each
of the generated samples is a challenging task. Therefore,
recovering the performance labels from 3D representations in
the latent space of the VAE is a more challenging task than
in the reviewed cases.

For regression tasks, the multi-layer perceptrons (MLPs) are
a popular neural network architecture [16] due to its structural
flexibility. An MLP maps input to output data through input,
one or more hidden, and output layers. The layers comprise



artificial neurons activated with nonlinear functions and fully
connected to others in successive layers. An MLP learns the
mapping by adjusting the connection weights between neurons
by using the back-propagation algorithm [17] for minimizing
the error between the MLP predictions and expected output
values. In our research, we utilize a multi-output MLP to
map the latent representations with their corresponding per-
formance metrics.

III. METHODOLOGY

In this section, we first introduce the pre-processing step
for sampling point cloud data from surfaces, and we intro-
duce the architectures of our point cloud autoencoder (PC-
AE) and variational autoencoder (PC-VAE). Next, we provide
details on the information-theoretic measures which we apply
to evaluate the information contained in the trained latent
representations. Finally, we introduce the architecture for our
multi-layer perceptron for the regression task and describe our
data augmentation approach using our PC-VAE.

A. Pre-Processing of the 3D Point Cloud Data

For our experiments, we sample 3D point clouds from
polygonal meshes of the car class of ShapeNetCore [18],
which is a large data set of 3D shapes, using the shrink-
wrapping algorithm utilized in [19]. The shrink-wrapping sam-
ples points uniformly from the external surfaces of 3D objects,
which are most relevant for our applications, and generates
point clouds organized based on the vertex assignment of the
shrink-wrapped mesh. We set the algorithm with six shrinking
steps and a single smoothing step (Fig. 1). We sample 3500
shapes from the car class and each shape consists of 24578
points.

Smoothing

Initialization Shrinking

Step 2

Step 6

Reference mesh Sampled point cloud Reconstructed mesh

Fig. 1. Shrink-wrapping.

Training our AEs on organized point clouds has two main
advantages. First, since the point correspondence between
point clouds is known, it allows us to utilize simpler loss
functions, here: mean-squared distance, which are computa-
tionally less expensive. Second, by enforcing the autoencoder
to learn the ordering of the vertices in the shrink-wrapped
mesh, it allows us to utilize the autoencoder predicted point
cloud to update the vertices of the mesh and quickly generate
water-tight models for engineering simulations.

B. Design Performance Data

In this work, we define the performances of a 3D design
by its volume and aerodynamic drag coefficient. We selected
the volume (V') due to its low computational effort and its
interpretation, which is in line with the analysis of the latent
representations according to [20]. The aerodynamic drag (F))
requires higher computational effort to compute and is highly
nonlinear with respect to the latent representations. Hence,
finding suitable surrogate models for aerodynamic data is
highly of interest as it would accelerate design optimization
in real-world automotive development [21].

To calculate the aerodynamic drag, we perform CFD sim-
ulations on the shrink-wrapped meshes using OpenFOAM®'.
We assume that the cars drive at U = 110 km/h in a straight
line and that the cars are symmetric with respect to the
vertical-longitudinal (zz) plane. We verify the convergence
of each model based on the drag force calculated in the last
20 simulations steps, and select the models with standard
deviation within 5% of the mean value and magnitude within
[75,500]. From the 3500 shapes in the original data set,
we obtained the corresponding performance metrics of 600
shapes.

C. Learning on 3D Point Clouds

a) Point Cloud Autoencoder (PC-AE): For our exper-
iments, we utilize the PC-AE architecture proposed in [4].
The encoder comprises five 1D convolutional layers, followed
by a permutation-invariant max-pooling layer that yields the
latent representation z. The decoder comprises three fully
connected layers and generates 3D point clouds from samples
in the latent space. All layers are activated with rectified linear
units (ReLLU), apart from the max-pooling and output layers,
which are activated with hyperbolic and sigmoid functions,
respectively (Fig. 2).
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Fig. 2. PC-AE architecture, where N is the number of points in the point-
cloud and L is the number of latent variables. The output dimensions of each
layer is written vertically inside each layer.

b) Point Cloud Variational Autoencoder (PC-VAE): We
train the PC-VAE as proposed in [3]. The architecture is
similar to the PC-AE, except that the latent layer is divided
into two parts: a mean vector p and a standard deviation
vector o with a sigmoid activation function (Fig. 3). Thus, the
latent representation z is sampled from the encoder’s output

