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Abstract—Shape morphing methods are a key representation
in human user-centered design as well as computational opti-
mization of engineering applications in the automotive domain.
3D digital objects are modified using deformation algorithms to
alter the shape for optimal product performance or design aes-
thetics. We imagine a system which can learn from historic user
deformation sequences and support the user in present design
tasks by predicting potential design variations based on currently
observed design changes carried out by the user. Towards a
practical realization, a large amount of human user deformation
sequence data is required which is practically not available. To
overcome this limitation, we propose to use a computational
target shape matching optimization whose hyper-parameters are
tuned to exemplary human user sequence data and that allows
us to afterwards generate large data-sets of human-like shape
modification data in an automated fashion. In addition, we
classified the user sequences to experience levels based on their
variance. These user experience-tuned evolutionary optimizers
allow us in future to mimic different user behavior and generate
a large number of potential design variations in an automated
fashion.

Index Terms—evolutionary optimization, similarity measure,
representations, clustering, interactive designs

I. INTRODUCTION

Digital development in the automotive domain requires
the generation and modification of 3D objects on differ-
ent levels with different perspectives. Designers e.g. create
novel product variations according to given user requirements
while engineers focus on providing realizable concepts with
optimal technical performance. As a support, computational
optimization algorithms, like e.g. evolutionary optimization,
are utilized to search for optimal shape parameters minimizing
or maximizing given cost functions under constraints. We
aim to capture human design processes, i.e. here a sequence
of 3D shape modifications carried out with state-of-the-art
shape morphing methods, and applying machine learning to
build smart time-series models which allow us to predict and
generate a variety of 3D design alternatives, which adapt
online while the user continuously modifies the 3D shape,
along the idea of 2D SketchRNN [1].

However, for training an accurate time-series model, like
e.g. a recurrent neural network (RNN) or a long short term
memory (LSTM) network, a large sample set of user data
needs to be available which is time expensive to generate. To

overcome this limit, we propose in the present paper to utilize
a computational target shape matching optimization whose
hyper-parameters are tuned to exemplary human user sequence
data and that would allow us to afterwards generate large
sets of human-like shape modification data in an automated
fashion. In a first step, we realized a shape deformation tool
based on standard free-form deformation (FFD) [2] to record
human user interactions for optimizing a given 3D shape
towards a target 3D shape. Free-form deformation has been
chosen because it is used for manual shape morphing as
well as in computational evolutionary design optimization [3].
A conceptual 2D design interaction framework using FFD
was proposed by Menzel et al. [4] for predicting design
performance based on human user interaction using neural
networks. In the second step, we implemented a 3D shape
deformation tool to improve on realism and interaction variety
wherein human users were asked to perform a simple target
shape matching task for a shape primitive. In parallel, a series
of computational target shape matching optimizations were
carried out based on different hyper-parameter settings for the
same task. Both recorded data sets allowed us first to automat-
ically align human user and computational optimization time-
series using dynamic time warping for identifying user-specific
hyper-parameter settings and, second, to classify different
expertise levels among the users based on the variance of
their intermediate design steps. Such classification is possible
because inexperienced users usually present a higher level
of uncertainty and variance in the intermediate steps than
experienced users.

The present paper is structured as follows: In Section II,
we review literature related to shape deformation techniques,
different cluster mechanisms and optimization tasks related to
target shape matching. In Section III, we present a 3D shape
morphing tool which we implemented to record human user
interaction for a simple target shape-matching task. In parallel,
we carried out evolutionary optimization based target shape
matching which allowed us to align the optimization hyper-
parameters to human user data by dynamic time warping.
Section IV provides insights into the classification of human
users into groups with different experience levels. Finally,
Section V concludes the paper.



II. RELATED LITERATURE

An important aspect for efficient 3D shape manipulation
is the choice of representation to minimize the number of
design parameters with maximum design flexibility. In CAE,
B-splines and NURBS (Non-uniform rational B-splines) play a
major role, as they allow the modification of shapes at different
scales with few parameters. Shape deformation techniques
with free form deformation (FFD) as a most prominent spline-
based method directly alter the node points of an underlying
geometric mesh which make them very flexible in terms of
choosing a reasonable number of parameters and introducing
locality on the deformations [6], [7].

Fig. 1: Free form deformation of a vehicle, taken from [7].

