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Abstract—Recent advancements in machine learning comprise
generative models such as autoencoders (AE) for learning and
compressing 3D data to generate low-dimensional latent rep-
resentations of 3D shapes. Learning latent representations that
disentangle the underlying factors of variations in 3D shapes is
an intuitive way to achieve generalization in generative models.
However, it remains an open problem to learn a generative model
of 3D shapes such that the latent variables are disentangled
and represent different interpretable aspects of 3D shapes. In
this paper, we propose Split-AE, which is an autoencoder-based
architecture for partitioning the latent space into two sets, named
as content and style codes. The content code represents global
features of 3D shapes to differentiate between semantic categories
of shapes, while style code represents distinct visual features to
differentiate between shape categories having similar semantic
meaning. We present qualitative and quantitative experiments
to verify feature disentanglement using our Split-AE. Further,
we demonstrate that, given a source shape as an initial shape
and a target shape as a style reference, the trained Split-AE
combines the content of a source and style of a target shape
to generate a novel augmented shape, that possesses the distinct
features of the target shape category yet maintains the similarity
of the global features with the source shape. We conduct a
qualitative study showing that the augmented shapes exhibit a
realistic interpretable mixture of content and style features across
different shape classes with similar semantic meaning.

Index Terms—Shape analysis, autoencoders, feature disentan-
glement, point clouds

I. INTRODUCTION

In automotive digital development, designers use computer-
aided design (CAD) and engineering (CAE) tools for various
design ideation tasks. Typically, designers manually generate,
modify or update existing geometries according to their design
vision. However, manually exploring a large design set might
be challenging and time-consuming. Therefore, for supporting
designers, we envision a human-machine cooperative design
system that utilizes existing shape databases and rapidly
assesses a novel shape by transferring distinct features from

one shape to another. Here, we explore recent developments
in machine learning, which allows deep neural networks
to learn 3D geometric data for combining the essence of
existing shapes from different classes. For example, cars in
the automotive domain can be divided into classes, such as
convertibles, utility vehicles, passenger cars, etc. (Fig. 1).
To generate novel car shapes that combine the geometric
features of a convertible and a utility vehicle, we propose an
unsupervised approach for learning visual geometric features
of 3D shapes from each class. Further, we perform 3D shape-
to-shape geometric features transfer to generate novel design
variations such that the generated designs reflect shapes from
existing shape classes with modified features.

Utility vehicle Passenger car Convertible

Fig. 1. Car shapes from 3 car classes.

Prior research on 3D shape-to-shape feature transfer rep-
resented each 3D shape with two characteristics [1]: Content
and style. Content refers to the global structure of a 3D shape,
and style refers to the distinctive parts of the shape that
discriminate it from others with the same content. However,
we assume for a given 3D shape that the content estimates
whether the underlying structure of the 3D shape is coherent
as a whole and distinguishes across other semantic categories,
while the style refers to the localized regions or distinctive
parts of the given 3D shape that allows grouping of shapes
into shape classes. As an example, in Fig. 1, sports utility
vehicles (SUV) in the utility vehicle class and sedans in the
passenger car class have distinctive shape parts such as unique



roof structures, while the convertible car has a removable roof.
Thus, our research considers style as the distinct shape parts
that differentiate between shapes across shape classes. Further,
to generate a novel 3D shape by providing a 3D shape as a
style reference, we propose to perform a 3D shape-to-shape
style transfer. For instance, style transfer from a convertible
car to an SUV car should generate a novel realistic car shape
with a removable roof structure like the convertible car class
while having a similar exterior design similar to other parts of
the SUV car.

The difficulty of 3D style transfer has been tackled initially
by utilizing point-wise shape deformation approaches [2],
[3]. Recent developments in state-of-the-art deep learning
algorithms offer a promising approach for unsupervised feature
extraction of 3D shapes. Geometric deep learning models, such
as autoencoders (AEs) [3], [4] and variational autoencoders
(VAEs) [5], learn low-dimensional latent representations of
3D shapes, which allows them to efficiently alter 3D shapes
by modifying the latent variables. Segu et al. [1] directly
address the 3D style transfer problem by learning a style-
dependent generative model (3DSNet) for shapes from two
classes. Given a pair of 3D shapes as input to the 3DSNet,
the network can directly generate new shapes by transferring
style features between the input shapes, since the network
is trained in parallel for reconstruction and shape translation
tasks. Nonetheless, the prior network still lacks a generalized
method that addresses style transfer for multiple classes.