Uhttps://www.openfoam.com/



distribution with mean p and standard deviation o, from which
the decoder generates a 3D point cloud. For training the PC-
VAE, we minimize a loss function with two terms (Eq. 1): the
first term is defined by the difference between the input and
reconstructed point cloud, and the second is the KL-divergence
loss (Dky) between the learned latent distribution and an
assumed prior normal distribution.
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Fig. 3. PC-VAE architecture, where /N is the number of points in the point-
cloud and L is the number of latent variables. The output dimensions of each
layer is written vertically inside each layer.
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In [3], [4], the authors utilize the chamfer distance (CD) to
measure the reconstruction 10ss L.ccon, (EQ. 2), where S;, S, C
R? are the input and output point clouds, and x;, x,, are points
in the input and output point clouds respectively.
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Since the function is invariant with the permutation of the
points, the networks trained with CD generate unorganized
point clouds. However, as we generated a data set with
organized point clouds, we train another PC-AE and PC-VAE
with the mean-squared distance (MSD) as a loss function
(Eq. 3) to maintain the correspondence between the input and
output point clouds and thus generating an organized output
point cloud. The MSD between input and output point clouds,
defined as

N
1 2
MSD = N;Hxi,j — 20, (3)

where x; ; and z, ; are the j-th points of the input and output
point clouds respectively.

Furthermore, since the VAE learns a stochastic mapping
between the input space and the latent space z, we consider
the latent representations of the VAE as z = u (in Fig. 3) to
get a fixed set of latent variables for our experimental analysis
in the following sections.

D. Information-Theoretic Analysis of the Latent Representa-
tions

We analyze the relationships between the latent representa-
tions learned by our PC-(V)AEs and the design performance
metrics by calculating the Pearson correlation coefficient
(PCC) and mutual information (MI). Both measures quantify
the relationship between a pair of variables X and Y. How-
ever, the PCC(X,Y) assumes a linear relation between the
variables, while the MI measures the amount of information
that X holds about Y as the KL divergence between the
joint distribution P x y and the product between the marginal
distributions Px, Py. Hence, MI describes also nonlinear re-
lations in the data, which is not captured by PCC. To estimate
the MI, we used the estimator for continuous input variables
by Kraskov et al. [22]. We use both PCC and MI to quantify
relationships between variables to evaluate whether using the
PCC is sufficient, which may miss non-linear relationships,
while it is computationally less expensive to estimate from
data.

Note, that MI estimators have known bias when applying
them to finite data [22]. A common approach to handle this
bias is to apply statistical testing to the MI estimate, to evaluate
whether the estimated MI is truly different from zero. We here
use permutation testing under the Null-hypothesis of zero MI.
The Null distribution is generated by repeatedly estimating the
MI from shuffled data such as to generate a Null-distribution,
against which the original estimate is compared.

E. Surrogate Model

For training a surrogate model from the latent representa-
tions to their desired properties, we train a 2-output multi-
layer perceptron (MLP) from latent representations z to fit
two outputs variables: normalized volume (V') and normalized
drag coefficient (F). The multi-output MLP is trained for
a regression task, i.e., given a latent representation z of an
unseen 3D shape instance S C R? , the learned multi-output
regression function f (-) predicts a two-dimensional vector y
as output, predicting V' and F.

Our MLP comprises a single hidden layer with 10 hidden
neurons, which are activated with ReLU. The output layer
comprises two neurons that yield the predicted values of
volume (V') and drag coefficient (F,), and is activated with a
sigmoid function. We divide the data set into partitions of 85%
and 15% for training and testing, respectively, and applied a
5-fold cross-validation strategy on the training set to tune the
number of hidden neurons, and the learning rate of the MLP.
We optimize the weights of the network by minimizing the
mean-squared error for a maximum number of 1000 epochs
utilizing the Adam optimizer [23]. We set the optimization
algorithm with a learning rate of 1 = .001 and feed the data
to the network in batches of 50 samples.

After selecting the hyper-parameters of the MLP, we re-train
the MLP on the whole training set and evaluate the perfor-
mance of the surrogate model on the test set using R-square
(R?), root mean square error (RMSE), and mean absolute error
(MAE). R? score measures the squared correlation between



the true and predicted values of the surrogate model, whereas
RMSE and MAE measure the prediction error of the model.
Thus, the higher the R? score and lower the RMSE and MAE,
the better the surrogate model.