Here, the geometry is embedded in a lattice of control
points, the so-called control volume, and the shape is modified
and optimized by moving selected control points in 3D space
[7]. Zhang et al. [6] show that the defined dimensionality
of a problem for shape optimization can restrict the optimal
design. Using too few variables may prove certain potential
improvements impossible. Conversely, if too many design
variables are used, particularly if variables are strongly cou-
pled, the search landscape can become intractably complex
to navigate. Regardless of the user-defined parametrization,
the final design is most definitely sub-optimal - often limited
by parametrization [8]. The design parameter selection for
deformation approaches can be seen as a feature selection
technique, where the designer abstracts the representation
into variables that can be used by both, human users and
computational optimizers. But in most cases, the nature of
design problems is ill-structured and therefore the designer
must engage in defining an abstraction in order to explore
design alternatives and optimal solutions. In most cases in the
design generation process, designers are actively involved in
the co-creation process even without much design knowledge.
In our experiments described in Section III, we utilized a
minimum number of design parameter variation both for user
and optimization runs to reduce the dimensionality and ease
the task for the human user. For global industrial design
optimization, an evolutionary strategy with covariance matrix
adaptation (CMA-ES) [5] is widely used since it promises
a good convergence behavior for a low number of function
evaluations which is important especially when it comes to
simulation-based optimization, e.g. aerodynamic optimization.
In CMA-ES, individuals are drawn from a multivariate normal
distribution. This set of solutions is called a population based
on the history of successful parameter mutations. Each indi-
vidual in the population is then evaluated using the objective

function and the mean and covariance matrix of the normal
distribution are updated based on the history of successful
parameter mutations. This process is repeated for several
iterations, called generations, until a threshold is reached.

Both time-series, human user modifications and optimiza-
tion parameter variations over the course of generations, have
been recorded along with their performance in the target
shape matching scenario to evaluate their similarities. Among
the different similarity or distance measure of sequences, the
most commonly used are Euclidean distance and Manhattan
distance [9]. But both measures perform poorly for sequences
of uneven length or even when there is distortion in the series.
Dynamic Time Warping (DTW) [10] overcomes this drawback
and can be applied to sequences with distortions. DTW finds
the similarity between two sequences and it finds the optimal
match between two sequences. The sequences are ”warped”
non-linearly in the time dimension to determine a measure
of their similarity independent of certain non-linear variations
in the time dimension. This sequence alignment method is
often used in time series classification. Besides determining
the optimal hyper-parameters of the evolutionary optimization,
we aimed to identify user groups of different experience levels
based on the time-series history. Typically pattern clustering
activities include pattern representation, clustering or group-
ing, and pattern proximity measure [11], [12]. The output
clustering can be hard to partition sequences into a group
or it can be fuzzy when each pattern has a variable degree
of membership in each of the output clusters. Hierarchical
clustering algorithms [13], [14] produce a nested series of
partitions based on a criterion for merging or splitting clusters
based on similarity measures. Pattern proximity uses a distance
function defined on a pair of patterns. The main aim of using
clustering is to group the users into subgroups based on their
strategy of design deformations. Even if we want to understand
exploratory/oscillating pattern and exploitative sequences to
get the set of expert designer sequences, an unsupervised way
initially will be better to get an idea of the number of clusters
in the data-set. Unlike hierarchical clustering, other clustering
methods such as DBSCAN [15] are helpful when the sequence
data-set is large. But for sparse datasets, DBSCAN cannot
cluster sequences with large differences in densities [16],
[17]. So, for partitioning sparse amount of sequences, other
techniques such as k-means clustering sequences are used by
searching for centroids of each cluster repeatedly [18]–[20]. In
the next section, we introduce our 3D shape morphing design
framework for generating human user sequences and the target
shape optimization framework.

III. A FRAMEWORK FOR MANUAL AND COMPUTATIONAL
TARGET SHAPE MATCHING OPTIMIZATION

Our experimental framework falls into two parts. First, we
set up a graphical user interface where the user can modify
the shape of a 3D object interactively by using one FFD
control point and record the sequence of her/his modifications.
Second, we implemented a target shape matching based on
CMA-ES for the same deformation scenario to align the



optimization time history with the user sequence for finding
optimal hyper-parameters of the optimizer.

A. Graphical Framework

For the interactive human user design tool and the compu-
tational target shape matching optimization, we use standard
free form deformation (FFD) as geometric representation as
it is a common 3D shape modification method in engineering
applications. The shape can be altered by 1 control point in x
and y direction to allow novice users an easy understanding
of the interaction capabilities.