In this paper, we propose an autoencoder-based architecture
called Split-AE that is able to disentangle the content and style
of 3D shapes into two separate latent representations, each of
which is shared between shapes from multiple classes and
across semantic categories. First, we train the Split-AE with
3D shapes to generate two separate content and style latent
spaces for the 3D shapes. Next, we utilize quantitative and
qualitative measures to indicate whether the content and style
features of trained Split-AE represent different underlying
factors of variations in 3D shapes, which hints at the position
of style features before performing style transfer. Second,
given a 3D shape as a style target reference, we utilize the
trained Split-AE to generate a novel augmented shape by
transferring the style of the target shape to a source shape.
Our main contributions are to propose and validate the Split-
AE architecture for content and style disentanglement of
3D shapes from multiple classes and semantic categories to
perform 3D style transfer.

The remainder of this paper is organized as follows: In
Section II, we review deep generative models for learning
3D shapes and approaches for disentangling the latent rep-
resentation for 3D style transfer. We then introduce in Section
III the architecture of our proposed Split-AE model and
the pre-processing steps of the data set. We also detail the
experimental setup for generating augmented shapes by style
transfers and describe qualitative measures to evaluate the
effectiveness of style transfers. In Section IV, we present the
experimental settings to train and analyze the content and style
features learned by Split-AE. In Section V, we discuss the

performance of Split-AE with respect to its ability to generate
novel augmented shapes by style transfers. Finally, in Section
VI, we present a summary and conclusion of our paper.

II. PRIOR ART

We first review autoencoders for learning and reconstructing
3D shape representations. Next, we relate the autoencoder
network for generating content and style latent representations
to pave the way towards latent space-based style transfer for
3D shapes.

A. Autoencoders for content and style disentanglement of 3D
shape representations

3D shapes are frequently represented using point clouds,
voxels, and polygonal meshes, among which point clouds are
the simplest representation for 3D shapes in many tasks [6].
3D point clouds are a list of data point coordinates in 3D space
that are sampled directly from the surface of CAE models and
preserve sufficient geometric details for most applications.

Qi et al. proposed a deep neural network architecture for
learning 3D point clouds, called PointNet [7]. The PointNet
architecture addresses the permutation invariance of points
in point clouds by handling the input data with point-wise
operators followed by a global operator, namely max-pooling.
Recently developed popular deep generative models for learn-
ing point cloud data that extend the PointNet architecture
are autoencoders (AEs), variational autoencoders (VAEs), and
generative adversarial networks (GANs). An AE architecture
comprises a bottleneck layer to represent a compact represen-
tation of the input data, the so-called latent space. This layer
also divides the network into two parts: an encoder, which
maps the input data to the latent variables, and a decoder,
which generates 3D point clouds from the variables in the
latent space. This latent space provides compressed 1D vector
representations of input shapes, which are used for 3D shape
manipulation tasks.

3D shapes are highly structured, with different latent vari-
ables controlling separate aspects of a 3D shape. Segu et al. [1]
proposed to divide the latent representation of 3D shapes into
two factors: content and style. However, the content space is
shared between shapes across two classes, but the style latent
space is class-dependent, i.e., for shapes from each class, a
separate encoder needs to be trained to generate class-specific
style space. In contrast, we tailored our Split-AE to address the
content-style disentanglement for 3D shapes across multiple
classes and domains, by assuming two separate latent spaces
[8]: content and style shared between 3D shapes.

B. Enforcing disentanglement in the latent representation

Research on training autoencoder-based architectures for
multiple tasks [9] relies on a combination of geometric loss
and penalties that operate on the latent space to ensure that
the space contains the information we wish to encode. Earlier
analysis on types of penalties [10] showed that the unsuper-
vised disentanglement of the latent space is fundamentally
impossible without minimal supervision or inductive biases on



models and data. Hence, some form of implicit supervision
in terms of labels of the input data is necessary to achieve
disentangled latent variables that represent discriminative fea-
tures of 3D shapes. To enhance the discrimination of features
learned by the latent variables, prior research imposes an
additional classification task in terms of cross-entropy loss to
train their networks [11], [12].