FE. Data Augmentation

Due to the data cleaning, the available performance mea-
sures data (Section III-B) are sparse in certain regions of
the latent space. This imbalance in the data set potentially
leads the MLP to overfit the data corresponding to the most
abundant target values or miss input-output relations of less
observable samples. Thus, performance prediction of designs
in the sparse regions are less accurate. To address this issue,
we utilize the trained VAE to extrapolate new designs based
on the distributions (u, o) learned in the sparse regions.

The advantage of using the VAE is that the stochastic
latent space allows us to quickly generate new designs with
shared geometric features (Fig. 4), which is challenging to
perform by directly manipulating the ShapeNetCore models.
The sampled latent vectors are fed to the trained decoder of
the PC-VAE-MSD. Note, we used the PC-VAE trained on
MSD for this shape generation task, as we aim to generate
water-tight meshes from the output point clouds, which is a
requirement for CFD simulations.
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Fig. 4. Reconstruction of the sampled shapes from a latent distribution. S,
is the shape reconstructed by decoding the p vector of the distribution. The
colors of shapes (S, S2, S3) indicate difference of the shape from .S),.

IV. ANALYSIS OF THE REPRESENTATIONS FOR
REGRESSION TASKS

Considering the discussed methods, we present a setup for
training the PC-AE and PC-VAE architectures and analyze the
different learned latent representations using the PCC and MI.

A. Models Training

1) Data: The data set for our experiments comprises 3500
shapes selected from the car class of the ShapeNetCore
repository [18], sampled with shrink-wrapping (Section III-A).
To train the networks, we randomly selected 90% percent of
the shapes in the data set. The coordinates of each point cloud
in the training data were normalized to the range [0.1,0.9]3,
preserving the aspect ratio of the shapes.

2) Training the PC-AE: We trained the PC-AE with a 20D
latent vector using the Adam optimizer [23] with a learning
rate 7 = 5E-04. The training data was organized into batches
of 50 shapes and the network was trained for 700 epochs.
We considered two variations of the PC-AE models: The first
(PC-AE-CD) was trained utilizing the Chamfer Distance (CD)
as reconstruction loss, while the second (PC-AE-MSD) was
trained using MSD as loss function.

3) Training the PC-VAE: We trained PC-VAE with a 20D
latent vector, using the Adam optimizer and a learning rate
of n = 5E-03. The hyper-parameters o and (3 to balance the
reconstruction and KL divergence loss for the PC-VAE-CD (in
Eq. 1) were tuned to o = 250 and S = 0.001.

Similarly, we also considered a second PC-VAE model
where we replaced the CD with the MSD in the loss function
(PC-VAE-MSD). Our motivation is to allow the PC-VAE
to generate water-tight meshes (Section III-A). Hence, we
optimized the hyper-parameters « and (3 for the PC-VAE-MSD
using a grid search. We selected the values of a = 1000 and
B = 0.001 for the hyper-parameters as they yield an acceptable
trade-off between reconstruction accuracy and divergence in
the latent space.

All the networks were trained with two CPUs In-
tel®Xeon®Silver, clocked at 2.10 GHz, and with two GPUs
NVidia®GeForce®RTX 8000 with 48GB each. In all the cases
the networks were trained on a single GPU.

B. Information-Theoretic Analysis of the Latent Representa-
tions

We calculated the Pearson correlation coefficient (PCC) and
mutual information (MI) between the latent representations
learned by each model (PC-AE-CD, PC-AE-MSD, PC-VAE-
CD, and PC-VAE-MSD) and two performance metrics: nor-
malized volume (V') and normalized drag coefficient (F;)
(Figs. 5 and 6). In this analysis, we considered only the sub-set
of the data with converged CFD calculations, which comprised
600 shapes.

The absolute values of PCC and MI obtained for the
PC-AE models were higher than observed for the PC-VAE
models. Higher PCC magnitude indicates a lower complexity
for surrogate models to learn the data since the relations
between input and output have a higher degree of linearity. The
MI indicates that the latent representations of the PC-AE hold
more information about the design performances than the PC-
VAE variants. Hence, regardless of the data linearity, the PC-
AE latent space potentially leads to more accurate surrogate
models, since it allows the surrogate model to leverage more
information for learning the performance.