1) Free form Deformation Algorithm: The FFD algorithm
used in the experiments has been proposed by Sederberg and
Parry [2], where the deformations are calculated using tri-
variate Bernstein polynomials. The 3D object is altered by
the modification of the parallelepiped control volume which
surrounds the shape, i.e., moving one control point modifies
the control volume and consequently deforms the object inside.
Therefore it can be applied to any kind of complex objects. In
the Bezier based FFD method, the deformation is defined in
terms of a tri-variate Bernstein polynomial. The displacement
∆x of any node X(s, t, u) in the control box is calculated as
follows:

∆x = B(s, t, u) ·∆P (1)

where ∆P is the displacement of the node point of the control
box and B is the Bernstein polynomial.

After moving the control point, the shape is deformed and
shown to the user, so that s/he can visually estimate which
further movements have to be carried out to transform the
shape as close as possible to a sphere.

For the experimental set-up, 5 geometries have been created
by applying deformation from a sphere primitive using FFD.
The shapes are generated by applying a random deformation
to one control point of the FFD volume as shown in figures 2
and 3. For the rest of the section, Shape 1 (figure 3a) is used
as an example to illustrate the experiments.

Fig. 2: Shape modification from left initial sphere (black) to
Deform sphere (red) by modifying one control point.

A web-based interactive framework is implemented using
Dash and Plotly package of python along with FFD techniques.
The deformed shaped generated by FFD in figure 2 is used
as the initial shape in figure 4 and the control volume is
recalculated (figure 4) for the deformed sphere and one of
the control point position is initialized at (-1,-1) to perform

(a) Shape 1 (b) Shape 2

Fig. 3: Shapes generated applying FFD to one control point.

the experiments. The human task is visualized in figure 4
where the user needs to modify the initial shape with only
one control point (marked in blue) to the target shape shown in
the right in maximum 20 steps. The constraints of the control
point are such that it can be moved only in 2 dimensions (x
and y). If the user reaches the target shape before 20 steps,
the last position of the control point sequence is extended to
make all the user sequences of equal length and to avoid loss
of information due to the variable length of sequences. All
iterations of the modification of the design shape are stored
and also the geometry at each iteration is stored to evaluate the
fitness value. For mathematical formulation, a sequence from
design parameter modification in two dimensions (X and Y)
from a set of users can be represented as S = {S1, S2, ....Si}
where i = 1, 2, ...n is the number of users and each sequence
is of length 20 denoted by

(S(x, y))i = {(x, y)1, (x, y)2, ...., (x, y)20} (2)

Fig. 4: Schematic overview of the task given to the human to
modify initial shape (black) to target shape (red) using only
one control point in (x and y direction).

The sequences are collected for 5 shapes by 10 users at
present due to time limitation. All the evaluations are done
with these user sequences. A detailed analysis of the results
is provided for Shape 1. A similar analysis has been done for
the other 4 shape variants. When the user interacts with the
framework, a sequence according to equation (2) is generated
every time. The sequence generated by the variation of the
absolute value of the control point position in the design space
is plotted in figures 5 and 6.



Fig. 5: Plot for sequence variations in X-axis for Shape 1 for
all users.

Fig. 6: Plot for sequence variations in Y-axis for Shape 1 for
all users.

B. Optimization framework

The selection of the optimizer for the present study ac-
counted for both the character of the problem and the objective
of the experiments. The study aims to evaluate the need for the
search of optimal hyper-parameter for optimization sequences
to align them to each user sequence.

CMA-ES has been used as an evolutionary optimization
algorithm due to its suitability for small populations and
high convergence ratio. The optimization is realized as a
target shape matching scenario which minimizes the distance
between an initial given shape (here: the starting sphere (figure
3a)) and a target shape (here: a standard sphere). The approach
implemented for the tests follows the proposal in [3], [21].
The parameters for tuning the optimization parameters are
discussed in the result section. The objective function should
indicate the fitness of the evolving geometry to the target

shape. For our case, we considered the fitness function as
the modified Hausdorff distance [6] between the initial shape
and the target shape to be reached. In CMA-ES, individuals
are drawn from a multivariate normal distribution. This set
of solutions is called a population. Each individual in the
population is then evaluated using the objective function and
the mean and covariance matrix of the normal distribution
are updated based on the history of successful parameter
mutations. This process is repeated for several iterations, called
generations. The first step needed is the generation of new
individuals, which is done by sampling from a multivariate
normal distribution. This is done by the following equation:

xg+1
k ∼ mg + σgN(0, Cg) (3)

for generation g = 0, 1 where xg+1
k is the individual of g + 1

generation and mg is the mean of the search distribution and
σg is the standard deviation or the step size in the generation.