In our research, to divide and enforce the latent variables
for learning the content and style of shapes from different
domains (having separate semantic meanings) and multiple
classes, we utilize two classification tasks. The first task is
to enforce the content space to learn the underlying shared
global representations of 3D geometries and distinguish shapes
across semantic categories or domains. The second task is to
enforce the style space to learn in an unsupervised fashion
the distinctive local features of 3D shapes from each shape
class, such that it leads to an efficient disentanglement of
class-essential and class-redundant information [12]. Further,
following the idea of this unsupervised approach of shape-
class classifications to encode distinctive features in style space
helps to extend our architecture to learn shapes from multiple
classes, which is not possible with prior approaches [1], [13].

III. METHODOLOGY

Given a source shape x1 and a target shape x2 as a
reference from different classes within the same domain, our
goal is to transfer the distinct features or style of x2 to x1
(x2 → x1), such that the newly generated shape x12 has style
features of the target shape and content features similar to
the source shape. To implicitly learn the separate content and
style features of 3D shapes for performing shape-to-shape style
transfer, we describe our approach in the following sections.

In Section III-A, we first introduce the pre-processing steps
for sampling point cloud data from surfaces of 3D shapes and
describe the shape categories. In Section III-B, we introduce
the architecture of our proposed Split-AE and depict the loss
functions for training the network. Next, we provide details
on the quantitative measures used to evaluate the performance
of the network (Section III-C). In Section III-D, we depict the
experimental setup to generate novel shapes by style transfer
using our network.

A. Pre-Processing of 3D Point Clouds

We choose shapes from K number of domains with different
semantic meanings and from each domain, we consider shapes
from different classes, such that each class of shapes has
distinct geometric features and also possess common global
features between the classes within a domain. We refer to the
total number of classes as X from K domains. We sample
3D point clouds from polygonal meshes of X classes from
K domains, using the shrink-wrapping algorithm utilized in
[14]. The shrink-wrapping samples N points uniformly from
the surface of 3D meshes and generates organized point clouds
based on the vertex assignment of the shrink-wrapped mesh.
Therefore, each shape is a 3D point cloud consisting of N
points.

In this work, we choose shapes from two domains (K = 2),
e.g., cars, and airplane domains of the ShapeNetCore data set
[15], which is a large data set of 3D shapes. From these two
domains, we consider shapes from a total five classes (X = 5)
with their respective class labels Ci (i = 1, ..,X ) (Fig. 2).

SUV Sedan Convertible

Airliner Propeller

Fig. 2. Visualization of one shape from each of the total 5 classes from the
car and airplane domains. The scale shows distinct colors to represent class
labels Ci (i = 1, .., 5). Each shape is color-coded based on their class label.

In the car domain, we selected shapes from three classes:
SUV, sedan, and convertible, and two classes from the airplane
domain: airliners and propellers. We chose the shapes from the
above classes, such that shapes from each class have distinct
geometric characteristics that are visually observable, which
we refer to as style. However, our assumptions of content
and style for shapes from discrete domains are different. For
example, we assume that style for shapes from the three classes
of the car domain refer to distinctive roof structures, and
style for two shape classes in the airplane domain refers to
distinctive wing structures (Fig. 2). Therefore, in the next
section, we introduce our proposed Split-AE architecture to
learn the style of these shapes.

B. Split-AE Architecture

The Split-AE architecture consists of two encoders (Ec and
Es) for mapping input shapes to two latent space branches:
the content (Zc) and style (Zs) space (Fig. 3). Both of the
encoder networks follow the architecture proposed in [3] with
five 1D convolutional layers. The first four layers are activated
with the rectified linear unit (ReLU) and the last layer with a
hyperbolic tangent function. After the fifth convolution layer, a
max-pooling operator reduces the dimensionality of the input
shape to two L-dimensional vectors: content vector zc and
style vector zs. Next, these two latent vectors zc and zs,
are given as input to two multi-layer perceptrons (MLPs):
MLP-1 and MLP-2, respectively. In the first content space Zc
branch, the MLP-1 classifies the input shape into one of the
K domain categories. The architecture of the MLP-1 consists
of two layers, where the first layer with 10 hidden neurons is
activated with ReLU, and the last layer with K hidden neurons
is activated with a soft-max function. The index of the selected
domain of the input shape corresponds to the index of the
neuron with maximum soft-max activation. In the second style
space Zs branch, the MLP-2 classifies the input shape into one
of the X number of classes. The architecture of the MLP-2
is similar to the MLP-1 in the first branch. But in the output



layer of the MLP-2, there are X number of neurons based on
the total number of shape classes, and the index of the selected
class corresponds to the index of the neuron with maximum
softmax activation. Next, we pad the 2 vectors zc and zs to
form a 2 ∗L dimensional vector z, which is given as input to
the decoder (D). The decoder comprises three fully connected
layers, with only the first two layers activated by ReLU.