We also noticed that the values of PCC and MI were more
evenly distributed in the PC-AE latent spaces than obtained
with the PC-VAE. This difference indicates that the PC-AEs
enable different design degrees of freedom than the PC-VAEs
and are in line with the results reported in [19]. Furthermore,
comparing the obtained MI between models trained with
CD and MSD (Fig. 6, columns (b) and (d)), we observed
that models trained with MSD yielded higher values. Our
interpretation is that the MSD allows the autoencoders to
implicitly learn global shape information by enforcing the
organization of the points and, thus, improving the correlation
of the latent representations to more complex performance
data.

To test statistical significance of MI estimations in Fig. 6,
we shuffled the order of values for each latent variable, z;,
to obtain permuted values z,. We then calculated a surrogate
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Fig. 5. Pearson Correlation between the latent representations of the autoencoders (PC-AE-CD, PC-AE-MSD) and variational autoencoders (PC-VAE-CD
and PC-VAE-MSD) and normalized performance metrics calculated from the designs: volume (V) and drag (Fy).
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Fig. 6. Mutual Information between the latent representations of the autoencoders (PC-AE-CD, PC-AE-MSD) and variational autoencoders (PC-VAE-CD and
PC-VAE-MSD) and normalized performance metrics calculated from the designs: volume (V) and drag coefficient (F7).

MI value I'(z},y). This process was repeated 200 times for
each combination of latent variable z; and performance value.
The p-value for each I(z;,y) was obtained as the fraction of
surrogate values larger than the original estimate, I'(z},y) >
I(z;,y). We considered an estimate statistically significant if
the p-value was lower than the critical a-level of 0.05. We
found that all MI estimates were statistically significant at the
specified a-level. Hence, we also find for MI estimation in
the PC-VAE latent space that a small set of variables holds
information about the performance, compared to more latent
variables with high information in the PC-AE latent space.

Hence, we concluded that our baseline MI values (Fig. 6)
are representative and our observation that the MSD-based
training increases the information contained in the latent space
still holds. Furthermore, by visually inspecting the shape
reconstructions (Fig. 7), we observed that the MSD improved
the quality of the mesh reconstruction of the PC-VAE, which
confirms the advantages we expected to achieve by modifying

the loss functions.

PC-VAE-CD PC-VAE-MSD
Input point-cloud S > G

Reconstructed point-clouds and meshes

Fig. 7. Reconstruction of the input point cloud using our trained PC-VAE-CD
and PC-VAE-MSD models.

V. REGRESSION ANALYSIS
To train a surrogate model, we considered 600 shapes along
with their performance metrics (as described in Section III-B).
A. Surrogate Model Training

We trained two MLPs to predict the performance metrics:
The first based on the latent representations of PC-AE-MSD



(MLP-AE) and the second based on the latent representations
of PC-VAE-MSD (MLP-VAE). We considered a two-output
multi-layer perceptron to map the latent representations with
the performance metrics: F,, and V. As a baseline, we trained a
model that predicted the performance as the mean performance
in the training set for both, the PC-AE-MSD (Baseline AE)
and the PC-VAE-MSD (Baseline VAE). We divide the dataset
of 600 shapes with their performance metrics into 85% and
15% training and test set.

To consider the stochastic nature of the MLPs initialization,
we evaluated the performances on the training and test set
over 30 runs and reported the mean and standard deviation
of the errors. Table I shows the prediction performances of
MLPs and baseline regression models on the training and
held-out test set. We observed that both models, MLP-AE and
MLP-VAE showed better prediction performances compared
to the baseline models. The R? score, RMSE, and MAE
between MLP-AE and MLP-VAE are comparable for the
training set. However, in the test set, the MLP-AE predicts
the output performances more accurately than the MLP-VAE,
which indicates that the latent space learned by the PC-AE is
more suitable for surrogate modeling than the space learned
by the PC-VAE.

We visually analyzed the prediction results of the two
performance metrics using two scatter plots of true predicted
values for the test samples in Fig. 8. We observed that both
models predicted the volume with better performance than the
aerodynamic drag, for which the scatter plot showed higher
dispersion of the data with respect to the ideal regression
model.

Predicted

(a) (b)
Fig. 8. True vs. predicted values of drag and volume measures on the test
set.