For each shape, the optimization runs are performed with
several combinations of parameter settings which are de-
scribed in table I.

TABLE I: Hyper-parameter used for CMA-ES grid search.

Optimization parameters Values
Offspring population size 10, 20

Number of parents 2, 3, 5
Total number of generations 20

Initial step size 0.01, 0.1, 1, 1.5, 2

C. Similarity with the optimization runs

To identify the optimal hyper-parameters for the optimiza-
tion related to a user sequence, we plan to use dynamic time
warping (DTW) for its robustness and its ability to handle
non-uniform time sequences. The similarity measure is based
on the following equations:

(S(x1, y1))1 = {(x1, y1)1, (x1, y1)2, ...., (x1, y1)20} (4)

(S(x2, y2))1 = {(x2, y2)1, (x2, y2)2, ...., (x2, y2)20} (5)

DTW (X,Y ) = min(W (xi, yj)) (6)

The sequence S1 and S2 can be arranged to form an n×n plane
or grid where each grid point corresponds to an alignment
between elements (x1, y1)i and (x2, y2)i. A warping path W
maps or aligns the elements of S1 and S2 such that the distance
between them is minimized. The distance measure between
two elements of the sequences is done by Euclidean distance.
So, to find the most suitable hyper-parameter setting for each
user, we calculated the similarity measure for each sequence of
the users with the different combination of (µ, λ) and stepsize
for the optimization runs for shape matching. Each of the
optimization runs is the average of 20 generations. So, the
final solution sequence is considered as the average of all
the generations. The similarity measure is performed to match
each of the user sequences with the optimization solutions.
The heat map of the DTW similarity measure is shown in



TABLE II: Optimization parameter similarity with the
human user.

Users Optimization parameters DTW
µ λ step

User 1 2 10 1.5 0.39
User 2 2 10 0.1 0.08
User 3 2 10 0.1 0.12
User 4 2 10 1 0.55
User 5 2 10 0.1 0.44
User 6 3 10 0.1 0.38
User 7 5 20 1 0.50
User 8 2 10 0.1 0.36
User 9 2 10 1 0.46

User 10 3 10 0.1 0.15

figure 7 to give a visual impression. Each row corresponds to
a sequence of the optimization run with different optimization
parameters given in form of (µ, λ, stepsize). A darker color
indicates a higher similarity between the user and the solution
of the optimization runs and vice versa. Optimal parameter

Fig. 7: Heat map of the DTW comparison of the users
and optimization runs (The notation on the y-axis is: (µ, λ,
stepsize)).

settings for each of the users are given in table II. The
parameters are selected by selecting the runs which result in
the least DTW measure.

To visually analyze the similarity of the heat map plots, we
compared the plot of user user2 modification sequence with
the optimization sequence using the hyper-parameters given in
table II, (µ = 2, λ = 10, stepsize = 0.1) along both X and Y
axes in figure 8 and 9. Also, for the comparison we added the
plot for hyper-parameters (µ = 5, λ = 10, stepsize = 0.1), as
the DTW measure with user2 was less for this sequence.

In our current approach, we carried out a grid search on

Fig. 8: Comparison of the human sequence with the optimiza-
tion sequence based on minimum DTW distance - X axis
(user2).

.

Fig. 9: Comparison of the human sequence with the optimiza-
tion sequence based on minimum DTW distance - Y axis
(user2).

different optimization parameter settings for extracting the
optimization sequence and comparing it to the human user
sequence by DTW. However, in our next step, we want
to extend this process by automatic hyper-parameter tuning
algorithms to improve the similarity with a more accurate
variation of parameter settings. From figure 7, we see that
different users have similar sequence patterns while others are
very different. This leads us to group different users together
based on their experience levels, instead of comparing each
user sequences with a range of optimization sequences of
different parameter settings. Furthermore from the heat map in
figure 7, we see that the color intensity column-wise for few
users are similar to some of the parameter settings. This can
be due to the fact that those set of users sequences have some



similarity. For example, in user2, user3, user10 sequences,
the color intensity for many of the optimization parameter
settings are similar. Thus, to estimate the similarity between
the users to understand their level of experience for design
modification we did further clustering of the user sequences.