a) Loss Function: The loss function (L) for training the
Split-AE architecture (Fig. 3) consists of 3 terms as follows:

L = Lrecon + αLDC + βLSC

Lrecon = MSD(xi, xo) =
1

N

N∑
j=1

‖xi,j − xo,j‖22

LDC =

K∑
k=1

−dk(xi)log(ρk(xi)), K = 2

LSC =

X∑
l=1

plMSD(xi, xPl), X = 5

(1)

The first term computes the reconstruction error (Lrecon)
between the input point cloud (xi,j) and output reconstructed
point cloud (xo,j), with N number of points in each point-
cloud. Since the network is trained on organized point clouds,
i.e., the point-correspondence between the point clouds is
known, it allows the utilization of a simple loss function, here:
mean-square distance (MSD) [14], [16].

The second term (LDC) in Eq. 1 obtains a partition between
shapes from K different domains in the content space Zc
using cross-entropy loss (Eq. 1), where each input point cloud
(xi) has a ground truth domain label dk vector. The domain
prediction probability vector of the input shape (xi) is given
by ρk.

The third term (LSC) in the loss function in (Eq. 1) tries
to obtain class-wise partitions of the data into X number of
classes by computing a weighted average of the MSD between
the X chosen prototypes, one from each class and the input
shape. Each prototype defines the most representative 3D point
cloud shape from each class, which we selected by calculating
the mean point cloud of shapes from each class. In Fig. 3,
we show the selected prototypes xPi (i = 1, ..,X ) for X
classes, considering X = 5. The weight for each prototype is
defined by the corresponding probability output pi (i = 1, .., 5)
of the second MLP-classifier (MLP-2). Thus, the third term
is minimized when the MLP-2 yields the highest selection
probability pi to the prototype with the lowest MSD value
(the highest similarity). The shape-classifier tries to obtain a
class-wise partition of the data in the style space Zs.

All terms of the loss function (Eq. 1) differ by several orders
of magnitude. To balance these differences, we introduce two
hyper-parameters α and β to scale the classification losses,
respectively.

C. Metrics for evaluating the trained Split-AE

For comparing the performance of the trained Split-AE with
the baseline models, we considered two quantitative metrics

for estimating the reconstruction capability and style class
classification accuracy of the three models with respect to the
shapes in the unseen test set.

a) Reconstruction error: We consider the Chamfer dis-
tance (CD) [4] to calculate the reconstruction error between
the input and the generated output point clouds.

b) Style class classification accuracy: We train three
random forest-based multi-class classification models to map
the latent representations (zc, zs and z) of the training set to
their respective class labels Ci (i = 1, .., 5). The goal of the
classification is to take any latent representation of the test
set samples as input and assign it to any one of the X style
classes and measure the prediction accuracy of the classifier.
This enables us to check disentanglement of latent variables
based on style classes.

Further, for qualitative evaluation of the features learned
by the two latent spaces, we utilize the feature visualization
approach in [17] for visual inspections of regions of the input
space mapped by the latent variables.

D. Augmented shape generation by style transfer

The trained Split-AE generates a latent vector zi for each
input shape xi, where each zi consists of two parts: Content
zci and style zsi code. Given two shapes, one source shape
x1 from the X1 class and another target shape x2 from the
X2 class within the same domain, we want to evaluate the
effectiveness of the style transfer from shape x2 → x1. Both
of the source and target shapes are represented with content
and style codes, such as, zs1, zc1 (x1 ∼ z1 = (zc1, zs1)) and
zs2, zc2 (x2 ∼ z2 = (zc2, zs2)), respectively.

Our goal of transferring the style code zs2 from x2 → x1 re-
sults in generating an augmented shape x12 (z12 = (zc1, zs2)),
such that x12 is perceptually more similar to the target x2 than
the source x1. Specifically, the augmented shape x12 should
possess distinct traits of shape x2 such that it belongs to the
target car class X2.