In the second verification, we analyzed the reconstructions
of 4 samples from the test set, with their performance predicted
values (Fig. 9). We observed that the prediction of the MLP-
AE on 4 samples is more accurate compared to MLP-VAE.
However, for the shape with the lowest drag (second column),
both models failed to predict the lower drag value. We assumed
this could be due to limited data of that particular car class in
the training set.

Analyzing the distribution of the normalized volume and
drag of the training samples, we observed that most of the
samples yield normalized performance values in the interval
[0.2,0.6]. To improve the distribution in the training data,
we explored the shape generative capability of the PC-VAE-

Original shapes

MLP-VAE
F,=.27

Fig. 9. Comparison between the original shapes in the test set with true
performance values and reconstruction of the samples using PC-AE-MSD
and PC-VAE-MSD with performance values predicted using trained MLP
regressors on their latent space.

MSD to augment the data set and improve the quality of the
surrogate models.

B. Exploiting the Generative Capabilities of VAE for Data
Augmentation

To augment the dataset, we sampled additional 300 latent
vectors based on the input shapes with normalized volume and
drag measures below 0.2 and higher than 0.6. For each vector,
we reconstructed the point clouds using the decoder of the
PC-VAE-MSD (Section III-F), converted the 3D point clouds
into meshes, and calculated the volume and drag coefficients
of these shapes using OpenFOAM®.

Starting with the prediction performance on the test set
in Table I, we incrementally added a part of the augmented
dataset generated by PC-VAE-MSD to the existing training
set. The ratio r of the amount of generated samples added to
the training data of the regression model is increased from 0
to 1 by 0.2.

We trained the MLPs with the augmented data set and tested
on the previously held-out test set for 30 runs and reported the
mean and standard deviation of the RMSEs on the test set.
We evaluated the generalization performance of the surrogate
models on the test set by adding augmented data. When ratio
r = 0, the regression model is trained only on the original
training data, so the RMSE values in Table II are similar to
the ones in Table I.

We observed in Table II that augmenting the data set
improved the generalization performance of both, the MLP-
VAE and MLP-AE since the RMSE values decreased. We
concluded that from ratios 0.2 to 0.6, the added samples
increased the diversity of the data, which in general improves
the quality of the surrogate models. But for higher » = 0.8
or r = 1 ratios, the added samples shared a high degree of
similarity with the existing data, thus adding redundancies
and decreasing the performance of the MLPs. Further, we
confirmed our observation by testing the difference in the
RMSE values of each ratio with the RMSE values at r = 0



TABLE I
PREDICTION ERROR ESTIMATION USING R-SQUARED VALUE (R2), ROOT MEAN SQUARE (RMSE) AND MEAN ABSOLUTE ERROR (MAE) ON TRAINING
AND TEST SET. BEST MODEL FOR TRAIN-TEST SPLIT SHOWN IN BOLD.

Training set Test set
Models R? RMSE MAE R? RMSE MAE
Baseline AE -.005 £.004 .160 = .002 .120 £+ .001 | -.007 £ .000 .119 4 .000 .156. £ .0000
MLP - AE 875 £ .002 044 £+ 002 .035 + .004 | .834+.003 .048 +.0006 .068 + .0015
Baseline VAE | .101 + 280 .140 + .030 .110 &+ .020 | -.008 £ .000 .110 £ .000 .157 £ .0000
MLP -VAE 861 + 010 .048 £ .005 .036 £ .002 | .750 £.001 .055+£.0023  .072 £.0023
TABLE 11 learned by the variational autoencoder to sample and generate

RMSE ON TEST SET. RMSE MARKED IN BOLD ARE STATISTICALLY
SIGNIFICANT COMPARED TO THE BASELINE RMSE (WHEN r = 0).

new realistic designs in sparsely sampled regions of the data

Ratio of
Augmented Data MLP-AE MLP-VAE
0 0.0480 4+ .0006  0.0550 + .0023
0.2 0.0454 +.0011  0.0488 4 .0014
0.4 0.0447 4+ .0011  0.0492 £ .0015
0.6 0.0452 +.0013  0.0491 + .0011
0.8 0.0474 +.0012  0.0557 4+.0018

0.0492 +.0017

0.0570 £ .0020

set, which is faster and more intuitive than direct manipulation
of the 3D designs. We show that, within a threshold, our
proposed method improved the accuracy and generalization
capability of the surrogate models for predicting aerodynamic
performances of car shapes.
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