IV. USER CLUSTERING ACCORDING TO EXPERIENCE
LEVEL

To understand human behavior of shape modification and
classify user based on their experience level, we first calculate
the similarity between the users. The similarity between the
users is also measured by the DTW distance matrix. The
distance matrix visualization is done with a heat map shown
in figure 10, where each row and column represents a user.

Fig. 10: Heat map of DTW similarity measure.

From the heat map, it can be seen that user3 and user2
has maximum similarity in terms of behavior, while the mod-
ification pattern of user4 is very different. Thus to understand
the pattern of exploration for each sequence, first, we used
the average of the variance in each of the X and Y axes. The
variance distributions of each user are shown in figure 11.

Fig. 11: Plot of the variance of the 10 users for Shape 1.

Since the variance of a sequence measures the distance
of each value in the sequence from the mean, the amount
of exploration with the design parameters results in different
variances for the sequences. Based on the variance of each
sequence as an expression of user experience, we used stan-
dard k-means clustering to separate the users into groups in
an unsupervised way. In order to determine the number of
clusters, one method is to calculate the sum of square error
(SSE) for a range of values of k. Figure 12 indicates that the
optimal number of k in our case is k = 3.

Fig. 12: Number of clusters for k-means.

K-means clustering is performed for all the sequences of
Shape 1, and the sequences are colored based on the labels of
the k-means clustering algorithm. The plot for the clustering
result of all user sequences along the X dimension is shown
in figure 13.

Fig. 13: Clustering based on k-means according to user groups.

However from visual perception, some of the oscillating
sequences are labeled unintuitively, e.g. we expected to have
user7 and user9 in one group with user4 as inexperienced
user class. To improve the clustering, we calculated for each
user sequence the sum of the consecutive differences between
all the elements along the sequence which is a different way
to estimate the modification variations along the sequence.
The assumption for this measure is that the experienced
users with knowledge of the design space and FFD will
modify the design parameter in a monotonic manner rather



than an inexperienced user who would search in the design
space in an exploration or oscillating path before figuring
out the optimal target position for shape matching. The total
variation is represented by Cindex, which is the measure of
the sum of the absolute value of the consecutive differences
between the elements of a sequence. Thus, the sum of the
consecutive change Cindex is given below in equation (7)-(9),
where the numerator is the sum of the absolute value of the
consecutive discrete differences of the elements of a sequence.
The denominator normalizes the effect of different overall
distances between start and endpoint. The X and Y sequence
for each user is given as (S(x))i = {x1, x2, ...., x20}
and (S(y))i = {y1, y2, ...., y20}. For each axis, the sum of
consecutive differences are calculated separately and we take
the average of both.

Cx =

∑
|xi+1 − xi |
|x20 − x1|

(7)

Cy =

∑
|yi+1 − yi |
|y20 − y1|

(8)

Cindex =
(Cx + Cy)

2
(9)

Figure 14 shows the calculation of the Cindex for two
different examples of user sequences, where the change at each
step for the linear sequence is much less than the step change
at each point for the oscillating sequence. Thus, the change∑
|∆x′i| is much higher than

∑
|∆xi| where i = 1, 2...20.

Fig. 14: Sum of the sequence variations along each axis.

A k-means clustering with k = 3 is done on the Cindex

value calculated above in equation (9). Figure 15 shows the
plot for clustering results of all user sequences along X
dimension. From visual perception, the result of clustering
based on the sum of consecutive difference two elements of
along the sequence looks more promising, so we plan to use
this estimation for further classifications. Also, to confirm the
above k-means clustering results, another way of unsupervised
clustering using a hierarchical algorithm yields a dendrogram
representing the nested grouping of patterns and similarity
levels at which the grouping changes. The height of the
dendrogram in figure 16 indicates the order and distance in
which the clustering is done. The key point of the above

Fig. 15: Clustering based on k-means label (Sum of consecu-
tive difference along a sequence).

Fig. 16: Hierarchical clustering of user sequences.

process is to replace two objects by a cluster and still be able to
define the distance between such clusters. The different color
scheme of the dendrogram and the vertical distance from the
top of dendrogram indicate the distance or the dissimilarity
between clusters. The results of the clustering labels of the
user sequences in figure 5 and 6 are explained in table III.