Therefore, to evaluate the success of style transfer between
source-target pairs of each domain, we measure the distance
similarity of the generated shapes with the source-target pair
and also calculate the classification accuracy of how many
generated shapes belong to their target shape class using the
pre-trained multi-class classifier (Section III-C).

IV. ANALYSIS OF FEATURES LEARNED BY SPLIT-AE

In this section, we first present evaluation results, where we
compare the Split-AE with baseline models. Next, we present
a series of experiments to verify that the learned content and
style codes represent various aspects of 3D shapes.

A. Model training

a) Data: We selected 1500 shapes out of 3500 shapes in
the car domain consisting of shapes from three car classes and
1100 shapes out of 4045 airliner shapes consisting of shapes
from airliner and propeller classes from the ShapeNetCore data
set [15]. Each shape consists of N points, here: N = 24578.
In total, we considered 2600 point cloud shapes in our data set



Fig. 3. Split-AE architecture and data flow for training the network.

and the coordinates of each point cloud were normalized to
the range [0.1, 0.9]

3, preserving the aspect ratio of the shapes.
For training our network, we split the considered data set

into a 90% training set and 10% test set.
b) Training the Split-AE: We trained the model with a

5D latent vector (L = 5) for each content and style code using
the Adam optimizer [18] with a learning rate η = 5E-04. The
training data was organized into batches of 50 shapes and the
network was trained for 700 epochs. To optimize the hyper-
parameters, α and β, in the loss function in Eq. 1, we set the
hyper-parameter values, α = .03, and β = .1, which resulted
in an acceptable reconstruction accuracy and provided equal
importance between the two classification loss functions.

c) Training baseline models: We considered two baseline
models. As a first baseline model, we selected PC-AE [19], as
we adapted the encoder-decoder architecture of this network
for our Split-AE. The PC-AE network was trained utilizing
mean square distance (MSD) as a reconstruction loss function.
As a second baseline model, we considered a PC-AE-classifier,
where the similar PC-AE network is trained with an additional
cross-entropy classification loss function to discriminate all
classes equally. We trained both networks with a 10D latent
vector using the Adam optimizer with a learning rate of η =
5E-04 for 700 epochs.

We implemented the architectures using Python with
TensorFlow®for computation on Graphics Processing Units
(GPUs). All networks were trained with two CPUs In-
tel®Xeon®Silver, clocked at 2.10 GHz, and with two GPUs
NVidia®GeForce®RTX 8000 with 48GB each. In all cases,
the networks were trained on a single GPU.

To reduce the sampling bias on the random split, we
repeated the data split and trained all the baseline models
and Split-AE 3 times and reported the mean and the standard

deviation over 3 runs in Section IV-B. However, for evaluation
and transfer of learned style features, we visualized the results
from one of the trained Split-AE in Section IV-C and V.

B. Validation of the model
To validate the implementation of our proposed architecture,

we compared the reconstruction capability and style-class clas-
sification performance of the Split-AE with baseline models on
the test set using the quantitative metrics from Section III-C.

a) Reconstruction capability of models: We calculated
the reconstruction losses between the reconstructed output
point clouds and their corresponding input point clouds in
the training and test sets using Chamfer distance (CD) in
Table I. For a 95% confidence interval, we observed that Split-
AE achieved lower reconstruction errors (low CD), which are
better than the errors of the PC-AE and PC-AE-classifier.
The reconstruction quality of Split-AE is closer to the PC-
AE-classifier, which indicates that training a network with a
classification loss improves the quality of the reconstructed
shapes. However, the run-time of Split-AE is much higher
compared to other models, and this is due to the extended
architecture and multitask loss functions for training Split-AE.

TABLE I
RECONSTRUCTION PERFORMANCE OF THE MODELS.

Split-AE PC-AE PC-AE-Classifier

CDtrain (7.54±.77)E-05 (9.70±.12)E-05 (8.69±.41)E-05

CDtest (8.00±.31)E-05 (10.0±.20)E-05 (8.94±.50)E-05

Run-time 4hrs 50mins
20secs

1hr 40mins
20secs

2hrs 54mins
32 secs

b) Style class classification accuracy based on latent
representation: In this experiment, we measured the classi-
fication accuracy of the trained multi-class classifiers (Section



III-C) to predict the class labels of the test samples based
on their latent representations (Table II). Both the baseline
models learn content and style features of 3D shapes in a
common latent space (Z). Therefore, we calculated style class
classification accuracy of the two baseline models based on
the latent space Z opposed to Split-AE, where we calculated
classification accuracy based on content (Zc), style (Zs) and
combined space (Z). Higher accuracy relates to the model’s
ability to generate distinctly separable latent representations
of the test samples based on style classes.

TABLE II
STYLE CLASS CLASSIFICATION ACCURACY OF THE MODELS.

Split-AE PC-AE PC-AE-classifier
Content

space (Zc) 0.953±.004 - -

Style
space (Zs) 0.972±.006 - -

Combined
space (Z) 0.979±.003 0.935±.005 0.977± .004

In Table II, we observed that the 5D style space in Split-
AE shows higher accuracy compared to the 5D content space.
These results stress the effectiveness of our disentangling
approach, as the style space holds higher class-specific infor-
mation in comparison to the content space, even though the
style space in Split-AE learns the class labels based on shape
similarity. Further, in the combined latent space of Split-AE,
classification accuracy improved and became similar to the
PC-AE-classifier, signifying models trained with classification
loss generate better disentangled latent representations based
on style classes. In the next set of experiments, we provide
an intuitive interpretation of the features learned by the con-
tent and style variables of the Split-AE for representing the
underlying factors of variations in 3D shapes.

C. Disentangled shape features learned by Split-AE

a) Content and style variables: For qualitative analysis
of the learned features and better understanding of the com-
plex model architectures, we utilized the feature visualization
approach [17] for projecting learned network features into
human-comprehensible space, i.e., in the 3D input space.
To verify the relation between latent variables and the point
distributions of a 3D shape in the input space, we projected
the activation values of the last convolutional layer of both
encoders (Ec and Es) onto an input point cloud. In Fig.
4, we show the visualization of features learned by content
(zci , i = 1..., 5) and style (zsi , i = 1, .., 5) variables of the
trained Split-AE on an SUV car shape.

By analyzing the visualizations across multiple input shapes,
we observed that each feature maps to similar regions in the
input space rather than similar geometric characteristics of
the input shapes [17]. Also, the regions of activation in the
input space are different for style zsi and content variables
zci , where zci mapped to wider regions in the input space
compared to zsi , which focused on distinct smaller regions
in the input space with higher activation values. Therefore,

Fig. 4. Feature visualization method applied to a point cloud representation
of an SUV car shape obtained using Split-AE with 5D content and 5D style
spaces. The scale shows the activation values of the visualized features.

we concluded that style latent variables map to distinctive
localized regions in the input space to ensure separability
between classes.

b) Linear combination of features: As a second test
to verify that content variables hinder learning distinct traits
specific to the shapes of each car class, we considered a mean
representation xµ generated by estimating a mean content zcµ
and style code zsµ of the car shapes from the training set, such
as xµ ∼ zµ = (zcµ, zsµ). Next, we considered three distinct
shapes (x1, x2 and x3) from 3 car classes and combined the
content codes of these shapes with the mean style code zsµ
of the shape xµ in Fig. 5. We expected that the 3 generated
shapes would potentially represent shapes similar to the mean
shape xµ and cannot be classified into their 3 respective car
classes, since the distinct content codes learn an overall global
representation of 3D shapes.

Fig. 5. First row: x1µ, x2µ and x3µ shapes generated by combining content
code of x1, x2 and x3 with the style code of xµ, respectively. Second row:
xµ1, xµ2 and xµ3 shapes generated by combining the content code of xµ
with style code of x1, x2 and x3, respectively.

In Fig. 5, selected shapes from each car class are represented
by content and style codes zci and zsi (xi ∼ zi = (zci, zi), i =
1, 2, 3). We generated augmented shapes (x1µ, x2µ and x3µ)
by combining distinct content codes (zc1, zc2 and zc3) with
the mean style code zsµ such as x1µ ∼ z1µ = (zc1, zsµ).
We observed that the generated shapes x1µ, x2µ and x3µ
are similar to each other without having distinctive shape
parts (roof structures similar in all 3 shapes). Therefore, we
conclude that content variables do not learn distinct features
to differentiate shapes across shape categories.