TABLE III: Clustering labels for Shape 1 modification by
the users

Users C index K-mean Hierarchical
User 1 6.76 Label 1 Label 0
User 2 1.21 Label 0 Label 0
User 3 1.53 Label 0 Label 0
User 4 12.96 Label 2 Label 2
User 5 6.88 Label 1 Label 1
User 6 4.23 Label 1 Label 1
User 7 9.25 Label 2 Label 1
User 8 5.06 Label 1 Label 1
User 9 9.02 Label 2 Label 1

User 10 2.21 Label 0 Label 0

From the results of the two clustering labels for Shape 1,
out of 10 users, the labels for 7 users are the same for both of
the clustering schemes. user2, user3 and user10 has similar
labels for both of the clustering results and Cindex is also



low in table III. So we can conclude that these are the most
experienced users for our experimental setup. user4, user7
and user9 are the explorative users because they have higher
Cindex values in reference to figure 5.

In the next step, we use Cindex for the sequences generated
by the optimizer for different parameter settings. We calculated
Cindex for the mean of solution sequences of the optimizer
over 20 generations. Table IV shows the Cindex value for
different optimization parameter combinations i.e. for different
(µ, λ) and initial step sizes.

TABLE IV: Cindex values for optimization runs

(µ,λ )
step size (2,10) (2,20) (3,10) (3,20) (5,10) (5,20)

0.001 1.27 1.41 1.22 1.3 1.40 1.04
0.1 1.10 1.89 1.15 1.14 1.23 1.18
1 1.81 4.94 3.94 3.6 3.8 2.3

1.5 5.58 2.21 7.12 4.24 5.52 5.79
2 15 3.07 3.78 2.34 3.9 4.33

In the following, we compare optimizer sequences with the
explorative users - user4, user7 and user9 from table III.
We identify two optimizer parameter combinations in table IV
with highest Cindex values. The Cindex values for optimizer
parameter combinations (µ = 2, λ = 10, stepsize = 2) and
(µ = 3, λ = 10, stepsize = 1.5) are the highest. So, a
graphical plot is depicted for the explorative users and the
chosen optimizer parameters in figure 17.

Fig. 17: Solution sequence for x - explorative users and
optimizer sequences.

Thus from figure 17, sequence of optimizer parameter
setting (µ = 2, λ = 10, stepsize = 2) matches with the
explorative human user sequences. Another sequence in figure
17 (red line) of optimizer parameter setting (µ = 3, λ = 10,
stepsize = 1.5) is way more oscillating than the previous
optimizer sequence.

Similarly, we also compare the users with low Cindex

value with the optimizer parameter settings with low Cindex

value from table IV. From the table III, user2, user3 have
low Cindex values. So in figure 18, we compare these users
with corresponding optimization parameters (µ = 2, λ = 10,
stepsize = 0.1) and (µ = 3, λ = 10, stepsize = 0.1 ) which
have low Cindex values.

Fig. 18: Solution sequence for x- expert users and optimizer
sequences.

From figure 18, sequences for both human and optimiza-
tion parameters look nearly similar. Thus, we could match
both explorative and expert users with appropriate optimizer
parameter settings. In the future, we want to compare user
behavior with a set of optimizer parameter settings for more
complex shapes.

V. CONCLUSION AND FUTURE WORK

In the present paper, we address the process of gener-
ating large amounts of human user-like design deformation
sequences in a monotonic manner that is required for a
potential training of recurrent neural networks in the digital
development of engineering applications. To mimic the hu-
man user behavior, we propose to find the optimal hyper-
parameters of an evolutionary optimizer based on a param-
eter grid search and dynamic time warping technique. We
implemented a simplified interactive target shape matching
tool based on free form deformation to record human user
data sequences. In a similar fashion, we ran several target
shape matching optimizations using CMA-ES with varying
hyper-parameters. We showed that we can utilize dynamic time
warping successfully to identify the optimal hyper-parameters
for an evolutionary optimization which mimics the human user
sequences. These tuned optimizers allow an application in a
wider range of target shape matching optimizations to foster
larger sets of deformation sequences. In a future work, we
want to generate also more human user data and implement a
hyper-parameter optimization framework to overcome the grid
search or even automatically construct optimizers of different



types than CMA-ES for best sequence matches. In a second
step, we showed that we can successfully cluster human user
sequences into groups with different levels of experience.
The consequences are twofold. First, large amounts of data
according to different user levels can be generated to train
different recurrent models reflecting these user states, and
second, we can utilize these models to coach inexperienced
users by supporting them with models of higher user levels.
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