Alternatively, combining the mean content code zcµ of the
shape xµ with distinct style codes of shapes from 3 car
classes should generate shapes that can be classified into
their respective car classes, since style learns localized traits
distinct to each car class. In Fig. 5, by visual inspection
of shapes (xµ1, xµ2 and xµ3), we observed each of these
shape represents shapes from 3 different classes. The generated
augmented shape xµ1 represents an SUV car design like x1.
Likewise, the generated shape xµ2 resembles a sedan shape
(x2) and xµ3 resembles a convertible shape (x3).

Thus, we concluded that the style code learns localized
distinctive shape parts that differentiate a shape from others
with the same content and can describe shapes in more detail.
While the content code learns a global representation of the 3D
shape without specific details. In the next set of experiments,
we utilized Split-AE as a shape generative model for new
augmented shape generation by style transfer.

V. STYLE TRANSFER BETWEEN PAIRED SHAPES

In this section, we utilized Split-AE to generate new aug-
mented shapes by providing different 3D shapes for style
reference (Section III-D).

a) Augmented shape generation and validation: We
performed 3D shape-to-shape style transfer between shapes
within a domain. We hypothesized that the augmented shape
should possess the distinct shape part of the target reference
shape class from where it adapted the style code. In Fig. 6
we show examples of augmented shapes generated by style
transfer between source and target shapes in the car and
airplane domains.

Fig. 6. In car and airplane domains, we illustrate style transfer results for
pairs x1 ↔ x2 and x3 ↔ x4, respectively. Each point of the generated point
cloud shapes (x12, x21, x34 and x43) is color coded based on the Euclidean
(L2) distance vector ( ~∆i, i = 1, .., 4) written below each generated shape.

In the car domain (Fig. 6), we selected an SUV (x1) and a
convertible (x2) as a source-target pair. The augmented shapes
x12 and x21 are generated by style transfer from x2 → x1 and

x1 → x2, respectively. We observed that the roof structures
of the two generated shapes (x12 and x21) change according
to the reference shape class from where it adapted the style
codes, i.e., for x12 the roof structure is like x2 and for x21
like x1.

Further, for qualitative analysis of the structural similarity
between the generated shape x12 to x1 and x2, we calculated
two normalized Euclidean (L2) distance vectors ( ~∆1 and ~∆2)
between each point in the generated point cloud shape x12
with x1 and x2. In Fig. 6, we visualized two samples of
the generated shapes x12 and projected ~∆1 and ~∆2 as color
maps onto the two 3D point cloud representations of x12,
respectively. We observed that x12 color coded with ~∆1 shows
the largest differences (high normalized L2 values) in the roof
region with respect to x1 and higher similarity (low normalized
L2 values) in the frontal and lower region with x1 from where
it adapted the content code. Analogously, for the generated
shape x12 color coded with ~∆2, we observed that the roof
structure of x12 is similar (low normalized L2 values) to
the target shape x2. Alternatively, the augmented shape x21
generated by style transfer from x1 → x2 shows roof structure
like x1 and the bottom region of the car shape similar to x2.
These results signify that the style transfer between source-
target pairs generate new shapes with modified shape parts.

Likewise, in the airplane domain (Fig. 6), style transfers
between an airliner (x3) and a propeller (x4) shape pair
generated shapes x34 and x43. Different from the style transfer
in the car domain, we observed that each of the augmented
shape (x34 or x43) in the airplane domain changes the wing
structures according to the reference shape from where it
adapted the style code, i.e., the wings of the generated shape
x34 changes according to the propeller shape x4. Thus, Split-
AE correctly identifies distinctive styles in different domains.

Additionally, to confirm our observations in Fig. 6 that each
style transfer generates a novel augmented shape which has
mixed shape parts from both source-target shapes, we analyzed
the performance of style transfers for additional augmented
shapes from each domain. We generated 500 new augmented
car shapes and 500 airplane shapes by randomly selecting 500
source-target pairs from the car and airplane shapes in the data
set, respectively. For qualitative visual inspection, we show 25
out of 500 augmented car shapes in Fig. 7, where the target
shape alters in each column and the source shape changes row-
wise. Thus, the horizontal axis indicates traversing of style
and the vertical axis shows the change of content, i.e., shapes
in each row have fixed content with changing style codes.
To verify the distinct shape parts similarity of the augmented
shapes with the target shape class, we used the trained multi-
class classifier to predict the class label of each augmented
shape from its latent representation z and color-coded each
shape based on the predicted class label (Section III-C).

In the first row of Fig. 7, the augmented shapes (x1j , j =
1, .., 5) are generated by combining the content code of an
SUV shape x1 with style codes of shapes from different
car classes. We observed significant differences in the roof
structure of the augmented shapes (x1j , j = 1, .., 5), however,



Fig. 7. Visualization of reconstructions of 25 augmented car shapes generated by style transfer from target to source shapes. The content code is fixed in each
row while the style code varies. Similarly, the style code is fixed in each column while the content code varies. Each of the generated shapes is color-coded
based on the predicted class label.

preserving the similarity in the lower-body and frontal design
with the source shape x1. Likewise, the augmented shapes
(xj1, j = 1..5) in the first column hold distinct shape parts
(roof structure) of the SUV class, but the frontal and lower-
body design changes in each row according to each row-
based source shape. Also, for each augmented shape in Fig. 6,
the prediction of the class label using the trained multi-class
classifier shows that the style of each target shape dominated
the class allocation of each augmented shape. Thus, column-
wise, each generated shape has a similar prediction label (same
color) that matches the target shape label in that column.

In addition, we predicted the class labels of 500 shapes
using the trained multi-class classifier and measured the accu-
racy, i.e., the predicted labels of the augmented shapes match
the class labels of their respective target shape class. Style
transfer in both domains shows a high accuracy of 0.91 for
500 generated car shapes and 0.82 for 500 airplane shapes, in-
dicating the success of our style transfer approach. Therefore,
Split-AE provides the flexibility to combine features between
two shapes with its disentangled latent spaces. Therefore,
we concluded, Split-AE excels in part-based modification by
replacing distinct shape parts, while accurately maintaining
the underlying structure for generating novel realistic 3D
shapes. This helps to generate novel shapes which are modified
versions of the existing designs.

b) Latent space exploration: As a second experiment to
evaluate the goodness of learned disentangled variables, we
performed latent space-based interpolation in the content and
style space in Fig. 8, where we performed uniform distance
interpolations of the content and style codes from a source
shape (SUV) to a target shape (convertible). Since our network
was trained to generate an organized point cloud like that
of the input shapes, we measured the similarity of each

interpolated shape with the target shape to illustrate the change
in each 3D shape by interpolation of the latent variables.

Fig. 8. Interpolation in the content and style space learned by Split-AE
from a source to a target shape. In the first row, we generate shapes by
uniformly interpolating between source content and target content, keeping the
source style. In the second row, we generate shapes by uniformly interpolating
between source style and target style, keeping the source content constant.

In Fig. 8, we observed the shapes produced with the
interpolated contents in the content space keeping the source-
style code fixed, show the frontal and lower region of the
exterior design of the car shapes gradually becoming similar to
the target shape (low normalized L2 distances). Alternatively,
shapes produced by interpolating style from the source to the
target shape keeping the content of the source shape fixed,
show a gradual change in the roof designs to make the roof
design of the interpolated shapes like the convertible (low
normalized L2 distances). This shows the credibility of two
separate content and style spaces for design exploration.

VI. CONCLUSION

Motivated by the challenges of learning disentangled latent
representations using a generative model for representing dif-
ferent interpretable visual features of 3D shapes, we propose in



this paper a novel method involving minimum supervision to
disentangle 3D representations into content and style features.
We demonstrate with quantitative and qualitative measures
that our method is effective in disentangling content and style
space that represent various aspects of 3D shapes. We also
present examples of 3D shape-to-shape feature transfer for
shapes across multiple classes within a domain. In contrast
to previous work, our approach learns content and style codes
for shapes across multiple classes and domains, which allows
generating augmented shapes using style transfer in different
domains. These also help to achieve our main goal to have
machine learning assist in design transformation tasks for the
designers in automotive design development.

The main technical limitation of our work was that we
considered style features resembling localized regions of 3D
shapes. However, our analysis does not consider more global
style features, which will help to understand the style of cars
from different brands. Moreover, we regard our work as a
first step towards a generic model for features disentanglement
of shapes across domains. Also, in this research, we utilized
car and airplane shapes for our evaluation and therefore did
not use the model for style transfer across domains. Thus, as
future work, we aim at identifying style also as global features
common to car shapes from a brand and investigate 3D style
transfer between cross-domain shapes.
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